Skip to main content

Inhalation Injury

  • Chapter
Combat Medicine

Abstract

Approximately 15–30% of patients admitted to burn centers have sustained inhalation injury. The importance of inhalation injury is indicated by the fact that it independently increases the risk of death in burn patients over that predicted by age and burn size alone by up to 20%. Inhalation injury also increases the risk of pneumonia; in turn, pneumonia acts independently to increase the risk of death by up to 40%. These contributions to mortality risk are greatest at the midrange of age and burn size (1). Inhalation injury is more common during fires that take place in enclosed spaces, such as residential and vehicular fires. Consequently, in combat casualties, inhalation injury is particularly common during armor engagements, shipboard fires, and military operations in urban terrain. As mentioned in Chapter 11 (on thermal injury), smoke inhalation injury was the leading diagnosis in patients hospitalized (37%) and in those treated and released (50%) following the attack on the World Trade Center on September 11, 2001 (2). There is now growing concern that certain widely available toxic industrial chemicals may be used as weapons of opportunity by terrorists (3,4). The inhalation of these compounds produces injuries similar in several respects to the inhalation of smoke and is discussed here as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shirani KZ, Pruitt BA Jr, Mason AD Jr. The influence of inhalation injury and pneumonia on bum mortality. Ann Surg 1987;205:82–87.

    Article  PubMed  CAS  Google Scholar 

  2. Anonymous. Rapid assessment of injuries among survivors of the terrorist attack on the World Trade Center—New York City, September 2001. MMWR 2002;51:1–5.

    Google Scholar 

  3. Hughart JL, Bashor MM. Industrial Chemicals and Terrorism: Human Health Threat Analysis, Mitigation and Prevention. Atlanta, GA: Agency for Toxic Substances and Disease Registry, US Public Health Service, n.d.

    Google Scholar 

  4. Anonymous. Combating terrorism: observations on the threat of chemical and biological terrorism. Statement of Henry L. Hinton Jr, Assistant Comptroller General, National Security and International Affairs Division, US General Accounting Office. Washington, DC: US General Accounting Office, 1999.

    Google Scholar 

  5. Barillo DJ, Goode R, Esch V. Cyanide poisoning in victims of fire: analysis of 364 cases and review of the literature. J Burn Care Rehabil 1994;15:46–57.

    Article  PubMed  CAS  Google Scholar 

  6. Baud FJ, Barriot P, Toffis V, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med 1991;325:1761–1766.

    Article  PubMed  CAS  Google Scholar 

  7. Breen PH, Isserles SA, Westley J, Roizen MF, Taitelman UZ. Combined carbon monoxide and cyanide poisoning: a place for treatment. Anesth Analg 1995;80: 671–677.

    PubMed  CAS  Google Scholar 

  8. Prien T, Traber DL. Toxic smoke compounds and inhalation injury—a review. Burns 1988;14:451–460.

    Article  CAS  Google Scholar 

  9. Lalonde C, Picard L, Youn YK, Demling RH. Increased early postburn fluid requirements and oxygen demands are predicative of the degree of airways injury by smoke inhalation. J Trauma 1995;38:175–184.

    Article  PubMed  CAS  Google Scholar 

  10. Lachocki TM, Church DF, Pryor WA. Persistent free radicals in woodsmoke: an ESR spin trapping study. Free Radic Biol Med 1989;7:17–21.

    Article  PubMed  CAS  Google Scholar 

  11. Hales CA, Musto S, Hutchison WG, Mahoney E. BW-755C diminishes smokeinduced pulmonary edema. J Appl Physiol 1995;78:64–69.

    PubMed  CAS  Google Scholar 

  12. Nieman GF, Clark WR Jr. Effects of wood and cotton smoke on the surface properties of pulmonary surfactant. Respir Physiol 1994;97:1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Hubbard GB, Langlinais PC, Shimazu T, Okerberg CV, Mason AD Jr, Pruitt BA Jr. The morphology of smoke inhalation injury in sheep. J Trauma 1991;31: 1477–1486.

    Article  PubMed  CAS  Google Scholar 

  14. Nieman GF, Clark WR Jr, Paskanik AM, Bredenberg CE, Hakim TS. Unilateral smoke inhalation increases pulmonary blood flow to the injured lung. J Trauma 1994;36:617–623.

    Article  PubMed  CAS  Google Scholar 

  15. Shimazu T, Yukioka T, Ikeuchi H, Mason AD Jr, Wagner PD, Pruitt BA Jr. Ventilation-perfusion alterations after smoke inhalation injury in an ovine model. J Appl Physiol 1996;81:2250–2259.

    PubMed  CAS  Google Scholar 

  16. Herndon DN, Traber DL, Niehaus GD, Linares HA, Traber LD. The pathophysiology of smoke inhalation injury in a sheep model. J Trauma 1984;24:1044–1051.

    Article  PubMed  CAS  Google Scholar 

  17. Nieman GF, Clark WR Jr, Goyette D, Hart AK, Bredenberg CE. Wood smoke inhalation increases pulmonary microvascular permeability. Surgery 1989;105: 481–487.

    PubMed  CAS  Google Scholar 

  18. Isago T, Noshima S, Traber L, Herndon DN, Traber DL. Analysis of pulmonary microvascular permeability after smoke inhalation. J Appl Physiol 1991;71: 1403–1408.

    PubMed  CAS  Google Scholar 

  19. Clark WR, Grossman ZD, Ritter-Hrncirik C, Warner F. Clearance of aerosolized 99mTc-diethylenetriaminepentacetate before and after smoke inhalation. Chest 1988;94:22–27.

    Article  PubMed  CAS  Google Scholar 

  20. Laffon M, Pittet JF, Modelska K, Matthay MA, Young DM. Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med 1999;160:1443–1449.

    PubMed  CAS  Google Scholar 

  21. Nieman GF, Clark WR Jr, Wax SD, Webb SR. The effect of smoke inhalation on pulmonary surfactant. Ann Surg 1980;191:171–181.

    Article  PubMed  CAS  Google Scholar 

  22. Nieman GF, Paskanik AM, Fluck RR, Clark WR. Comparison of exogenous surfactants in the treatment of wood smoke inhalation. Am J Respir Crit Care Med 1995;152:597–602.

    PubMed  CAS  Google Scholar 

  23. Kikuchi Y, Traber LD, Herndon DN, Traber DL. Unilateral smoke inhalation in sheep: effect on left lung lymph flow with right lung injury. Am J Physiol 1996;271:R1620-R1624.

    Google Scholar 

  24. Sakurai H, Johnigan R, Kikuchi Y, Harada M, Traber LD, Traber DL. Effect of reduced bronchial circulation on lung fluid flux after smoke inhalation in sheep. J Appl Physiol 1998;84:980–986.

    PubMed  CAS  Google Scholar 

  25. Basadre JO, Sugi K, Traber DL, Traber LD, Niehaus GD, Herndon DN. The effect of leukocyte depletion on smoke inhalation injury in sheep. Surgery 1988;104:208–215.

    PubMed  CAS  Google Scholar 

  26. Niehaus GD, Kimura R, Traber LD, Herndon DN, Flynn JT, Traber DL. Administration of a synthetic antiprotease reduces smoke-induced lung injury. J Appl Physiol 1990; 69:694–699.

    PubMed  CAS  Google Scholar 

  27. Tasaki O, Mozingo DW, Ishihara S, et al. Effect of Sulfo Lewis C on smoke inhalation injury in an ovine model. Crit Care Med 1998;26:1238–1243.

    Article  PubMed  CAS  Google Scholar 

  28. Sakurai H, Schmalstieg FC, Traber LD, Hawkins HK, Traber DL. Role of L-selectin in physiological manifestations after burn and smoke inhalation injury in sheep. J Appl Physiol 1999;86:1151–1159.

    PubMed  CAS  Google Scholar 

  29. Schenarts PJ, Schmalstieg FC, Hawkins H, Bone HG, Traber LD, Traber DL. Effects of an L-selectin antibody on the pulmonary and systemic manifestations of severe smoke inhalation injuries in sheep. J Burn Care Rehab 2000;21: 229–240.

    Article  CAS  Google Scholar 

  30. Ogura H, Cioffi WG, Okerberg CV, et al. The effects of pentoxifylline on pulmonary function following smoke inhalation. J Surg Res 1994;56:242–250.

    Article  PubMed  CAS  Google Scholar 

  31. Demling R, Ikegami K, Lalonde C. Increased lipid peroxidation and decreased antioxidant activity correspond with death after smoke exposure in the rat. J Burn Care Rehab 1995;16:104–110.

    Article  CAS  Google Scholar 

  32. LaLonde C, Nayak U, Hennigan J, Demling R. Plasma catalase and glutathione levels are decreased in response to inhalation injury. J Burn Care Rehab 1997;18: 515–519.

    Article  CAS  Google Scholar 

  33. Demling R, LaLonde C, Ikegami K. Fluid resuscitation with deferoxamine hetastarch complex attenuates the lung and systemic response to smoke inhalation. Surgery 1996;119:340–348.

    Article  PubMed  CAS  Google Scholar 

  34. Ikeuchi H, Sakano T, Sanchez J, Mason AD Jr, Pruitt BA Jr. The effects of platelet-activating factor (PAF) and a PAF antagonist (CV-3988) on smoke inhalation injury in an ovine model. J Trauma 1992;32:344–350.

    Article  PubMed  CAS  Google Scholar 

  35. Ischiropoulos H, Mendiguren I, Fisher D, Fisher AB, Thom SR. Role of neutrophils and nitric oxide in lung alveolar injury from smoke inhalation. Am J Respir Crit Care Med 1994;150:337–341.

    PubMed  CAS  Google Scholar 

  36. Soejima K, McGuire R, Snyder NT, et al. The effect of inducible nitric oxide synthase (iNOS) inhibition on smoke inhalation injury in sheep. Shock 2000;13:261–266.

    Article  PubMed  CAS  Google Scholar 

  37. Soejima K, Traber LD, Schmalstieg FC, et al. Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am J Respir Crit Care Med 2001;163:745–752.

    PubMed  CAS  Google Scholar 

  38. Herndon DN, Traber LD, Linares H, et al. Etiology of the pulmonary pathophysiology associated with inhalation injury. Resuscitation 1986;14:43–59.

    Article  PubMed  CAS  Google Scholar 

  39. Kimura R, Traber L, Herndon D, Niehaus G, Flynn J, Traber DL. Ibuprofen reduces the lung lymph flow changes associated with inhalation injury. Circ Shock 1988;24:183–191.

    PubMed  CAS  Google Scholar 

  40. Fukuda T, Kim DK, Chin MR, Hales CA, Bonventre JV. Increased group IV cytosolic phospholipase A2 activity in lungs of sheep after smoke inhalation injury. Am J Physiol 1999;277:L533-L542.

    Google Scholar 

  41. Herlihy JP, Vermeulen MW, Joseph PM, Hales CA. Impaired alveolar macrophage function in smoke inhalation injury. J Cell Physiol 1995;163:1–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bidani A, Wang CZ, Heming TA. Early effects of smoke inhalation on alveolar macrophage functions. Burns 1996;22:101–106.

    Article  PubMed  CAS  Google Scholar 

  43. Schenarts PJ, Bone HG, Traber LD, Traber DL. Effect of severe smoke inhalation injury on systemic microvascular blood flow in sheep. Shock 1996;6:201–205.

    PubMed  CAS  Google Scholar 

  44. Lund T, Goodwin CW, McManus WF, et al. Upper airway sequelae in burn patients requiring endotracheal intubation or tracheostomy. Ann Surg 1985;201:374–382.

    Article  PubMed  CAS  Google Scholar 

  45. Demling RH, Knox J, Youn YK, LaLonde C. Oxygen consumption early postburn becomes oxygen delivery dependent with the addition of smoke inhalation injury. J Trauma 1992;32:593–599.

    Article  PubMed  CAS  Google Scholar 

  46. Lalonde C, Knox J, Youn YK, Demling R. Burn edema is accentuated by a moderate smoke inhalation injury in sheep. Surgery 1992;112:908–917.

    PubMed  CAS  Google Scholar 

  47. Demling R, Lalonde C, Youn YK, Picard L. Effect of graded increases in smoke inhalation injury on the early systemic response to a body burn. Crit Care Med 1995;23:171–178.

    Article  PubMed  CAS  Google Scholar 

  48. Clark WR, Bonaventura M, Myers W, Kellman R. Smoke inhalation and airway management at a regional burn unit: 1974 to 1983. II. Airway management. J Burn Care Rehabil 1990;11:121–134.

    Article  PubMed  CAS  Google Scholar 

  49. Tasaki O, Goodwin CW, Saitoh D, et al. Effects of burns on inhalation injury. J Trauma 1997;43:603–607.

    Article  PubMed  CAS  Google Scholar 

  50. DiVincenti FC, Pruitt BA Jr, Reckler JM. Inhalation injuries. J Trauma 1971;11:109–117.

    Article  PubMed  CAS  Google Scholar 

  51. Clark WR, Bonaventura M, Myers W. Smoke inhalation and airway management at a regional burn unit: 1974–1983. Part I: Diagnosis and consequences of smoke inhalation. J Burn Care Rehabil 1989;10:52–62.

    Article  PubMed  CAS  Google Scholar 

  52. Petroff PA, Hander EW, Clayton WH, Pruitt BA. Pulmonary function studies after smoke inhalation. Am J Surg 1976;132:346–351.

    Article  PubMed  CAS  Google Scholar 

  53. Zak AL, Harrington DT, Barillo DJ, Lawlor DF, Shirani KZ, Goodwin CW. Acute respiratory failure that complicates the resuscitation of pediatric patients with scald injuries. J Burn Care Rehab 1999;20:391–399.

    Article  CAS  Google Scholar 

  54. Cioffi WG, Graves TA, McManus WF, Pruitt BA Jr. High-frequency percussive ventilation in patients with inhalation injury. J Trauma 1989;29:350–354.

    Article  PubMed  CAS  Google Scholar 

  55. Cioffi WG Jr, Rue LW 3d, Graves TA, McManus WF, Mason AD Jr, Pruitt BA Jr. Prophylactic use of high-frequency percussive ventilation in patients with inhalation injury. Ann Surg 1991;213:575–582.

    Article  PubMed  Google Scholar 

  56. Cioffi WG, deLemos RA, Coalson JJ, Gerstmann DA, Pruitt BA Jr. Decreased pulmonary damage in primates with inhalation injury treated with high-frequency ventilation. Ann Surg 1993;218:328–335; discussion 335–337.

    Article  PubMed  CAS  Google Scholar 

  57. Rodeberg DA, Housinger TA, Greenhalgh DG, Maschinot NE, Warden GD. Improved ventilatory function in burn patients using volumetric diffusive respiration. J Am Coll Surg 1994;179:518–522.

    PubMed  CAS  Google Scholar 

  58. Rodeberg DA, Maschinot NE, Housinger TA, Warden GD. Decreased pulmonary barotrauma with the use of volumetric diffusive respiration in pediatric patients with burns: the 1992 Moyer Award. J Burn Care Rehab 1992;13: 506–511.

    Article  CAS  Google Scholar 

  59. Sheridan RL, Kacmarek RM, McEttrick MM, et al. Permissive hypercapnia as a ventilatory strategy in burned children: effect on barotrauma, pneumonia, and mortality. J Trauma 1995;39:854–859.

    Article  PubMed  CAS  Google Scholar 

  60. Cardenas VJ, Jr., Zwischenberger JB, Tao W, et al. Correction of blood pH attenuates changes in hemodynamics and organ blood flow during permissive hypercapnia. Crit Care Med 1996;24:827–834.

    Article  PubMed  Google Scholar 

  61. Fitzpatrick JC, Jordan BS, Salman N, Williams J, Cioffi WG Jr, Pruitt BA Jr. The use of perfluorocarbon-associated gas exchange to improve ventilation and decrease mortality after inhalation injury in a neonatal swine model. J Pediatr Surg 1997;32:192–196.

    Article  PubMed  CAS  Google Scholar 

  62. Harrington DT, Jordan BS, Dubick MA, et al. Delayed partial liquid ventilation shows no efficacy in the treatment of smoke inhalation injury in swine. J Appl Physiol 2001;90:2351–2360.

    PubMed  CAS  Google Scholar 

  63. Levine BA, Petroff PA, Slade CL, Pruitt BA Jr. Prospective trials of dexamethasone and aerosolized gentamicin in the treatment of inhalation injury in the burned patient. J Trauma 1978;18:188–193.

    Article  PubMed  CAS  Google Scholar 

  64. Brown M, Desai M, Traber Ld, Herndon DN, Traber DL. Dimethylsulfoxide with heparin in the treatment of smoke inhalation injury. J Burn Care Rehabil 1988;9:22–25.

    Article  PubMed  CAS  Google Scholar 

  65. Cox CS, Zwischenberger JB, Traber DL, Traber LD, Hague AK, Herndon DN. Heparin improves oxygenation and minimizes barotrauma after severe smoke inhalation in an ovine model. Surg Gynecol Obstet 1993;176:339–349.

    PubMed  CAS  Google Scholar 

  66. Desai MH, Mlcak R, Richardson J, Nichols R, Herndon DN. Reduction in mortality in pediatric patients with inhalation injury with aerosolized heparin/ N-acetylcystine therapy. J Burn Care Rehabil 1998;19:210–212.

    Article  PubMed  CAS  Google Scholar 

  67. Cancio LC, Mozingo DW, Pruitt BA Jr. Strategies for diagnosing and treating asphyxiation and inhalation injuries: how to recognize warning signs and minimize morbidity/mortality risk. J Crit Illness 1997;12:217.

    Google Scholar 

  68. Ogura H, Saitoh D, Johnson AA, Mason AD Jr, Pruitt BA Jr, Cioffi WG Jr. The effect of inhaled nitric oxide on pulmonary ventilation-perfusion matching following smoke inhalation injury. J Trauma 1994;37:893–898.

    Article  PubMed  CAS  Google Scholar 

  69. Sheridan RL, Hurford WE, Kacmarek RM, et al. Inhaled nitric oxide in burn patients with respiratory failure. J Trauma 1997;42:629–634.

    Article  PubMed  CAS  Google Scholar 

  70. Sheridan RL, Zapol WM, Ritz RH, Tompkins RG. Low-dose inhaled nitric oxide in acutely burned children with profound respiratory failure. Surgery 1999;126: 856–862.

    Article  PubMed  CAS  Google Scholar 

  71. O’Toole G, Peek G, Jaffe W, Ward D, Henderson H, Firmin RK. Extracorporeal membrane oxygenation in the treatment of inhalation injuries. Burns 1998;24: 562–565.

    Article  PubMed  Google Scholar 

  72. Goretsky MJ, Greenhalgh DG, Warden GD, Ryckman FC, Warner BW. The use of extracorporeal life support in pediatric burn patients with respiratory failure. J Pediatr Surg 1995;30:620–623.

    Article  PubMed  CAS  Google Scholar 

  73. Brunston RL, Zwischenberger JB, Tao W, Cardenas VJ, Traber DL, Bidani A. Total arteriovenous CO2 removal: simplifying extracorporeal support for respiratory failure. Ann Thorac Surg 1997;64:1599–1604; discussion 1604–1605.

    Article  PubMed  Google Scholar 

  74. Alpard SK, Zwischenberger JB, Tao W, Deyo DJ, Bidani A. Reduced ventilator pressure and improved P/F ratio during percutaneous arteriovenous carbon dioxide removal for severe respiratory failure. Ann Surg 1999;230:215–224.

    Article  PubMed  CAS  Google Scholar 

  75. Zwischenberger JB, Alpard SK, Tao W, Deyo DJ, Bidani A. Percutaneous extracorporeal arteriovenous carbon dioxide removal improves survival in respiratory distress syndrome: a prospective randomized outcomes study in adult sheep. J Thorac Cardiovasc Surg 2001;121:542–551.

    Article  PubMed  CAS  Google Scholar 

  76. Zwischenberger JB, Conrad SA, Alpard SK, Grier LR, Bidani A. Percutaneous extracorporeal arteriovenous CO2 removal for severe respiratory failure. Ann Thorac Surg 1999;68:181–187.

    Article  PubMed  CAS  Google Scholar 

  77. Terrill JB, Montgomery RR, Reinhardt CF. Toxic gases from fires. Science 1978;200:1343–1347.

    Article  PubMed  CAS  Google Scholar 

  78. Coburn RF, Forman HJ. Carbon monoxide toxicity. In: Fishman AP, ed. Handbook of Physiology. Section 3: The Respiratory System. Vol IV: Gas Exchange. Bethesda, MD: American Physiological Society, 1987, pp. 439–456.

    Google Scholar 

  79. Rodkey FL, O’Neal JD, Collison HA, Uddin DE. Relative affinity of hemoglobin S and hemoglobin A for carbon monoxide and oxygen. Clin Chem 1974; 20:83–84.

    PubMed  CAS  Google Scholar 

  80. Agostini JC, Ramirez RG, Albert SN, Goldbaum LR, Absolon KB. Successful reversal of lethal carbon monoxide intoxication by total body asanguineous hypothermic perfusion. Surgery 1974;75:213–219.

    PubMed  CAS  Google Scholar 

  81. Shimazu T, Ikeuchi H, Sugimoto H, Goodwin CW, Mason AD Jr, Pruitt BA Jr. Half-life of blood carboxyhemoglobin after short-term and long-term exposure to carbon monoxide. J Trauma 2000;49:126–131.

    Article  PubMed  CAS  Google Scholar 

  82. Orellano T, Dergal E, Alijani M, et al. Studies on the mechanism of carbon monoxide toxicity. J Surg Res 1976;20:485–487.

    Article  PubMed  CAS  Google Scholar 

  83. Ramirez RG, Albert SN, Agostini JC, Basu AP, Goldbaum LR, Absolon KB. Lack of toxicity of transfused carboxyhemoglobin red blood cells and carbon monoxide inhalation. Surg Forum 1974;25:165–168.

    PubMed  CAS  Google Scholar 

  84. Chance B, Erecinska M, Wagner M. Mitochondrial responses to carbon monoxide toxicity. Ann NY Acad Sci 1970;174:193–204.

    Article  PubMed  CAS  Google Scholar 

  85. Brown SD, Piantadosi CA. In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J Appl Physiol 1990;68:604–610.

    PubMed  CAS  Google Scholar 

  86. Brown SD, Piantadosi CA. Recovery of energy metabolism in rat brain after carbon monoxide hypoxia. J Clin Invest 1992;89:666–672.

    Article  PubMed  CAS  Google Scholar 

  87. Miro O, Casademont J, Barrientos A, Urbano-Marquez A, Cardellach F. Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol Toxicol 1998;82:199–202.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang J, Piantadosi CA. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 1992;90:1193–1199.

    Article  PubMed  CAS  Google Scholar 

  89. Coburn RF, Ploegmakers F, Gondrie P, Abboud R. Myocardial myoglobin oxygen tension. Am J Physiol 1973;224:870–876.

    PubMed  CAS  Google Scholar 

  90. Coburn RF, Mayers LB. Myoglobin 02 tension determined from measurement of carboxymyoglobin in skeletal muscle. Am J Physiol 1971;220:66–74.

    PubMed  CAS  Google Scholar 

  91. Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med 1998;339: 1603–1608.

    Article  PubMed  CAS  Google Scholar 

  92. Becker LC, Haak ED Jr. Augmentation of myocardial ischemia by low level carbon monoxide exposure in dogs. Arch Environ Health 1979;34:274–279.

    PubMed  CAS  Google Scholar 

  93. Longo LD, Hill EP. Carbon monoxide uptake and elimination in fetal and maternal sheep. Am J Physiol 1977;232:H324-H330.

    Google Scholar 

  94. Seger D, Welch L. Carbon monoxide controversies: neuropsychologic testing, mechanism of toxicity, and hyperbaric oxygen. Ann Emerg Med 1994;24: 242–248.

    Article  PubMed  CAS  Google Scholar 

  95. Grube BJ, Marvin JA, Heimbach DM. Therapeutic hyperbaric oxygen: help or hindrance in burn patients with carbon monoxide poisoning? J Burn Care Rehab 1988;9:249–252.

    Article  CAS  Google Scholar 

  96. Prockop LD, Naidu KA. Brain CT and MRI findings after carbon monoxide toxicity. J Neuroimaging 1999;9:175–181.

    PubMed  CAS  Google Scholar 

  97. Gale SD, Hopkins RO, Weaver LK, Bigler ED, Booth EJ, Blatter DD. MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Inj 1999;13:229–243.

    Article  PubMed  CAS  Google Scholar 

  98. O’Donnell P, Buxton PJ, Pitkin A, Jarvis LJ. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol 2000; 55:273–280.

    Article  PubMed  Google Scholar 

  99. Pace N, Strajman E, Walker EL. Acceleration of carbon monoxide elimination in man by high pressure oxygen. Science 1950;111:652–654.

    Article  PubMed  CAS  Google Scholar 

  100. Takeuchi A, Vesely A, Rucker J, et al. A simple “new” method to accelerate clearance of carbon monoxide. Am J Respir Crit Care Med 2000;161:1816–1819.

    PubMed  CAS  Google Scholar 

  101. Houeto P, Borron SW, Sandouk P, Imbert M, Levillain P, Baud FJ. Pharmacokinetics of hydroxocobalamin in smoke inhalation victims. J Toxicol Clin Toxicol 1996;34:397–404.

    Article  PubMed  CAS  Google Scholar 

  102. Kirk MA, Gerace R, Kulig KW. Cyanide and methemoglobin kinetics in smoke inhalation victims treated with the cyanide antidote kit. Ann Emerg Med 1993;22: 1413–1418.

    Article  PubMed  CAS  Google Scholar 

  103. Hall AH, Kulig KW, Rumack BH. Suspected cyanide poisoning in smoke inhalation: complications of sodium nitrite therapy. J Toxicol Clin Exp 1989;9:3–9.

    PubMed  CAS  Google Scholar 

  104. Prchal JT. Diganosis and treatment of methemoglobinemia. UpToDate (http://www.uptodate.com/). Vol 2002, 2002.

  105. Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med 1999;34:646–656.

    Article  PubMed  CAS  Google Scholar 

  106. Das R, Blanc PD. Chlorine gas exposure and the lung: a review. Toxicol Ind Health 1993;9:439–455.

    PubMed  CAS  Google Scholar 

  107. Winder C. The toxicology of chlorine. Environ Res 2001;85:105–114.

    Article  PubMed  CAS  Google Scholar 

  108. Gunnarsson M, Walther SM, Seidal T, Bloom GD, Lennquist S. Exposure to chlorine gas: effects on pulmonary function and morphology in anaesthetised and mechanically ventilated pigs. J Appl Toxicol 1998;18:249–255.

    Article  PubMed  CAS  Google Scholar 

  109. Gunnarsson M, Walther SM, Seidal T, Lennquist S. Effects of inhalation of corticosteroids immediately after experimental chlorine gas lung injury. J Trauma 2000;48:101–107.

    Article  PubMed  CAS  Google Scholar 

  110. Sciuto AM, Moran TS, Narula A, Forster JS. Disruption of gas exchange in mice after exposure to the chemical threat agent phosgene. Mil Med 2001;166:809–814.

    PubMed  CAS  Google Scholar 

  111. Sciuto AM, Stotts RR, Hurt HH. Efficacy of ibuprofen and pentoxifylline in the treatment of phosgene-induced acute lung injury. J Appl Toxicol 1996;16:381–384.

    Article  PubMed  CAS  Google Scholar 

  112. Ghio AJ, Kennedy TP, Hatch GE, Tepper JS. Reduction of neutrophil influx diminishes lung injury and mortality following phosgene inhalation. J Appl Physiol 1991;71:657–665.

    PubMed  CAS  Google Scholar 

  113. Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve ME Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 2002;65:18–25.

    Article  PubMed  CAS  Google Scholar 

  114. van Aalst JA, Isakov R, Polk JD, Van Antwerp AD, Yang M, Fratianne RB. Hydrogen sulfide inhalation injury. J Bum Care Rehabil 2000;21:248–253.

    Article  Google Scholar 

  115. Bums TR, Mace ML, Greenberg SD, Jachimczyk JA. Ultrastructure of acute ammonia toxicity in the human lung. Am J Forensic Med Pathol 1985;6:204–210.

    Article  Google Scholar 

  116. Amshel CE, Fealk MH, Phillips BJ, Caruso DM. Anhydrous ammonia bums case report and review of the literature. Burns 2000;26:493–497.

    Article  PubMed  CAS  Google Scholar 

  117. Sjoblom E, Hojer J, Kulling PE, Stauffer K, Suneson A, Ludwigs U. A placebocontrolled experimental study of steroid inhalation therapy in ammonia-induced lung injury. J Toxicol Clin Toxicol 1999;37:59–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cancio, L.C., Pruitt, B.A. (2003). Inhalation Injury. In: Tsokos, G.C., Atkins, J.L. (eds) Combat Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-407-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-407-8_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-337-4

  • Online ISBN: 978-1-59259-407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics