Skip to main content

Heat Stress

  • Chapter
Combat Medicine

Abstract

Epidemiologic studies have shown that the health of military personnel who served in the Persian Gulf War theater is poorer and their mortality rates higher than military personnel who did not serve in that theater (1,2). A number of studies have attributed this observation variously to stress, immunologic abnormalities, and neuroendocrine dysfunctions (3,4). One of the important stressors to which military personnel were exposed was heat. Although little direct evidence currently exists to define the role that heat stress plays in long-term health, the significant effect that heat can exert on normal cell homeostasis suggests the need for such an investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macfarlane GJ, Thomas E, and Cherry N. Mortality among UK Gulf War veterans. Lancet 2000;356:17–21.

    Article  PubMed  CAS  Google Scholar 

  2. Milner IB, Axelrod BN, Illnesses in Gulf War veterans: review and update. Public Health Rev 1999;27:263–177.

    PubMed  CAS  Google Scholar 

  3. Ever son MP, Kotler S, and Blackburn WD, Jr. Stress and immune dysfunction in Gulf War veterans. Ann NY Acad Sci 1999;876:413–418.

    Article  PubMed  CAS  Google Scholar 

  4. Slusarcick AL, Ursano RJ, Fullerton CS, and Dinneen MP. Stress and coping in male and femeale health care providers due to the Persian Gulf War: the USNS comfort hospital ship. Mil Med 1999;164:166–173.

    PubMed  CAS  Google Scholar 

  5. Kiang JG, and Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 1998;80:183–201.

    Article  PubMed  CAS  Google Scholar 

  6. Kiang JG, Ding XZ, and McClain DE. Overexpression of HSP-70 attenuates increases in [Ca2+]. and protects human epidermoid A-431 cells after chemical hypoxia. Toxicol Appl Pharmacol 1998;40:1–7.

    Google Scholar 

  7. Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 1962;18:571–573.

    Article  CAS  Google Scholar 

  8. Csermely P, Schnaider T, Soti C, Prohaszka Z, and Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical application. A comprehensive review. Pharmacol Ther 1998;79:129–168.

    Article  PubMed  CAS  Google Scholar 

  9. Ciocca DR, Adams DJ, Bjercke RJ, Edwards DP, and McGuire WL. Immunohisto-chemical detection of an estrogen-regulated protein by monoclonal antibodies. Cancer Res 1982;42:4256–4258.

    PubMed  CAS  Google Scholar 

  10. Shen J, Hughes C, Chao C et al. Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. Proc Natl Acad Sci USA 1987;84:3278–3282.

    Article  PubMed  CAS  Google Scholar 

  11. Rice GC and Hahn GM. Modulation of Adriamycin transport by hyperthermia as measured by fluorescence-activated cell sorting. Cancer Chemother Pharmacol 1987;20:183–187.

    Article  PubMed  CAS  Google Scholar 

  12. Hahn GM, and Li GC. Thermotolerance, thermoresistance, and thermosensitiza-tion. In: Stress Proteins in Biology and Medicine. Morimoto RI, Tissieres A, Georgopoulos C, eds. Cold Spring Harbor Laboratory Press, 1990, pp. 79–100.

    Google Scholar 

  13. Kaufmann SHE, and Schoel B. Heat shock proteins as antigens in immunity against infection and self. In: Morimoto, RI, Tissieres A, Georgopoulos, C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994, pp 495–531.

    Google Scholar 

  14. Van den Broek MF, Hogervorst EJM, Van Bruggen MCJ, Van Eden W, Van der Zee R, and Van der Berg WB. Protection against streptococcal cell wall-induced arthritis by pretreatment with the 65-kD mycobacterial heat shock protein. J Exp Med 1989;170:449–466.

    Article  PubMed  Google Scholar 

  15. Ito J, Krco CJ, Yu D, Luthra HS, and David CS. Preadministration of a 65 kDa heat shock protein, GroEL, inhibits collagen-induced arthritis in mice. J Cell Biochem (1991);15A:284.

    Google Scholar 

  16. Anderton, SM, Van der Zee R, Noordzij A, and Van Eden W. Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after adjuvant arthritis-inducing or protective immunization protocols. J Immunol 1994; 152: 3656–3664.

    PubMed  CAS  Google Scholar 

  17. Van Eden W, Thole JER, Van der Zee R, et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 1988;331:171–174.

    Article  PubMed  Google Scholar 

  18. Tamura, Y, Tsuboi N, Sato N, and Kikuchi K. 70 kDa heat shock cognate protein is a transformation-associated antigen and a posible target for the host’s anti-tumor immunity. J Immunol 1993;151:5516–5524.

    PubMed  CAS  Google Scholar 

  19. Hisaeda, H, Sakai T, Ishikawa H, et al. Heat shock protein 65 induced by 7 8 T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii. J Immunol 1997;159:2375–2381.

    PubMed  CAS  Google Scholar 

  20. Rajagopalan S, Zordan T, Tsokos GC, and Datta SK. Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4~8~ T helper cell lines that express the 7 8 T-cell antigen receptor. Proc Natl Acad Sci USA 1990;87:7020–7024.

    Article  PubMed  CAS  Google Scholar 

  21. Nadler SG, Tepper MA, Schacter, B, and Mazzucco CE. Interaction of the immunosuppressant deoxyspergualin with a member of the hsp70 family of heat shock proteins. Science 1992;258:484–486.

    Article  PubMed  CAS  Google Scholar 

  22. Yem, AW, Tomasselli AG, Heinrikson RL, et al. Jr. The hsp56 component of steroid receptor complexes binds to immobilized FK506 and shows homology to FKBP-12 and FKBP-13. J Biol Chem 1992;267:2868–2871.

    PubMed  CAS  Google Scholar 

  23. Grinstein, S, Rotin D, and Mason MJ. Na+-H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta 1989;988:73–97.

    Article  PubMed  CAS  Google Scholar 

  24. Pouyssegur, J, Sardet C, Franchi A, L’ Allemain G, and Paris SA. Specific mutation abolishing Na+-H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci USA 1984;81:4833–4837.

    Article  PubMed  CAS  Google Scholar 

  25. Perona R, and Serrano R. Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature (Lond) 1988;334:438–440.

    Article  CAS  Google Scholar 

  26. Dickens CJ, Gillespie JI, Greenwell JR, and Hutchinson P. Relationship between intracellular pH (pFL) and calcium (Ca2+) in avian heart fibroblasts. Exp Cell Res 1990;187:39–46.

    Article  PubMed  CAS  Google Scholar 

  27. Yajima, M and Ui M. Hydrocortisone restoration of the pH-dependent metabolic responses to catecholamines. Am J Physiol 1975;228:1053–1059.

    CAS  Google Scholar 

  28. Kiang JG. Effect of intracellular pH on cytosolic free [Ca2+] in human epidermoid A-431 cells. Eur J Pharmacol (Mol Pharm Sect) 1991;207:287–296.

    Article  CAS  Google Scholar 

  29. Kiang JG, McKinney LC, and Gallin EK. Heat induces intracellular acidification in human A-431 cells: role of Na+-H+ exchange and metabolism. Am J Physiol (Cell Physiol 28) 1990;259:C727-C737.

    CAS  Google Scholar 

  30. Kiang JG, Carr FE, Burns MR, and McClain DE. HSP-72 synthesis is promoted by increase in [Ca2+]1 or activation of G proteins but not pH or cAMP. Am J Physiol (Cell Physiol 36) 1994;265:C104-C114.

    Google Scholar 

  31. Kiang JG, Wu YY, and Lin MC. Heat treatment induces an increase in intracellular cyclic AMP content in human epidermoid A-431 cells. Biochem J 1991;276: 683–689.

    PubMed  CAS  Google Scholar 

  32. Kiang JG, Koenig ML, and Smallridge RC. Heat shock increases cytosolic free Ca2+ concentration via Na+-Ca2+ exchange in human epidermoid A-431 cells. Am J Physiol (Cell Physiol. 32) 1992;263:C30-C38.

    CAS  Google Scholar 

  33. Ding XZ, Smallridge RC, Galloway RJ, and Kiang JG. Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells: role of protein kinase C and [Ca2+]. J Invest Med 1996;44:144–153.

    CAS  Google Scholar 

  34. Kiang JG and McClain DE. Effect of heat shock, [Ca2+]i, cAMP on inositol trisphosphate in human epidermoid A-431 cells. Am J Physiol (Cell Physiol 33) 1993;264:C1561-C1569.

    CAS  Google Scholar 

  35. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993;361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  36. Ding XZ, Tsokos GC, and Kiang JG. Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity. FASEB J 1998;12:451–459.

    PubMed  CAS  Google Scholar 

  37. Kiang JG, Kiang SC, Juang YT, and Tsokos GC. Nco-nitro-L-arginine inhibits the inducible heat shock protein 70 kDa through calcium, PKC, and PKA in human intestinal epithelial T84 cells. Am J Physiol 2001;282:G415-G423.

    Google Scholar 

  38. Smallrige RC, Gist ID, Tsokos GC, and Kiang JG. Characterization of dinstinct heat shock- and thapsigargain-induced cytoprotective proteins in FRTL-5 thyroid cells. Thyroid 1999;9:1041–1047.

    Article  Google Scholar 

  39. Liossis, S-N C, Ding XZ, Kiang JG, and Tsokos GC. Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/Apo-l/CD95-mediated apop-totic cell death in Jurkat cells. J Immunol 1997;158:5668–5675.

    PubMed  CAS  Google Scholar 

  40. Kiang JG, Ding XZ, and McClain DE. Thermotolerance attenuates heat-induced increases in [Ca2+]i and HSP-72 synthesis but not heat-induced intracellular acidification in human A-431 cells. J Invest Med 1996;44:53–63.

    CAS  Google Scholar 

  41. Stodjadinovic A, Kiang JG, Ding XZ, Smallridge RC, Galloway RL, and Shea-Donahue T. Induction of the heat shock response limits tissue injury during acute inflammation of the rat ileum. Crit Care Med 1997;25:309–317.

    Article  Google Scholar 

  42. Stojadinovic A, Kiang JG, Smallridge RC, Galloway RG, and Shea-Donohue T. Induction of heat shock protein-72 protects against ischemia/reperfusion injury in rat small intestine. Gastroentrology 1995;109:505–515.

    Article  CAS  Google Scholar 

  43. Kiang JG, McClain DE, Warke VG, Krishnan S, and Tsokos GC. 2003. Constitutive NO synthase regulates the Na+/Ca2+ exchanger in human T cells: role of [Ca2+]j and tyrosine phosphorylation. J Cell Biochem, in press.

    Google Scholar 

  44. Zhang Q, Zhou XD, Denny T, et al. Changes in immune parameters seen in Gulf War veterans but not civilians with chronic fatigue syndrome Clin Diagn Lab Immunol 1999;6:6–13.

    PubMed  CAS  Google Scholar 

  45. Snyder YM, Guthrie L, Evans GF, and Zuckerman SH. Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol 1992;51:181–187.

    PubMed  CAS  Google Scholar 

  46. Manthey CL, and Vogel SN. The role of cytokines in host responses to endotoxin. Rev Med Microbiol 1992;3:72–79.

    Google Scholar 

  47. Vogel SN, and Hogan MM. Role of cytokines in endotoxin-mediated host response. In: Oppenheim JJ, Shevach ER, eds. Immunophysiology. New York: Oxford University Press, 1990, pp 238–258.

    Google Scholar 

  48. Schultz DR, and Arnold PI. Heat shock (stress) proteins and autoimmunity in rheumatic diseases. Semin Arthritis Rheum 1993;22:357–374.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang G, and Brunham RC. Antigenic analysis of the chlamydial 75-kilodalton protein. Infect Immun 1992;60:323–328.

    Google Scholar 

  50. Blander SJ, and Horwitz MA. Major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaire’s disease. J Clin Invest 1993;91:717–723.

    Article  PubMed  CAS  Google Scholar 

  51. Dubois P, Dedet JP, Fandeur T, et al. Protective immunization of the squirrel monkey against asexual blood-stages of Plasmodium falciparum by use of parasite protein fractions. Proc Natl Acad Sci (USA) 1984;81:229–232.

    Article  CAS  Google Scholar 

  52. Morrison RP, Belland RJ, Lyng K, and Caldwell HD. Chlamydial disease pathogenesis: the 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 1989;170:1271–1283.

    Article  PubMed  CAS  Google Scholar 

  53. Shanafelt M-C, Hindersson P, Soderberg C, et al. T cell and antibody reactivity with the Borrelia burgdorferi 60 kDa heat shock protein in Lyme arthritis. J Immunol 1991;146:3985–3992.

    PubMed  CAS  Google Scholar 

  54. Kiang JG. Genistein inhibits herbimycin A-induced overexpression of inducible heat shock protein 70 kDa. Mol Cell Biochem 2003;245:191–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiang, J.G., McClain, D.E. (2003). Heat Stress. In: Tsokos, G.C., Atkins, J.L. (eds) Combat Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-407-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-407-8_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-337-4

  • Online ISBN: 978-1-59259-407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics