Skip to main content

Nitric Oxide

  • Chapter
Combat Medicine

Abstract

Nitric oxide (NO) is involved in numerous physiologic functions ranging from regulation of cardiovascular functions to participating in memory (1–4). In the immune system, this diatomic radical is involved in host defense and has tumoricidal functions (5,6) However, despite these properties, which are critical in maintaining homeostasis, NO has been implicated as a participant or causative agent in a variety of pathophysiologic conditions (7,8). Defining the exact role of NO under pathophysiologic conditions is further complicated by the fact that it has been shown to be both protective as well as deleterious even in the context of the same biologic setting. Therefore, the search for mechanistic explanations to account for these differing effects is ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142.

    PubMed  CAS  Google Scholar 

  2. Ignarro LJ. Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic esters. Pharm Res 1989;6:651–659.

    Article  PubMed  CAS  Google Scholar 

  3. Dawson TM, Dawson VL, and Synder SH. A novel neuronal messenger molecule in brain: the free radical. nitric oxide. Ann Neurol 1992:32:297–311.

    Article  PubMed  CAS  Google Scholar 

  4. Feldman PL, Griffith OW, and Stuehr DJ. The surprising life of nitric oxide. Chem Eng News 1992: Dec 20:26–38.

    Google Scholar 

  5. Hibbs JB. (1991). Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol 142:565–569.

    Article  PubMed  CAS  Google Scholar 

  6. MacMicking J, Xie QW, and Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323–350.

    Article  PubMed  CAS  Google Scholar 

  7. Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, and Mitchell JB. 1998. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19:711–721.

    Article  PubMed  CAS  Google Scholar 

  8. Gross SS, and Wolin MS. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 1995;57:737–769.

    Article  PubMed  CAS  Google Scholar 

  9. Wink DA, and Mitchell JB. The chemical biology of nitric oxide: insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998;25:434–456.

    Article  PubMed  CAS  Google Scholar 

  10. Wink DA, Hanbauer I, Grisham MB, et al. The chemical biology of NO. Insights into regulation, protective and toxic mechanisms of nitric oxide. Curf Top Cell Regul 1996;34:159–187.

    Article  CAS  Google Scholar 

  11. Wink DA, Grisham M, Mitchell JB, and Ford PC. Direct and indirect effects of nitric oxide. Biologically relevant chemical reactions in biology of NO. Methods Enzymol 1996;268:12–31.

    Article  PubMed  CAS  Google Scholar 

  12. Miranda KM, Espey MG, Jourd’Heuil D, et al. The chemical biology of nitric oxide. In: Ingarro L, ed. Nitric Oxide Biology and Pathobiology, 2000. San Diego: Academic Press.

    Google Scholar 

  13. Wink DA, Cook JA, Kim S, et al. Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide derived reactive intermediates. J Biol Chem 1997;272:11147–11151.

    Article  PubMed  CAS  Google Scholar 

  14. Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995;57:707–736.

    Article  PubMed  CAS  Google Scholar 

  15. Nathan C, and Xie Q. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994;269:13725–13728.

    PubMed  CAS  Google Scholar 

  16. Brouwer M, Chamulitrat W, Ferruzzi G, Sauls DL, and Weinberg JB. Nitric oxide interactions with cobalamins: biochemical and functional consequences. Blood 1996;88:1857–1864.

    PubMed  CAS  Google Scholar 

  17. Yu AE, Hu S, Spiro TG, and Burstyn JN. Resonance raman spectroscopy of soluable guanylyl cyclase reveals displacement of distal and proximal heme ligand by NO. J Am Chem Soc 1994;116:4117–4118.

    Article  CAS  Google Scholar 

  18. Stone JR, and Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric state. Biochemistry 1994;33:5636–5640.

    Article  PubMed  CAS  Google Scholar 

  19. Murad F. The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. Rec Prog Horm Res 1994;49:239–248.

    PubMed  CAS  Google Scholar 

  20. Forstermann U, Ishii K. Measurement of cyclic GMP as an indicator of nitric oxide production. In: Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. New York: John Wiley, 1996, pp. 555–566.

    Google Scholar 

  21. Wink DA, Osawa Y, Darbyshire JF, Jones CR, Eshenaur SC, and Nims RW. Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 1993;300:115–123.

    Article  PubMed  CAS  Google Scholar 

  22. Khatsenko OG, Gross SS, Rifkind AB, and Vane JR. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA 1993;90:11147–11151.

    Article  PubMed  CAS  Google Scholar 

  23. Stadler J, Trockfeld J, Shmalix WA, et al. Inhibition of cytochromes P450 1A by nitric oxide. Proc Natl Acad Sci USA 1994;91:3559–3563.

    Article  PubMed  CAS  Google Scholar 

  24. Kim Y- M, Begonia HA, Muller C, Pitt BR, Watkins WD, and Lancaster JR. Loss and degradation of enzyme-bound heme induced by cellular nitroxide synthesis. J Biol Chem 1995;270:5710–5713.

    Article  PubMed  CAS  Google Scholar 

  25. Choi AM, and Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 1996;15:9–19.

    PubMed  CAS  Google Scholar 

  26. Stocker R. Induction of haem oxygenase as a defence against oxidative stress. Free Radic Res Commun 1990;9:101–112.

    Article  PubMed  CAS  Google Scholar 

  27. Griscavage JM, Fukuto JM, Komori Y, and Ignarro LJ. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 1994;269:21644–21649.

    PubMed  CAS  Google Scholar 

  28. Abu-Soud HM, Wang J, Rousseau DL, Fukuto JM, Ignarro LJ, and Stuehr DJ. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 1995;270:22997–23006.

    Article  PubMed  CAS  Google Scholar 

  29. Hurshman AR, and Marietta MA. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry 1995;34:5627–5634.

    Article  PubMed  CAS  Google Scholar 

  30. Griscavage JM, Hobbs AJ, and Ignarro LJ. Negative modulation of nitric oxide synthase by nitric oxide and nitroso compounds. Adv Pharmacol 1995;34:215–234.

    Article  PubMed  CAS  Google Scholar 

  31. Abu-Soud HM, Rousseau DL, and Stuehr DJ. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem 1996;271:32515–32518.

    Article  PubMed  CAS  Google Scholar 

  32. Dweik RA, Laskowski D, Abu-Soud HM, et al. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest 1998;101: 660–666.

    Article  PubMed  CAS  Google Scholar 

  33. Feelisch M. The biochemical pathways of nitric oxide formation from nitrovasodilators: appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions. J Cardiovasc Pharmacol 1991;17: S25–S33.

    Article  Google Scholar 

  34. Doyle MP, and Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 1981;14:351–356.

    Article  PubMed  CAS  Google Scholar 

  35. Lancaster J. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 1994;91:8137–8141.

    Article  PubMed  CAS  Google Scholar 

  36. Puppo A, and Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron: is haemoglobin a biological Fenton reagent? Biochem J 1988;249:185–190.

    PubMed  CAS  Google Scholar 

  37. Kanner J, Harel S, and Granit R. Nitric oxide as an antioxidant. Arch Biochem Biophys 1991;289:130–136.

    Article  PubMed  CAS  Google Scholar 

  38. Gorbunov NV, Osipov AN, Day BW, Zayas-Rivera B, Kagan VE, and Elsayed NM. Reduction of ferrylmyoglobin and ferrylhemoglobin by nitric oxide: a protective mechanism against ferryl hemoprotein-induced oxidations. Biochemistry 1995;34:6689–6699.

    Article  PubMed  CAS  Google Scholar 

  39. Wink DA, Hanbauer I, Laval F, Cook JA, Krishna MC, and Mitchell JB. Nitric oxide protects against the cytotoxic effects of reactive oxygen species. Ann NY Acad Sci 1994;738:265–278.

    Article  PubMed  CAS  Google Scholar 

  40. Kim Y- M, Bergonia HA, Muller C, Pitt BR, Watkins WD, and Lancaster JR. Nitric oxide and intracellular heme. Adv Pharmacol 1995;34:277–291.

    Article  PubMed  CAS  Google Scholar 

  41. Wink DA, Cook J, Pacelli R, et al. Effect of various nitric oxide-donor agents on peroxide mediated toxicity. A direct correlation between nitric oxide formation and protection. Arch Biochem Biophys 1996;331:241–248.

    Article  PubMed  CAS  Google Scholar 

  42. Farias-Eisner R, Chaudhuri G, Aeberhard E, and Fukuto JM. The chemistry and tumoricidal activity of nitric-oxide hydrogen-peroxide and the implications to cell resistance susceptibility. J Biol Chem 1996;271:6144 6151.

    Google Scholar 

  43. Hoshino M, Ozawa K, Seki H, and Ford PC. Photochemistry of nitric oxide adducts of water-soluble iron(III) porphyrin and ferrihemoproteins studied by nanosecond laser photolysis. J Am Chem Soc 1993;115:9568–9575.

    Article  CAS  Google Scholar 

  44. Brown GC. Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 1995;232:188–191.

    Article  PubMed  CAS  Google Scholar 

  45. Li Y, Severn A, Rogers MV, Palmer RM, Moncada S, and Liew EY. Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages. Eur J Immunol 1992;22:441–446.

    Article  PubMed  CAS  Google Scholar 

  46. Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, and Tenu JP. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 1990;265:14143–14149.

    PubMed  CAS  Google Scholar 

  47. Kwon NS, Stuehr DJ, and Nathan CF. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 1991:174:761–767.

    Article  PubMed  CAS  Google Scholar 

  48. Lepoivre M, Fieschi F, Coves J, Thelander L, and Fontecave M. Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophys Res Commun 1991:179:442–448.

    Article  PubMed  CAS  Google Scholar 

  49. Lepoivre M, Flaman JM, and Henry Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 1992;267:22994–23000.

    PubMed  CAS  Google Scholar 

  50. Hogg N, Kalyanaraman B, Joseph J, Struck A, and Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 1993;334:170–174.

    Article  PubMed  CAS  Google Scholar 

  51. Rubbo H, Parthasarathy S, Barnes S, Kirk M, Kalyanaraman B, and Freeman BA. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys 1995;324:15–25.

    Article  PubMed  CAS  Google Scholar 

  52. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 1991;91:14S–22S.

    Article  Google Scholar 

  53. Padmaja S, and Huie RE. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 1993;195:539–544.

    Article  PubMed  CAS  Google Scholar 

  54. Wink DA, Cook JA, Krishna MC, et al. Nitric oxide protects against alkyl peroxide-mediated cytotoxicity: Further insights into the role nitric oxide plays in oxidative stress. Arch Biochem Biophys 1995;319:402–407.

    Article  PubMed  CAS  Google Scholar 

  55. Gupta MP, Evanoff V, and Hart CM. Nitric oxide attenuates hydrogen peroxidemediated injury to porcine pulmonary artery endothelial cells. Am J Physiol 1997;272:L1133–41.

    Google Scholar 

  56. Hogg N, Struck A, Goss SP, et al. Inhibition of macrophage-dependent low density lipoprotein oxidation by nitric-oxide donors. J Lipid Res 1995;36:1756–1762.

    PubMed  CAS  Google Scholar 

  57. Struck AT, Hogg N, Thomas JP, and Kalyanaraman B. Nitric oxide donor compounds inhibit the toxicity of oxidized low-density lipoprotein to endothelial cells. FEBS Lett 1995;361:291–294.

    Article  PubMed  CAS  Google Scholar 

  58. Halliwell B, Zhao K, and Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res 1999;31:651–669.

    Article  PubMed  CAS  Google Scholar 

  59. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, and Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 1993;90:9813–9817.

    Article  PubMed  CAS  Google Scholar 

  60. Keefer LK, Nims RW, Davies KW, and Wink DA. NONOates (diazenolate-2oxides) as nitric oxide dosage forms. Methods Enzymol 1996;268:281–294.

    Article  PubMed  CAS  Google Scholar 

  61. Chang J, Rao NV, Markewitz BA, Hoidal JR, and Michael JR. Nitric oxide donor prevents hydrogen peroxide-mediated endothelial cell injury. Am J Physiol 1996;270:L931–40.

    Google Scholar 

  62. Linas SL, and Repine JE. Endothelial cells protect vascular smooth muscle cells from H2O2 attack. Am J Physiol 1997;272:F767–73.

    Google Scholar 

  63. Halliwell B, and Gutteridge JMC. Free radicals: aging and disease. Free Radic Biol Med 1989;7:416–509.

    Article  Google Scholar 

  64. Wink DA, Vodovotz W, DeGraff Y, Cook WJA, Krishna PRMC, and Mitchell JB.; effects of NO against oxidative injury. In: Fang F, ed. Nitric Oxide and Infection. New York: Plenum, (2000), pp. 54–75.

    Google Scholar 

  65. Imlay JA, Chin SM, and Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 1988;240:640–642.

    Article  PubMed  CAS  Google Scholar 

  66. Shvedova AA, Tyurina YY, Gorbunov NV, et al. Tert-butyl hydroperoxide/hemoglobin-induced oxidative stress and damage to vascular smooth muscle cells: different effects of nitric oxide and nitrosothiols. Biochem Pharmacol 1999;57: 989–1001.

    Article  PubMed  CAS  Google Scholar 

  67. Pacelli R, Wink DA, Cook JA, et al. Nitric oxide potentiates hydrogen peroxideinduced killing of Escherichia coli. J Exp Med 1995;182:1469–1479.

    Article  PubMed  CAS  Google Scholar 

  68. Kaplan SS, Lancaster JR, Basford RE, and Simmons RL. Effect of nitric oxide on staphylococcal killing and interactive effect with superoxide. Infect Immun 1996;64:69–76.

    PubMed  CAS  Google Scholar 

  69. Hentze MW, and Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 1996;93:8175–8182.

    Article  PubMed  CAS  Google Scholar 

  70. Hentze MW, and Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 1996;93:8175–8182.

    Google Scholar 

  71. Drapier J-C, and Bouton C. Modulation by nitric oxide of metalloprotein regulatory activities. Bioessays 1996;18:1–8.

    Article  Google Scholar 

  72. Zhu L, Gunn C, and Beckman JS. Bactericidal activity of peroxynitrite. Arch Biochem Biophys 1992;298:452–457.

    Article  PubMed  CAS  Google Scholar 

  73. Pryor WA, and Squadrito GL. The chemistry of peroxynitrite and peroxynitrous acid: products from the reaction of nitric oxide with superoxide. Am J Phys 1996;268:L699–721.

    Google Scholar 

  74. Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA, and Grisham MB. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem 1996;271:40–47.

    Article  PubMed  CAS  Google Scholar 

  75. Wong PS, Hyun J, Fukuto JM, et al. Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry 1998;37:5362–5371.

    Article  PubMed  CAS  Google Scholar 

  76. Wink DA, Nims RW, Darbyshire JF, et al. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1994;7:519–525.

    Article  PubMed  CAS  Google Scholar 

  77. Radi R, Beckman JS, Bush KM, and Freeman BA. Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991;266:4244–4250.

    PubMed  CAS  Google Scholar 

  78. Pryor WA, Church DF, Govindan CK, and Crank G. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J Org Chem 1982;47:156–159.

    Article  CAS  Google Scholar 

  79. Doyle MP, Mahapatro SN, Broene RD, and Guy JK. Oxidation and reduction of hemoproteins by trioxodinitrate(II). The role of nitrosyl hydride and nitrite. J Am Chem Soc 1988;110:593–599.

    Article  CAS  Google Scholar 

  80. Williams DLH. Nitrosation. Cambridge: Cambridge University Press, 1988.

    Google Scholar 

  81. Bartsch H, Ohshima H, Shuker DE, Pignatelli B, and Calmel SS. Exposure of humans to endogenous N-nitroso compounds: implications in cancer etiology. Mutat Res 1990;238:255–267.

    Article  PubMed  CAS  Google Scholar 

  82. Green LC, Tannenbaum SR, and Goldman P. Nitrate synthesis in the germfree and conventional rat. Science 1981;212:56–58.

    Article  PubMed  CAS  Google Scholar 

  83. Stuehr DJ, and Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 1985;82:7738–7742.

    Article  PubMed  CAS  Google Scholar 

  84. Marietta MA. Mammalian synthesis of nitrite, nitrate, nitric oxide and Nnitrosating agents. Chem Res Toxicol 1988;1:249–257.

    Article  Google Scholar 

  85. Liu RH, Baldwin B, Tennant BC, and Hotchkiss JH. Elevated formation of nitrate and N-nitrosodimethylamine in woodchucks (Marmota monax) associated with chronic woodchuck hepatitis virus infection. Cancer Res 1991;51:3925–3929.

    PubMed  CAS  Google Scholar 

  86. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994;78:931–936.

    Article  PubMed  CAS  Google Scholar 

  87. Wade RS, Castro CE. Redox reactivity of iron(III) porphyrins and heme proteins with nitric oxide. Nitrosyl transfer to carbon, oxygen, nitrogen, and sulfur. Chem Res Toxicol. 1990;3:289–291.

    Article  PubMed  CAS  Google Scholar 

  88. Lancaster JR, and Hibbs JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci USA 1990;87:1223–1227.

    Article  PubMed  CAS  Google Scholar 

  89. Lee M, Arosio P, Cozzi A, and Chasteen ND. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry 1994;33:3679–1687.

    Article  PubMed  CAS  Google Scholar 

  90. Schwartz SE, White WH. Kinetics of reactions dissolution of nitrogen oxides into aqueous solution. In: Trace Atmospheric Constituents. Properties, Transformation and Fates. New York: John Wiley, 1983, pp 1–117.

    Google Scholar 

  91. Ford PC, Wink DA, and Stanbury DM. Autooxidation kinetics of aqueous nitric oxide. FEBS Lett 1993;326:1–3.

    Article  PubMed  CAS  Google Scholar 

  92. Wink DA, Darbyshire JF, Nims RW, Saveedra JE, and Ford PC. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1993;6:23–27.

    Article  PubMed  CAS  Google Scholar 

  93. Denicola A, Souza JM, Radi R, and Lissi E. Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch Biochem Biophys 1996;328:208–212.

    Article  PubMed  CAS  Google Scholar 

  94. Liu X, Miller MJS, Joshi MS, Thomas DD, and Lancaster JRJ. Accelerated reaction of nitric oxide with 02 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 1998;95:2175–2179.

    Article  PubMed  CAS  Google Scholar 

  95. Wink DA, and Ford PC. Nitric oxide reactions important to biological systems: a survey of some kinetics investigations. Methods Companion Methods Enzymol 1995:7:14–20.

    Article  CAS  Google Scholar 

  96. Pires M, Ross DS, and Rossi MJ. Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase. Int J Chem Kinet 1994;26:1207–1227.

    Article  CAS  Google Scholar 

  97. Wink DA, Grisham MB, Miles AM, et al. Methods for the determination of selectivity of the reactive nitrogen oxide species for various substrates. Methods Enzymol 1996;268:120–130.

    Article  PubMed  CAS  Google Scholar 

  98. Halliwell B, and Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals, and disease. Biochem J 1984;219:1–14.

    PubMed  CAS  Google Scholar 

  99. Routledge MN, Mirsky FJ, Wink DA, Keefer LK, and Dipple A. Nitrite-induced mutations in a forward mutation assay: influence of nitrite concentration and pH. Mutat Res 1994;322:341–346.

    Article  PubMed  CAS  Google Scholar 

  100. Routledge MN, Wink DA, Keefer LK, and Dipple A. DNA sequence changes induced by two nitric oxide donor drugs in the supF assay. Chem Res Toxicol 1994;7:628–632.

    Article  PubMed  CAS  Google Scholar 

  101. Pryor WA, In: Yagi K, ed. Lipid Peroxides in Biology and Medicine New York: Academic, 1982, pp 1–22.

    Google Scholar 

  102. Wink DA, Feelisch M. Formation and detection of nitroxyl and nitrous oxide. In: Feelisch M, Stamler JS, eds. Methods in Nitric Oxide Research. New York: John Wiley, 1996, pp. 403–412.

    Google Scholar 

  103. Arnelle DR, and Stamler JS, NO+, NO, and NO– donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 1995;318:279–285.

    Article  PubMed  CAS  Google Scholar 

  104. Bonner FT, and Pearsall KA, Aqueous nitrosyliron(II) chemistry. 1. Reduction of nitrite and nitric oxide by iron(II) and (trioxodinitrato)iron(II) in acetate buffer. Intermediacy of nitrosyl hydride. Inorg Chem 1982;21:1973–1978.

    Article  CAS  Google Scholar 

  105. Bonner FT, and Pearsall KA, Aqueous nitrosyliron(II) chemistry. 1. Reduction of nitrite and nitric oxide by iron(II) and (trioxodinitrato)iron(II) in acetate buffer. Intermediacy of nitrosyl hydride. Inorg Chem 1982;21:1973–1978.

    Google Scholar 

  106. Hobbs AJ, Fukuto JM, and Ignarro LJ. Formation of free nitric oxide from L-arginine by nitric oxide aynthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 1994;91:10992–10996.

    Article  PubMed  CAS  Google Scholar 

  107. Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, and Feelisch M. No NO from NO synthase. Proc Natl Acad Sci USA 1996;93: 14492–14497.

    Article  PubMed  CAS  Google Scholar 

  108. Pufahl RA, Wishnok JS, and Marletta MA. Hydrogen peroxide-supported oxidation of NG-hydroxy-L-arginine by nitric oxide synthase. Biochemistry 1995;34:1930–1941.

    Article  PubMed  CAS  Google Scholar 

  109. Feelisch M, Stamler JS. Donors of nitrogen oxides. In: Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. New York: John Wiley, 1996, pp 71–115.

    Google Scholar 

  110. Wink DA, Feelisch M, Fukuto J, et al. The cytotoxic mechanism of nitroxyl: possible implications for the pathophysiological role of NO. Arch BiochemBiophys 1998;351:66–74.

    Article  CAS  Google Scholar 

  111. Wink DA, Feelisch M, Fukuto J, et al. The cytotoxic mechanism of nitroxyl; possible implications for pathophysiological role of NO. Nitric Oxide 1998;2:114.

    Google Scholar 

  112. Murphy ME, and Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci USA 1991;88:10860–10864.

    Article  PubMed  CAS  Google Scholar 

  113. Beckman JS, Beckman TW, Chen J, Marshall PH, and Freeman BA, Apparent hydroxyl radical production by peroxylnitrites: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620–1624.

    Article  PubMed  CAS  Google Scholar 

  114. Huie RE, and Padmaja S, The reaction of NO with superoxide. Free Radic Res Commun 1993;18:195–199.

    Article  PubMed  CAS  Google Scholar 

  115. Furchgott RF, and Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–376.

    Article  PubMed  CAS  Google Scholar 

  116. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulus H, and Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992;5:834–842.

    Article  PubMed  CAS  Google Scholar 

  117. Beckman JS, Ischiropoulos H, Zhu L, et al. Kinetics of superoxide dismutaseand iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 1992;298:438–445.

    Article  PubMed  CAS  Google Scholar 

  118. Floris R, Piersma SR, Yang G, Jones P, and Weyer R. Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur J Biochem 1993;215:767–775.

    Article  PubMed  CAS  Google Scholar 

  119. Beckman JS, Chen J, Ischiropoulos, H, and Crow JP. Oxidative chemistry of peroxynitrite. Methods Enzymol 1994;233:229–240.

    Article  PubMed  CAS  Google Scholar 

  120. Rubbo H, Radi R, Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite dependent lipid peroxidation: formation of novel nitrogen containing oxidized lipid derivatives. J Biol Chem 1994;269:26066–26075.

    PubMed  CAS  Google Scholar 

  121. Clancy RM, Leszczynska-Piziak J, and Abramson SB. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 1992;90:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  122. Miles AM, Gibson M, Krishna M, et al. Effects of superoxide on nitric oxidedependent N-nitrosation reactions. Free Radic Res 1995;233:379–390.

    Article  Google Scholar 

  123. Kooy NW, Royall JA, Ischiropoulos H, and Beckman JS. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 1994;16:149–156.

    Article  PubMed  CAS  Google Scholar 

  124. Jourd’heuil D, Miranda KM, Kim SM, et al. The oxidative and nitrosative chemistry of the NO/02-reactions in the presence of bicarbonate. Arch Biochem Biophys 1999;1:92–100.

    Article  Google Scholar 

  125. Hibbs JB, Vavrin Z, and Taintor RR. L-arginine is required for the expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987;138:550–565.

    PubMed  CAS  Google Scholar 

  126. Kurose I, Miura S, Fukumura D, et al. Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: a comparison with oxidative burst. Cancer Res 1993;53:2676–2682.

    PubMed  CAS  Google Scholar 

  127. Schweizer M, and Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun 1994;204: 169–175.

    Article  PubMed  CAS  Google Scholar 

  128. Laffranchi R, Gogvadze V, Richter C, and Spinas GA. Nitric oxide (nitrogen monoxide, NO) stimulates insulin secretion by inducing calcium release from mitochondria. Biochem Biophys Res Commun 1995;217:584–591.

    Article  PubMed  CAS  Google Scholar 

  129. Knowles RG, Darley-Usmar V, and Moncada S. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem J 1996;314:877–880.

    PubMed  Google Scholar 

  130. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, and Schapira AH. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994;345:50–54.

    Article  PubMed  CAS  Google Scholar 

  131. Brown GC, Bolanos JP, Heale SJ, and Clark JB. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett 1995;193:201–204.

    Article  PubMed  CAS  Google Scholar 

  132. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995;369:136–139.

    Article  PubMed  CAS  Google Scholar 

  133. Cassina A, and Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 1996;328: 309–316.

    Article  PubMed  CAS  Google Scholar 

  134. Moro MA, Knowles RG, Darley-Usmar V, and Moncada S. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem J 1996;314:877–880.

    PubMed  Google Scholar 

  135. Lisdero C, Riobo N, Schopfer F, and Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996;328:85–92.

    Article  PubMed  Google Scholar 

  136. Rousseau DL, Sing S, Ching YC, and Sassoroli M. Nitrosyl cyctochrome c oxidase. Formation and properties of mixed valence enzyme. J Biol Chem 1988:263:5681–5685.

    PubMed  CAS  Google Scholar 

  137. Clarkson RB, Norby SW, Boyer S, et al. Direct observation of the kinetics of accumulation and disappearance of nitric oxide within the Chinese hamster ovary cells using a novel intracellular electron paramagnetic resonance technique. Biochim Bionhvs Acta 1995:1243:496–502.

    Article  Google Scholar 

  138. Borutaite V, and Brown GC. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J 1996;315:295–299.

    PubMed  CAS  Google Scholar 

  139. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, and Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996;328:85–92.

    Article  PubMed  CAS  Google Scholar 

  140. Bates TE, Loesch A, Burnstock G, and Clark JB. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 1996;218:40–44.

    Article  PubMed  CAS  Google Scholar 

  141. Geng Y, Hansson GK, and Holme E. Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 1992;71:1268–1276.

    Article  PubMed  CAS  Google Scholar 

  142. Szabo C, Zingarelli B, and Salzman AL. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and neroxvnitrite. Circ Res 1996:7g:1051–1063.

    Article  Google Scholar 

  143. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, and Simmons RL. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 1991;260:C910–6.

    Google Scholar 

  144. Fisch C, Robin MA, Letteron P, et al. Cell-generated nitric oxide inactivates rat hepatocytemitochondria in vitro but reacts with hemoglobin in vivo. Gastroenterology 1996;110:210–220.

    Article  PubMed  CAS  Google Scholar 

  145. Klausner RD, Rouault TA, and Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 1993;72:19–28.

    Article  PubMed  CAS  Google Scholar 

  146. Castro L, Rodrigue M, and Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 1994;269:29409–29415.

    PubMed  CAS  Google Scholar 

  147. Hausladen A, and Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 1994;269:29405–29408.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, D.D., Miranda, K.M., Citrin, D., Espey, M.G., Wink, D.A. (2003). Nitric Oxide. In: Tsokos, G.C., Atkins, J.L. (eds) Combat Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-407-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-407-8_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-337-4

  • Online ISBN: 978-1-59259-407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics