Skip to main content

Hemorrhagic Shock and Resuscitation

Trauma Research at the Trauma Research and Readiness Institute for Surgery

  • Chapter
Combat Medicine

Abstract

Hemorrhagic shock is the leading cause of death and complications in combat casualties as well as in civilian trauma. Analysis of the historical data demonstrates that the mortality rates from World War II, the Korean War, and the Vietnam conflict are not only very similar but have also not shown any improvement over this period. Additionally, the rates of soldiers who died of wounds (DOW; death after reaching treatment facility) during the Vietnam conflict did not improve in spite of the rapid evacuation times (Table 1) (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellamy RF. The causes of death in conventional land warfare: implications for combat casualty care research. Mil Med 1984;149:55–62.

    PubMed  CAS  Google Scholar 

  2. Bellamy RF. How shall we train for combat casualty care? Mil Med 1987; 152: 617–621.

    PubMed  CAS  Google Scholar 

  3. Bellamy RF. Combat trauma overview. In: Zajtchuck R, Grande CM, eds. Textbook of Military Medicine, vol 4: Anesthesia and Perioperative Care of Combat Casualty. Washington, DC: TMM Publications, 1995, p 1–2.

    Google Scholar 

  4. Butler FK, Hagmann J, Butler EG. Tactical combat casualty care in special operations. Mil Med 1996;161:3–16.

    PubMed  Google Scholar 

  5. Committee on Fluid Resuscitation for Combat Casualties. Fluid Resuscitation: State of the Science for Treating Combat Casualties and Civilian Injuries. Report of the Institute of Medicine. Washington, DC: National Academy Press, 1999.

    Google Scholar 

  6. Angle N, Hoyt DB, Cabello-Pasini R, et al. Hypertonic saline resuscitation reduces neutrophil migration by suppressing neutrophil L selectin expression. J Trauma 1998;45:7–13.

    Article  PubMed  CAS  Google Scholar 

  7. Fan J, Marshall JC, Jimenez M, et al. Hemorrhagic shock primes for increased expression of cytokine-induced neutrophil chemoattractant in the lung: role in pulmonary inflammation following lipopolysaccharide. J Immunol 1998;161:40–47.

    Google Scholar 

  8. Faist E, Wichmann M, Baue AE The immune response. In: Mattox KL, Feliciano DV, Moore EE, eds. Trauma, 4th ed. New York: McGraw-Hill, 2000, p 1409–1424.

    Google Scholar 

  9. Rhee P, Burris D, Kaufmann C, et al. Lactated Ringer’s solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma 1998;4:313–319.

    Article  Google Scholar 

  10. Alam HB, Scultetus A, Koustova E, Stanton K, Anderson D, Rhee P. Neutrophil activation induced by lactated Ringer’s Resuscitation can not be prevented by altering the volume or rate of infusion. Shock Suppl 2000; 13:50.

    Google Scholar 

  11. Scultetus A, Alam HB, Stanton K, et al. Dextran and Hespan resuscitation causes neutrophil activation in swine after hemorrhagic shock. Shock Suppl 2000; 13:52.

    Google Scholar 

  12. Rhee P, Wang D, Ruff P, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 2000;28:74–78.

    Article  PubMed  CAS  Google Scholar 

  13. Stanton K, Koustova E, Alam H, Rhee P. Effect of hypertonic saline dextran solution on human neutrophil activation. Shock Suppl 2001;5:79.

    Google Scholar 

  14. Koustova E, Stanton K, Guschin V, et al. Effects of lactated Ringer’s solutions on human leukocytes. J Trauma 2002;52:872–878.

    Article  PubMed  CAS  Google Scholar 

  15. Sun LL, Ruff P, Austin B, et al. Early upregulation of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in rats with hemorrhagic shock and resuscitation. Shock 1999;1:416–42.

    Google Scholar 

  16. Alam HB, Sun L, Ruff P, et al. E- and P-selectin expression depends on the resuscitation fluid used in hemorrhaged rats. J Surg Res 2000;94:145–152.

    Article  PubMed  CAS  Google Scholar 

  17. Deb S, Martin B, Sun L, et al. Resuscitation with lactated Ringer’s solution in rats with hemorrhagic shock induces immediate apoptosis. J Trauma 1999;46:582–589.

    Article  PubMed  CAS  Google Scholar 

  18. Deb S, Sun L, Martin B, et al. Lactated Ringer’s and hetastarch but not plasma resuscitation after rat hemorrhagic shock is associated with immediate lung apoptosis by the upregulation of Bax protein. J Trauma 2000;49:47–55.

    Article  PubMed  CAS  Google Scholar 

  19. Koustova E, Rhee P, Stegalkina S, Alam H. Microarray analysis of gene expression following hemorrhagic shock and resuscitation in rats. Shock 2001;15S:26

    Article  Google Scholar 

  20. Katayama M, Hiraide A, Sugimoto H, et al. Effect of ketone bodies on hyperglycemia and lactic acidemia in hemorrhagic stress. JPEN 1994; 18:42–46.

    Article  Google Scholar 

  21. Hirade A, Katayama M, Sugimoto H, et al. Effect of sodium D-3-hydroxybutyrate on amino acidemia in hemorrhagic hypotension. Eur Surg Res 1991;23:250–255.

    Article  Google Scholar 

  22. Hiraide A, Katayama M, Sugimoto H, et al. Effect of 3-hydroxybutyrate on posttraumatic metabolism in man. Surgery 1991;109:176–181.

    PubMed  CAS  Google Scholar 

  23. Alam HB, Austin B, Koustova E, Rhee P. Resuscitation induced pulmonary apoptosis and intracellular adhesion molecule-1 expression are attenuated by the use of ketone Ringer’s solution in rats. J Am Coll Surg 2001;193:255–263.

    Article  PubMed  CAS  Google Scholar 

  24. Alam HB, Punzalan C, Koustova E, Bowyer M, Rhee P. Hypertonic saline: intraosseous infusion causes myonecrosis in a dehydrated swine model of uncontrolled hemorrhagic shock. J Trauma 2002, in press.

    Google Scholar 

  25. Mabry RL, Holcomb JB, Baker AM, et al. United States Army Rangers in Somalia: an analysis of combat casualties on an urban battlefield. J Trauma 2000;49:515–528.

    Article  PubMed  CAS  Google Scholar 

  26. Groves J. Operations in urban environments. Mil Rev 1998;July-August:31–40).

    Google Scholar 

  27. Leitch R. Analysis of Casualty Rates and Patterns Likely to Result from Military Operations in Urban Environments. Bethesda, MD: Combat Casualty Research Center, Uniformed Services University of the Health Sciences, 1997.

    Google Scholar 

  28. Milton TR. Urban operations: future war. Mil Rev 1997;February:37–46.

    Google Scholar 

  29. Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 1994;31:105.

    Google Scholar 

  30. Burris D, Rhee P, Kaufmann C, et al. Controlled resuscitation for uncontrolled hemorrhagic shock. J Trauma 1998;46:216–23.

    Article  Google Scholar 

  31. Thurn JR, Pierpoint GL, Ludvigsen CW, Eckfeldt. D-lactate encephalopathy. Am J Med 1985;79:717–721.

    Article  PubMed  CAS  Google Scholar 

  32. Delman K, Malek SK, Bundz S, et al. Resuscitation with lactated Ringer’s solution after hemorrhage: lack of cardiac toxicity. Shock 1996;5:298–303.

    Article  PubMed  CAS  Google Scholar 

  33. Sondeen JL, Gunther RA, Dubick MA. Comparison of 7.5% NaCl/ 6% dextran-70 resuscitation of hemorrhage between euhydrated and dehydrated sheep. Shock 1995;3:63–68.

    PubMed  CAS  Google Scholar 

  34. McKirnan MD, William RL, Limjoco U, et al. Hypertonic saline/dextran versus lactated Ringer’s treatment for hemorrhage in dehydrated swine. Circ Shock 1994;4:238–246

    Google Scholar 

  35. Wade CE, Tillman FJ, Loveday JA, et al. Effect of hydration on cardiovascular responses and electrolytes after hypertonic saline/dextran treatment for moderate hemorrhage. Ann Emerg Med 1992;21:13–19.

    Article  Google Scholar 

  36. Velasco IT, Ponieri V, Rocha M, et al. Hyperosmotic NaCl and severe hemorrhagic shock. Am J Physiol 1980;239:H664.

    PubMed  CAS  Google Scholar 

  37. DeFelippe J Jr, Timoner IJ, Velasco IT, et al. Treatment of refractory hypovolemic shock by 7.5% sodium chloride injections. Lancet 1980;2:1002.

    Article  Google Scholar 

  38. Wade CE, Kramer GC, Grady JJ, et al. Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery 1997;12:609–616.

    Article  Google Scholar 

  39. Carrel A. La technique operatoire des anastomosis vasculaires transplantation des visceres. Lyon Med 1902;98:859.

    Google Scholar 

  40. Kirsch WM, Zhu YH, Hardesty RA. A new method for microvascular anastomosis. Am Surg 1992;58:722–727.

    PubMed  CAS  Google Scholar 

  41. Leppniemi A, Wherry D, Pikoulis E, et al. Arterial and venous repair with vascular clips: comparison with suture closure. J Vase Surg 1997;26:24–28.

    Article  Google Scholar 

  42. Leppniemi A, Wherry D, Pikoulis E, et al. Common bile duct repair with titanium staples. Surg Endosc 1997;1:714–717.

    Google Scholar 

  43. Leppniemi A, Wherry D, Pikoulis E, et al. Urteral repair with titanium staples: comparison with suture closure. Urology 1998;51:553–557.

    Article  Google Scholar 

  44. Pikoulis E, Burris D, Rhee P, et al. Rapid arterial anastomosis with titanium clips. Am J Surg 1998;175:494–496.

    Article  PubMed  CAS  Google Scholar 

  45. Pikoulis E, Rhee P, Nishibe T, et al. Arterial reconstruction with vascular clips is safe and quicker than sutured repair. Cardiovasc Surg 1998;6:573–578.

    Article  PubMed  CAS  Google Scholar 

  46. Deb S, Martin B, Sun L, et al. Comparison of titanium vascular closure staples with suture repair of thoracic aorta in swine. Chest 2000;18:1762–1768.

    Article  Google Scholar 

  47. Rhee P, Sharpe R, Huynh T, et al. Use of titanium vascular staples in trauma. J Trauma 1998;45:1097–1099.

    Article  PubMed  CAS  Google Scholar 

  48. Ling G, Riechers R, Pasala K, et al. Diagnosis of pneumothorax using a microwave based detector. SPIE 2001;4368:146–151.

    Article  Google Scholar 

  49. Ling GS, Riechers RG Jr., Pasala KM, Zeidman SM, Rhee P, Wiesmann W. In vivo validation of a novel intracranial hemorrhage detector using microwaves. SPIE 1999;3712:18–25.

    Article  Google Scholar 

  50. Ling GS, Day KB, Rhee P, Ecklund JM In search of technological solutions to battlefield management of combat casualties. SPIE 1999;3712:1–8.

    Article  Google Scholar 

  51. Ling G, Riechers R, Pasala K, et al. Diagnosis of subdural and intraparenchymal intracranial hemorrhage using a microwave based detector. SPIE 2000;4037:212–217.

    Article  Google Scholar 

  52. Bellamy R, Safar P, Tisherman S, et al. Suspended animation for delayed resuscitation. Crit Care Med 1996;24:S24–47.

    PubMed  CAS  Google Scholar 

  53. Simon D, Taylor MJ, Elrifai AM, et al. Hypothermic blood substitution enables resuscitation after hemorrhagic shock and 2 hours of cardiac arrest. ASAIO 1995;41:M297–300.

    Article  CAS  Google Scholar 

  54. Rhee P, Acosta J, Bridgeman A, Wang D, Jordan M, Rich NM. Survival after emergency department thoracotomy: review of published data from the past 25 years. J Am Coll Surg 2000;190:288–298.

    Article  PubMed  CAS  Google Scholar 

  55. Branney SW, Moore EE, Feldhaus KM, Wolfe RE. Critical analysis of two decades of experience with post injury emergency department thoracotomy in a regional trauma center. J Trauma 1998;45:87–95.

    Article  PubMed  CAS  Google Scholar 

  56. Taylor MJ, Elrifai AM, Bailes JE. Hypothermia in relation to the acceptable limits of ischemia for bloodless surgery. As Low Temp Biol 1996;3:1–64.

    Article  Google Scholar 

  57. Hickey PR. Deep hypothermic circulatory arrest: current status and future directions. Mt Sinai J Med 1985;52:541–547.

    PubMed  CAS  Google Scholar 

  58. Baumgartner WA, Silverberg GD, Ream AK, et al. Reappraisal of cardiopulmonary bypass with deep hypothermia and circulatory arrest for complex neurosurgical operations. Surgery 1983;94:242–249.

    PubMed  CAS  Google Scholar 

  59. Wells FC, Coghill S, Caplan HL, et al. Duration of circulatory arrest does influence the psychological development of children after cardiac operation in early life. J Thorac Cardiovasc Surg 1983;886:823–831.

    Google Scholar 

  60. Haneda K, Sands MP, Thomas R, et al. Prolongation of the safe interval of hypothermic circulatory arrest: 90 minutes. J Cardiovasc Surg 1983;24:15–21.

    CAS  Google Scholar 

  61. Spetzler RF, Hadley MN, Rigamonti D, et al. Aneurysms of the basilar artery treated with circulatory arrest, hypothermia, and barbituate cerebral protection. J Neurosurg 1988;68:868–879.

    Article  PubMed  CAS  Google Scholar 

  62. Michenfelder JD. The hypothermic brain. In: Michenfelder JD, ed. Anesthesia and the Brain. Baltimore: Williams & Wilkins, 1987, p 23–34.

    Google Scholar 

  63. Hickey PR. Deep hypothermic circulatory arrest: current status and future direction. Mt Sinai J Med 1985;52:541–547.

    PubMed  CAS  Google Scholar 

  64. Livesay JJ, Cooley DA, Reul GJ, et al. Resection of aortic arch aneurysms: a comparison of hypothermia techniques in 60 patients. Ann Thorac Surg 1983;36:19–28.

    Article  PubMed  CAS  Google Scholar 

  65. Capone A, Safar P, Radovsky A, et al. Complete recovery after normothermic hemorrhagic shock and profound hypothermic circulatory arrest of 60 minutes. J Trauma 1996;40:388–395.

    Article  PubMed  CAS  Google Scholar 

  66. Taylor MJ, Bailes JE, Elrifai AM, et al. A new solution for life without blood: asan-guinous low-flow perfusion of a whole-body perfusate during 3 hours of cardiac arrest and profound hypothermia. Circulation 1995;91:431–14.

    Article  PubMed  CAS  Google Scholar 

  67. Leavitt M, Bailes JE, Elrifai AM, et al. Blood parameters following extracorporeal circulation of a blood substitute during profound hypothermia in dogs. Proc Am Acad Cardiovascular Perf 1992;13:49–53.

    Google Scholar 

  68. Tisherman S, Safar P, Radovsky A, et al. Profound hypothermia (<10°C) compared to deep hypothermia (15°C) improves neurologic outcome in dogs after two hours circulatory arrest induced to enable resuscitative surgery. J Trauma 1991;31:1051–1062.

    PubMed  CAS  Google Scholar 

  69. Haneda K, Thomas R, Sands MP, et al. Whole body protection during three hours of total circulatory arrest: an experimental study. Cryobiology 1986;23:483–494.

    Article  PubMed  CAS  Google Scholar 

  70. Woods RJ, Safar, P, Takasu A, et al. Hypothermic aortic arch flush for preservation of brain and heart during prolonged exsanguination cardiac arrest in dogs. J Trauma 1998;45:116.

    Article  Google Scholar 

  71. Belzer FO, Southard JM, Van Gulik TM, et al. Principles of solid-organ preservation by cold storage. Transplantation 1988;45:673–676.

    Article  PubMed  CAS  Google Scholar 

  72. Southard JH, Van Gulik TM, Ametani MS, et al. Important components of the UW solution. Transplantation 1990:49;251–257.

    Article  PubMed  CAS  Google Scholar 

  73. Southard JH, Belzer FO. New concepts in organ preservation. Clin Transplant 1993;7:134–137.

    PubMed  CAS  Google Scholar 

  74. Luna GK, Maier RV, Palvin EG, et al. Incidence and effect of hypothermia in seriously injured patients. J Trauma 1987;27:1014–1018.

    Article  PubMed  CAS  Google Scholar 

  75. Jurkovich GJ, Greiser WB, Luterman A, Curreri PW. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 1987;27:1019–1024.

    Article  PubMed  CAS  Google Scholar 

  76. Gentilello LM, Jurkovich GJ, Stark MS, et al. Is hypothermia in the victim of major trauma protective or harmful?: a randomized prospective study. Ann Surg 1997;26:439–49.

    Article  Google Scholar 

  77. Connolly JE, Roy A, Guernsey J, Stemmer EA. Bloodless surgery by means of profound hypothermia and circulatory arrest: effect of brain and heart. Ann Surg 1965;162:724–737.

    Article  PubMed  CAS  Google Scholar 

  78. Swan H, Virtue R, Blount SG, et al. Hypothermia in surgery: analysis of 100 clinical cases. Ann Surg 1955;142:382–400.

    Article  PubMed  CAS  Google Scholar 

  79. Edmunds LH, Folkman J, Snodress AB, Brown RB. Prevention of brain damage during profound hypothermia and circulatory arrest. Ann Surg 1963;157:637–649.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rhee, P., Alam, H.B., Ling, G.S.F. (2003). Hemorrhagic Shock and Resuscitation. In: Tsokos, G.C., Atkins, J.L. (eds) Combat Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-407-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-407-8_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-337-4

  • Online ISBN: 978-1-59259-407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics