Skip to main content

RANKL, RANK, and OPG

  • Chapter
Cytokine Knockouts

Part of the book series: Contemporary Immunology ((CONTIM))

  • 390 Accesses

Summary

Tumor necrosis factor (TNF) and TNF receptor (R) family proteins play important roles in the control of cell death, proliferation, autoimmunity, the function of immune cells, or the organogenesis of lymphoid organs. Recently, novel members of this large family have been identified that couple immunity with other organ systems such as bone morphogenesis and mammary gland formation in pregnancy. The TNF-family molecule receptor activator of nuclear factor KB ligand (RANKL) [osteoprotegerin (OPGL), TNF-related activation-induced cytokine (TRANCE) osteoclast differentiation factor (ODF)l, its receptor RANK, and the decoy receptor osteoprotegerin (OPG) are essential for the development and activation of osteoclasts and are key regulators of bone remodeling. Intriguingly, RANKL/RANK interactions also regulate T-cell/dendritic cell communications, dendritic cell survival, and lymph node formation. T-cell-derived RANKL can mediate bone loss in arthritis and periodontal disease. Moreover, RANKL and RANK are expressed in mammary gland epithelial cells, where they control the development of a lactating mammary gland during pregnancy required for the propagation of mammalian species. RANKL can also induce angiogenesis, and inflammatory cytokines can trigger the expression of RANKL, RANK, and OPG in vascular endothelial cells. Modulation of these systems provides us with a unique opportunity to design novel therapeutics to inhibit bone loss in osteoporosis, arthritis, periodontal disease, and cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M., Maroskovsky, E., Billingsley, W. L., et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179.

    Article  PubMed  CAS  Google Scholar 

  2. Lacey, D. L., Timms, E., Tan, H. L., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.

    Article  PubMed  CAS  Google Scholar 

  3. Wong, B. R., Josien, R. Lee, S. Y., et al. (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  4. Yasuda, H., Shima, N., Nakagawa, N., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.

    Article  PubMed  CAS  Google Scholar 

  5. Lum, L., Wong, B. R., Josien, R., et al. (1999) Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J. Biol. Chem. 274, 13613–13618.

    Article  PubMed  CAS  Google Scholar 

  6. Kong, Y. Y., Feige, U., Sarosi, I., et al. (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309.

    Article  PubMed  CAS  Google Scholar 

  7. Nakashima, T., Kobayashi, Y., Yamasaki, S., et al. (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem. Biophys. Res. Commun. 275, 768–775.

    Article  PubMed  CAS  Google Scholar 

  8. Lam, J., Nelson, C. A., Ross, F. P., Teitelbaum, S. L., and Fremont, D. L. (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J. Clin. Invest. 108, 971–979.

    PubMed  CAS  Google Scholar 

  9. Ito, S., Wakabayashi, K., Obukata, O., Hayashi, S., Okada, F., and Hata, T. (2002) Crystal structure of the extracellular domain of mouse RANK ligand at 2.2-A resolution. J. Biol. Chem. 277, 6631–6636.

    Article  PubMed  CAS  Google Scholar 

  10. Kartsogiannis, V., Zhou, H., Horwood, N. J., et al. (1999) Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25, 525–534.

    Article  PubMed  CAS  Google Scholar 

  11. Lagasse, E. and Weissman, I. L. (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  12. Hsu, H., Lacey, D. L., Dunstan, C. R., et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540–3545.

    Article  PubMed  CAS  Google Scholar 

  13. Burgess, T. L., Qian, Y., Kaufman, S., et al. (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell. Biol. 145, 527–538.

    Article  PubMed  CAS  Google Scholar 

  14. Nakagawa, N., Kinosaki, M., Yamaguchi, K. et al. (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253, 395–400.

    Article  PubMed  CAS  Google Scholar 

  15. Dougall, W. C., Glaccum, M., Charrier, K., et al. (1999) RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424.

    Article  PubMed  CAS  Google Scholar 

  16. Li, J., Sarosi, I., Yan, X. Q., et al. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  17. Hughes, A. E., Ralston, S. H., Marken, J., et al. (2000) Mutations in TNFRSF1IA, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet. 24, 45–48.

    Article  PubMed  CAS  Google Scholar 

  18. Darnay, B. G., Haridas, V., Ni, J., Moore, P. A., and Aggarwal, B. B. (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappaB and c-Jun N-terminal kinase. J. Biol. Chem. 273, 20551–20555.

    Article  PubMed  CAS  Google Scholar 

  19. Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D., and Dougall, W. C. (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J. Biol. Chem. 273, 34120–34127.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, Z. H., Kwack, K., Kimm, K. K., Lee, S. H., and Kim, H. H. (2000) Activation of c-Jun N-terminal kinase and activator protein 1 by receptor activator of nuclear factor kappaB. Mol. Pharmacol. 58, 1536–1545.

    PubMed  CAS  Google Scholar 

  21. Wong, B. R., Josien R., Lee, S. Y., Vologodskaia, M., Steinman, R. M., and Choi, Y. (1998) The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355–28359.

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi, N., Kadono, Y., Naito, A., et al. (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271–1280.

    Article  PubMed  CAS  Google Scholar 

  23. Lomaga, M. A., Yeh, W. C., Sarosi, I., et al. (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  24. Naito, A., Azuma, S., Tanaka, S., et al. (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353–362.

    Article  PubMed  CAS  Google Scholar 

  25. Franzoso, G., Carlson, L., Xing, L., et al. (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496.

    Article  PubMed  CAS  Google Scholar 

  26. Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997) Osteopetrosis in mice lacking NF-kappaBl and NF-kappaB2. Nat. Med. 3, 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  27. Mizukami, J., Takaesu, G., Akatsuka, H., et al. (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell. Biol. 22, 992–1000.

    Article  PubMed  CAS  Google Scholar 

  28. Deng, L., Wang, C., Spencer, E. et al. (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J., and Chen, Z. J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351.

    Article  PubMed  CAS  Google Scholar 

  30. Mansky, K. C., Sankar, U., Han, J., and Ostrowski, M. C. (2002) Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277, 11077–11083.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuo, K., Owens, J. M., Tonko, M., Elliott, C., Chambers, T. J., and Wagner, E. F. (2000) Fosl l is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184–187.

    Article  PubMed  CAS  Google Scholar 

  32. Wong, B. R., Besser, D., Kim, N., et al. (1999) TRANCE, a TNF family member, activates Akt/ PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049.

    Article  PubMed  CAS  Google Scholar 

  33. Arron, J. R., Vologodskaia, M., Wong, B. R., et al. (2001) A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J. Biol. Chem. 276, 30011–30017.

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto, M., Sudo, T., Saito, T., Osada, H., and Tsujimoto, M. (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275, 31155–31161.

    Article  PubMed  CAS  Google Scholar 

  35. Simonet, W. S., Lacey, D. L., Dunstan, C. R., et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319.

    Article  PubMed  CAS  Google Scholar 

  36. Yasuda, H., Shima, N., Nakagawa, N., et al. (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329–1337.

    Article  PubMed  Google Scholar 

  37. Bucay, N., Sarosi, I., Dunstan, C. R., et al. (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268.

    Article  PubMed  CAS  Google Scholar 

  38. Mizuno, A., Murakami, A., Nakagawa, N., et al. (1998) Structure of the mouse osteoclastogenesis inhibitory factor (OCIF) gene and its expression in embryogenesis. Gene 215, 339–343.

    Article  PubMed  CAS  Google Scholar 

  39. Brandstrom, H., Jonsson, K. B., Ohlsson, C., Vidal, O., Ljunghall, S., and Ljunggren, O. (1998) Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells. Biochem. Biophys. Res. Commun. 247, 338–341.

    Article  PubMed  CAS  Google Scholar 

  40. Brandstrom, H., Jonsson, K. K., Vidal, O., Ljunghall, S., Ohlsson, C., and Ljunggren, O. (1998) Tumor necrosis factor-alpha and -beta upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells. Biochem. Biophys. Res. Commun. 248, 454–457.

    Article  PubMed  CAS  Google Scholar 

  41. Yun, T. J., Chaudhary, P. M., Shu, G. L., et al. (1998) OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J. Immunol. 161, 6113–6121.

    PubMed  CAS  Google Scholar 

  42. Min, H., Morony, S., Sarosi, I., et al. (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 192, 463–474.

    Article  PubMed  CAS  Google Scholar 

  43. Parhami, F. and Demer, L. L. (1997) Arterial calcification in face of osteoporosis in ageing: can we blame oxidized lipids? Curr. Opin. Lipidol. 8, 312–314.

    Article  PubMed  CAS  Google Scholar 

  44. Walker-Bone, K., Dennison, E., and Cooper, C. (2001) Epidemiology of osteoporosis. Rheum. Dis. Clin. North Am. 27, 1–18.

    Article  PubMed  CAS  Google Scholar 

  45. Jorgensen, L., Engstad, T., and Jacobsen, B. K. (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32, 47–51.

    Article  PubMed  CAS  Google Scholar 

  46. Mach, F., Schonbeck, U., Sukhova, G. K., Atkinson, E., and Libby, P. (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, Y. H., Heulsmann, A., Tondravi, M. M., Mukherjee, A., and Abu-Amer, Y. (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276, 563–568.

    Article  PubMed  CAS  Google Scholar 

  48. Cenci, S., Weitizmann, M. N., Roggia, C., et al. (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J. Clin. Invest. 106, 1229–1237.

    Article  PubMed  CAS  Google Scholar 

  49. Roggia, C., Gao, Y., Cenci, S., et al. (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl. Acad. Sci. USA 98, 13960–13965.

    Article  PubMed  CAS  Google Scholar 

  50. Emery, J. G., McDonnell, P., Burke, M. B., et al. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363–14367.

    Article  PubMed  CAS  Google Scholar 

  51. Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Spelsberg, T. C., and Riggs, B. L. (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140, 4367–4370.

    Article  PubMed  CAS  Google Scholar 

  52. Saika, M., Inoue, D., Kido, S., and Matsumoto, T. (2001) 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology 142, 2205–2212.

    Google Scholar 

  53. Mundy, G. R. (1997) Mechanisms of bone metastasis. Cancer 80 (8 Suppl.), 1546–1556.

    Article  PubMed  CAS  Google Scholar 

  54. Thomas, R. J., Guise, T. A., Yin, J. J., Elliott, J., Horwood, N. J., Martin, T. J., and Gillespie, M. T. (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140, 4451–4458.

    Article  PubMed  CAS  Google Scholar 

  55. Croucher, P. I., Shipman, C. M., Lippitt, J., et al. (2001) Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98, 3534–3540.

    Article  PubMed  CAS  Google Scholar 

  56. Nosaka, K., Miyamoto, T., Sakai, T., Mitsuya, H., Suda, T., and Matsuoka, M. (2002) Mechanism of hypercalcemia in adult T-cell leukemia: overexpression of receptor activator of nuclear factor kappaB ligand on adult T-cell leukemia cells. Blood 99, 634–640.

    Article  PubMed  CAS  Google Scholar 

  57. Pearse, R. N., Sordillo, E. M., Yaccoby, S., et al. (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl. Acad. Sci. USA 98, 11581–11586.

    Article  PubMed  CAS  Google Scholar 

  58. Thompson, S. W. and Tonge, D. (2000) Bone cancer gain without the pain. Nat. Med. 6, 504505.

    Google Scholar 

  59. Honore, P., Luger, N. M., Sabino, M. A., et al. (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat. Med. 6, 521–528.

    Article  PubMed  CAS  Google Scholar 

  60. Wong, B. R., Rho, J., Anon, J., et al. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194.

    Article  PubMed  CAS  Google Scholar 

  61. Josien, R., Li, H. L., Ingulli, E., et al. (2000) TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 191, 495–502.

    Article  PubMed  CAS  Google Scholar 

  62. Kong, Y. Y., Yoshida, H., Sarosi, I., et al. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323.

    Article  PubMed  CAS  Google Scholar 

  63. Rennert, P. D., Browning, J. L., and Hochman, P. S. (1997) Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int. Immunol. 9, 1627–1639.

    Article  PubMed  CAS  Google Scholar 

  64. De Togni, P., Goellner, J., Ruddle, N. H., et al. (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707.

    Article  PubMed  Google Scholar 

  65. Koni, P. A., Saca, R., Lawton, P., Browning, J. L., Ruddle, N. H., and Flavell, R. A. (1997) Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6, 491–500.

    Article  PubMed  CAS  Google Scholar 

  66. Alimzhanov, M. B., Kuprash, D. V., Kosco-Vilbois, M. H., et al. (1997) Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc. Natl. Acad. Sci. USA 94, 9302–9307.

    Article  PubMed  CAS  Google Scholar 

  67. Matsumoto, M., Fu, Y. X., Molina, H., et al. (1996) Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291.

    Article  PubMed  CAS  Google Scholar 

  68. Rennert, P. D., James, D., Mackay, F., Browning, J. L., and Hochman, P. S. (1998) Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity 9, 71–79.

    Article  PubMed  CAS  Google Scholar 

  69. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M. H., and Pfeffer, K. (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70.

    Article  PubMed  CAS  Google Scholar 

  70. Yokota, Y., Mansouri, A., Mori, S., et al. (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706.

    Article  PubMed  CAS  Google Scholar 

  71. Pasparakis, M., Alexopoulou, L., Grell, M., Pfizenmaier, K., Bluethmann, H., Kollias, G. (1997) Peyer’s patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc. Natl. Acad. Sci. USA 94, 6319–6323.

    Article  PubMed  CAS  Google Scholar 

  72. Fu, Y. X. and Chaplin, D. D. (1999) Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433.

    Article  PubMed  CAS  Google Scholar 

  73. Mebius, R. E., Rennert, P., and Weissman, I. L. (1997) Developing lymph nodes collect CD4+ CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504.

    Article  PubMed  CAS  Google Scholar 

  74. Kim, D., Mebius, R. E., MacMicking, J. D., et al. (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J. Exp. Med. 192, 1467–1478.

    Article  PubMed  CAS  Google Scholar 

  75. Josien, R., Wong, B. R., Li, H. L., Steinman, R. M., and Choi, Y. (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J. Immunol. 162, 2562–2568.

    PubMed  CAS  Google Scholar 

  76. Roy, M., Waldschmidt, T., Aruffo, A., Ledbetter, J. A., and Noelle, R. J. (1993) The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J. Immunol. 151, 2497–2510.

    PubMed  CAS  Google Scholar 

  77. Kawabe, T., Naka, T., Yoshida K., et al. (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178.

    Article  PubMed  CAS  Google Scholar 

  78. Xu, J., Foy, T. M., Laman, J. D., et al. (1994) Mice deficient for the CD40 ligand. Immunity 1, 423–431.

    Article  PubMed  CAS  Google Scholar 

  79. Bachmann, M. F., Wong, B. R., Josien, R., Steinman, R. M., Oxenius, A., and Choi, Y. (1999) TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J. Exp. Med. 189, 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  80. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  81. Ingulli, E., Mondino, A., Khoruts, A., and Jenkins, M. K. (1997) In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J. Exp. Med. 185, 2133–2141.

    Article  PubMed  CAS  Google Scholar 

  82. Wang, J., Zheng, L., Lobito, A., et al. (1999) Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58.

    Article  PubMed  CAS  Google Scholar 

  83. Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N. (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434.

    Article  PubMed  CAS  Google Scholar 

  84. Kayagaki, N., Yamaguchi, N., Nakayama, M., et al. (1999) Involvement of TNF-related apoptosisinducing ligand in human CD4+ T cell-mediated cytotoxicity. J. Immunol. 162, 2639–2647.

    PubMed  CAS  Google Scholar 

  85. Martinez-Lorenzo, M. J., Anel, A., Gamen, S., et al. (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281.

    PubMed  CAS  Google Scholar 

  86. Thomas, W. D. and Hersey, P. (1998) TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J. Immunol. 161, 2195–2200.

    PubMed  CAS  Google Scholar 

  87. Green, E. A., Choi, Y., and Flavell, R. A. (2002) Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183–191.

    Article  PubMed  CAS  Google Scholar 

  88. Fata, J. E., Kong, Y. Y., Li, J., et al. (2000) The osteoclast differentiation factor osteoprotegerinligand is essential for mammary gland development. Cell 103, 41–50.

    Article  PubMed  CAS  Google Scholar 

  89. von Boehmer, H. and Fehling, H. J. (1997) Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452.

    Article  Google Scholar 

  90. Bouillet, P., Metcalf, D., Huang, D. C., et al. (1999) Proapoptotic Bc1–2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738.

    Article  PubMed  CAS  Google Scholar 

  91. Li, C. L., Toda, K., Saibara, T., et al. (2002) Estrogen deficiency results in enhanced expression of Smoothened of the Hedgehog signaling in the thymus and affects thymocyte development. Int. Immunopharmacol. 2, 823–833.

    Article  PubMed  CAS  Google Scholar 

  92. Yun, T. J., Tallquist, M. D., Aicher, A., et al. (2001) Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J. Immunol. 166, 1482–1491.

    PubMed  CAS  Google Scholar 

  93. Kanematsu, M., Ato, T., Takai, H., Watanabe, K., Ikeda, K., and Yamada, Y. (2000) Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J. Bone Miner. Res. 15, 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  94. Choi, Y., Woo, K. M., Ko, S. H., et al. (2001) Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells. Eur. J. Immunol. 31, 2179–2188.

    Article  PubMed  CAS  Google Scholar 

  95. Kim, N., Odgren, P. R., Kim, D. K., Marks, S. C. Jr., and Choi, Y. (2000) Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc. Natl. Acad. Sci. USA 97, 10905–10910.

    Article  PubMed  CAS  Google Scholar 

  96. Vidal, N. O., Brandstrom, H., Jonsson, K. B., and Ohlsson, C. (1998) Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J. Endocrinol. 159, 191–195.

    Article  PubMed  CAS  Google Scholar 

  97. Oliveri, M. B., Mautalen, C. A., Rodriguez Fuchs, C. A., and Romanelli, M. C. (1991) Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp. Med. J. 39, 45–48.

    PubMed  CAS  Google Scholar 

  98. Stellon, A. J., Davies, A., Compston, J., and Williams, R. (1985) Bone loss in autoimmune chronic active hepatitis on maintenance corticosteroid therapy. Gastroenterology 89, 1078–1083.

    PubMed  CAS  Google Scholar 

  99. Jain, R. G. and Lenhard, J. M. (2002) Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J. Biol. Chem. 277, 19247–19250.

    Article  PubMed  CAS  Google Scholar 

  100. Ueland, T., Bollerslev, J., Godang, K., Muller, F., Froland, S. S., and Aukrust, P. (2001) Increased serum osteoprotegerin in disorders characterized by persistent immune activation or glucocorticoid excess—possible role in bone homeostasis. Eur. J. Endocrinol. 145, 685–690.

    Article  PubMed  CAS  Google Scholar 

  101. Piepkorn, B., Kann, P., Forst, T., Andreas, J., Pfutzner, A., and Beyer, J. (1997) Bone mineral density and bone metabolism in diabetes mellitus. Horm. Metab. Res. 29, 584–591.

    Article  PubMed  CAS  Google Scholar 

  102. Seitz, M. and Hunstein, W. (1985) Enhanced prostanoid release from monocytes of patients with rheumatoid arthritis and active systemic lupus erythematosus. Ann. Rheum. Dis. 44, 438–445.

    Article  PubMed  CAS  Google Scholar 

  103. Ebeling, P. R., Erbas, B., Hopper, J. L., Wark, J. D., and Rubinfeld, A. R. (1998) Bone mineral density and bone turnover in asthmatics treated with long-term inhaled or oral glucocorticoids. J. Bone Miner. Res. 13, 1283–1289.

    Article  PubMed  CAS  Google Scholar 

  104. Coleman, R. E. (1998) How can we improve the treatment of bone metastases further? Curr. Opin. Oncol. 10 (Suppl. 1), p. S7–513.

    PubMed  Google Scholar 

  105. Feldmann, M., Brennan, F. M., and Maini, R. N. (1996) Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440.

    Article  PubMed  CAS  Google Scholar 

  106. Romas, E., Gillespie, M. T., and Martin, T. J. (2002) Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30, 340–346.

    Article  PubMed  CAS  Google Scholar 

  107. Hofbauer, L. C., Lacey, D. L., Dunstan, C. R., Spelsberg, T. C., Riggs, B. L., and Khosla, S. (1999) Interleukin-lbeta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255–259.

    Article  PubMed  CAS  Google Scholar 

  108. Morony, S., Capparelli, C., Lee, R., et al. (1999) A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-lbeta, TNF-alpha, PTH, PTHrP, and 1, 25(OH)2D3. J. Bone Miner. Res. 14, 1478–1485.

    Article  PubMed  CAS  Google Scholar 

  109. Williams, R. O., Feldmann, M., and Maini, R. N. (2000) Cartilage destruction and bone erosion in arthritis: the role of tumour necrosis factor alpha. Ann. Rheum. Dis. 59 (Suppl. 1), i75 — i80.

    Article  PubMed  CAS  Google Scholar 

  110. Fye, K. H. (1999) New treatments for rheumatoid arthritis. Available and upcoming slow-acting antirheumatic drugs. Postgrad. Med. 106, 82–85, 88–90, 92.

    Google Scholar 

  111. Graninger, W. B. and Smolen, J. S. (2001) One-year inhibition of tumor necrosis factor-alpha: a major success or a larger puzzle? Curr. Opin. Rheumatol. 13, 209–213.

    Article  PubMed  CAS  Google Scholar 

  112. Pettit, A. R., Ji, H., von Stechow, D., et al. (2001) TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699.

    Article  PubMed  CAS  Google Scholar 

  113. Komuro, H., Olee, T., Kuhn, K., et al. (2001) The osteoprotegerin/receptor activator of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligand system in cartilage. Arthritis Rheum. 44, 2768–2776.

    Article  PubMed  CAS  Google Scholar 

  114. Redlich, K., Hayer, S., Maier, A., et al. (2002) Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum. 46, 785–792.

    Article  PubMed  CAS  Google Scholar 

  115. Mori, H., Kitazawa, R., Mizuki, S., Nose, M., Maeda, S., and Kitazawa, S. (2002) RANK ligand, RANK, and OPG expression in type II collagen-induced arthritis mouse. Histochem. Cell Biol. 117, 283–292.

    Article  PubMed  CAS  Google Scholar 

  116. Teng, Y. T., Nguyen, H., Gao, X., et al. (2000) Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest. 106, R59 — R67.

    Article  PubMed  CAS  Google Scholar 

  117. Brandt, J., Haibel, H., Comely, D., et al. (2000) Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum. 43, 1346–1352.

    Article  PubMed  CAS  Google Scholar 

  118. Arron, J. R. and Choi, Y. (2000) Bone versus immune system. Nature 408, 535–536.

    Article  PubMed  CAS  Google Scholar 

  119. Takayanagi, H., Ogasawara, K., Hida, S., et al. (2000) T-cell-mediated regulation of osteoclasto-genesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600–605.

    Article  PubMed  CAS  Google Scholar 

  120. Horwood, N. J., Elliott, J., Martin, T. J., and Gillespie, M. T. (2001) IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J. Immunol. 166, 4915–4921.

    PubMed  CAS  Google Scholar 

  121. Abu-Amer, Y. (2001) IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J. Clin. Invest. 107, 1375–1385.

    Article  PubMed  CAS  Google Scholar 

  122. Bendixen, A. C., Shevde, N. K., Dienger, K. M., Willson, T. M., Funk, C. D., and Pike, J. W. (2001) IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Proc. Natl. Acad. Sci. USA 98, 2443–2448.

    Article  PubMed  CAS  Google Scholar 

  123. Takayanagi, H., Kim, S., Matsuo, K., et al. (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416, 744–749.

    Article  PubMed  CAS  Google Scholar 

  124. Ross, F. P. (2000) RANKing the importance of measles virus in Paget’s disease../. Clin. Invest. 105, 555–558.

    Article  CAS  Google Scholar 

  125. Karsenty, G. (1999) The genetic transformation of bone biology. Genes Dev. 13, 3037–3051.

    Article  PubMed  CAS  Google Scholar 

  126. Robinson, G. W., Karpf, A. B., and Kratochwil, K. (1999) Regulation of mammary gland development by tissue interaction. J. Mammary Gland Biol. Neoplasia 4, 9–19.

    Article  PubMed  CAS  Google Scholar 

  127. Robinson, G. W., Hennighausen, L., and Johnson, P. F. (2000) Side-branching in the mammary gland: the progesterone-Wnt connection. Genes Dev. 14, 889–894.

    PubMed  CAS  Google Scholar 

  128. Kovacs, C. S. and Kronenberg, H. M. (1997) Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr. Rev. 18, 832–872.

    Article  PubMed  CAS  Google Scholar 

  129. Pereira, G. R. and Zucker, A. H. (1986) Nutritional deficiencies in the neonate. Clin. Perinatol. 13, 175–189.

    PubMed  CAS  Google Scholar 

  130. Cross, N. A., Hillman, L. S., Allen, S. H., Krause, G. F., and Vieira, N. E. (1995) Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am. J. Clin. Nutr. 61, 514–523.

    PubMed  CAS  Google Scholar 

  131. Pollard, J. W. and Hennighausen, L. (1994) Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc. Natl. Acad. Sci. USA 91, 9312–9316.

    Article  PubMed  CAS  Google Scholar 

  132. Brisken, C., Kaur, S., Chavarria, T. E., et al. (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol. 210, 96–106.

    Article  PubMed  CAS  Google Scholar 

  133. Fantl, V., Edwards, P. A., Steel, J. H., Vonderhaar, B. K., and Dickson, C. (1999) Impaired mammary gland development in Cy1–1(-/-) mice during pregnancy and lactation is epithelial cell autonomous. Dev. Biol. 212, 1–11.

    Article  PubMed  CAS  Google Scholar 

  134. Cao, Y., Bonizzi, B., Seagroves, T. N., et al. (2001) IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763–775.

    Article  PubMed  CAS  Google Scholar 

  135. Kim, H. J., Yoon, M. J., Lee, J., Penninger, J. M., and Kong, Y. Y. (2002) Osteoprotegerin ligand induces beta-casein gene expression through the transcription factor CCAAT/enhancer-binding protein beta. J. Biol. Chem. 277, 5339–5344.

    Google Scholar 

  136. Buyon, J. P. (1998) The effects of pregnancy on autoimmune diseases. J. Leukoc. Biol. 63, 281–287.

    PubMed  CAS  Google Scholar 

  137. Whitacre, C. C., Reingold, S. C., and O’Looney, P. A. (1999) A gender gap in autoimmunity. Science 283, 1277–1278.

    Article  PubMed  CAS  Google Scholar 

  138. Ahmed, S. A., Hissong, B. D., Verthelyi, D., Donner, K., Becker, K., and Karpuzoglu-Sahin, E. (1999) Gender and risk of autoimmune diseases: possible role of estrogenic compounds. Environ. Health Perspect. 107 (Suppl. 5), 681–686.

    Article  PubMed  CAS  Google Scholar 

  139. Rider, V. and Abdou, N. I. (2001) Gender differences in autoimmunity: molecular basis for estrogen effects in systemic lupus erythematosus. Int. Immunopharmacol. 1, 1009–1024.

    Article  PubMed  CAS  Google Scholar 

  140. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671–674.

    Article  PubMed  CAS  Google Scholar 

  141. Kim, Y. M., Kim, Y. M., Lee, Y. M., et al. (2002) TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J. Biol. Chem. 277, 6799–6805.

    Article  PubMed  CAS  Google Scholar 

  142. Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., and Ferrara, N. (1999) VEGF couples hypertrophie cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628.

    Article  PubMed  CAS  Google Scholar 

  143. Ishida, A., Fujita, N., Kitazawa, R., and Tsuruo, T. (2002) Transforming growth factor-beta induces expression of receptor activator of NF-kappa B ligand in vascular endothelial cells derived from bone. J. Biol. Chem. 277, 26217–26224.

    Article  PubMed  CAS  Google Scholar 

  144. Collin-Osdoby, P., Rothe, L., Anderson, F., Nelson, M., Maloney, W., and Osdoby, P. (2001) Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J. Biol. Chem. 276, 20659–20672.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kong, YY., Penninger, J.M. (2003). RANKL, RANK, and OPG. In: Fantuzzi, G. (eds) Cytokine Knockouts. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-405-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-405-4_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-415-9

  • Online ISBN: 978-1-59259-405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics