Skip to main content

IFN-γ and IFN-γ Receptor Knockout Mice

  • Chapter
Book cover Cytokine Knockouts

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

Interferon-γ (IFN-γ) was originally characterized as an antiviral compound (1). However, it has a major immunoregulatory role as a key effector cytokine secreted by T-cells during a variety of immune responses. An early review emphasized the pleiotropic and redundant characteristics of T-cell-derived lymphokines (2). Cytokine knockout mice were not yet available to determine the in vivo roles of cytokines. The genetic approach is a powerful method that has been used for decades in lower organisms to determine biologic functions of proteins. The technique of making targeted deletions of genes in mouse embryonic stem cells to produce mutant mice has extended this approach to mammals. Mice with targeted mutations in IFN-γ(IFN-γ knockout) (3) and the IFN-γ receptor (IFNγR knockout) (4) have been studied for nearly a decade. There is only one known receptor for IFN-γ (5).Mice lacking IFN-γand its receptor develop normally and are indistinguishable from wild-type mice—unless they are given an immunologic challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isaacs, A. and Lindenmann, J. (1957) Virus interference. 1. The interferons. Proc. R. Soc. Lond. B. 147, 258 - 267.

    Article  PubMed  CAS  Google Scholar 

  2. Paul, W. E. (1989) Pleiotropy and redundancy: T cell-derived lymphokines in the immune response. Cell 57, 521 - 524.

    Article  PubMed  CAS  Google Scholar 

  3. Dalton, D. K., Pitts-Meek, S., Keshav, S., Figari, I. S., Bradley, A., and Stewart, T. A. (1993) Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739 - 1742.

    Article  PubMed  CAS  Google Scholar 

  4. Huang, S., Hendriks, W., Althage, A., et al. (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259, 1742 - 1745.

    Article  PubMed  CAS  Google Scholar 

  5. Farrar, M. A. and Schreiber, R. D. (1993) The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol. 11, 571 - 611.

    Article  PubMed  CAS  Google Scholar 

  6. De Maeyer, E. and De Maeyer-Guignard, J. (1998) Type I interferons. Int. Rev. Immunol. 17, 53 - 73.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper, A. M., Adams, L. B., Dalton, D. K., Appelberg, R., and Ehlers, S. (2002) IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 10, 221 - 6.

    Article  PubMed  CAS  Google Scholar 

  8. Kamijo, R., Le, J., Shapiro, D., et al. (1993) Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guérin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178, 1435 - 1440.

    Article  PubMed  CAS  Google Scholar 

  9. Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A., and Bloom, B. R. (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249 - 2254.

    Article  PubMed  CAS  Google Scholar 

  10. Cooper, A. M., Dalton, D. K., Stewart, T. A., Griffin, J. P., Russell, D. G., and Orme, I. M. (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243 - 2247.

    Article  PubMed  CAS  Google Scholar 

  11. Soong, L., Xu, J. C., Grewal, I. S., et al. (1996) Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 4, 263 - 273.

    Article  PubMed  CAS  Google Scholar 

  12. Poo, W. J., Conrad, L., and Janeway, C. A. Jr. (1988) Receptor-directed focusing of lymphokine release by helper T cells. Nature 332, 378 - 380.

    Article  PubMed  CAS  Google Scholar 

  13. McKinney, J. D., Honer zu Bentrup, K., Munoz-Elias, E. J., et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735 - 738.

    Article  PubMed  CAS  Google Scholar 

  14. Kochi, A. (1991) Government intervention programs in HIV/tuberculous infection. Outline of guidelines for national tuberculosis control programs in view of the HIV epidemic. Bull. Int. Union Tuberc. Lung Dis. 66, 33 - 36.

    PubMed  CAS  Google Scholar 

  15. Jouanguy, E., Doffinger, R., Dupuis, S., Pallier, A., Altare, F., and Casanova, J. L. (1999) IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11, 346 - 351.

    Article  PubMed  CAS  Google Scholar 

  16. Jouanguy, E., Altare, F., Lamhamedi, S., et al. (1996) Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N. Engl. J. Med. 335, 1956 - 1961.

    Article  PubMed  CAS  Google Scholar 

  17. Newport, M. J., Huxley, C. M., Huston, S., et al. (1996) A mutation in the interferon-gammareceptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335, 1941 - 1949.

    Article  PubMed  CAS  Google Scholar 

  18. Altare, F., Durandy, A., Lammas, D., et al. (1998) Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1432 - 1435.

    Article  PubMed  CAS  Google Scholar 

  19. Altare, F., Lammas, D. Revy, P., et al. (1998) Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J. Clin. Invest. 102, 2035 - 2040.

    Article  PubMed  CAS  Google Scholar 

  20. Bloom, B. R. (1989) Vaccines for the Third World. Nature 342, 115 - 120.

    Article  PubMed  CAS  Google Scholar 

  21. Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B., and Ramshaw, I. A. (1996) IFNgamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223 - 3227.

    PubMed  CAS  Google Scholar 

  22. Willenborg, D. O., Fordham, S. A., Staykova, M. A., Ramshaw, I. A., and Cowden, W. B. (1999) IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol. 163, 5278 - 5286.

    PubMed  CAS  Google Scholar 

  23. Cooper, A. M., Magram, J., Ferrante, J., and Orme, I. M. (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med. 186, 39 - 45.

    Article  CAS  Google Scholar 

  24. Kaech, S. M., Wherry, E. J., and Ahmed, R. (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251 - 262.

    Article  PubMed  CAS  Google Scholar 

  25. Dalton, D. K., Haynes, L., Chu, C. Q., Swain, S. L., and Wittmer, S. (2000) Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 192, 117 - 122.

    Article  PubMed  CAS  Google Scholar 

  26. Pearl, J. E., Orme, I. M., and Cooper, A. M. (2000) CD95 signaling is not required for the down regulation of cellular responses to systemic Mycobacterium tuberculosis infection. Tuberc. Lung Dis. 80, 273 - 279.

    Article  CAS  Google Scholar 

  27. Pearl, J. E., Saunders, B., Ehlers, S., Orme, I. M., and Cooper, A. M. (2001) Inflammation and lymphocyte activation during mycobacterial infection in the interferon-gamma-deficient mouse. Cell Immunol. 211, 43 - 50.

    Article  PubMed  CAS  Google Scholar 

  28. Van Parijs, L., Ibraghimov, A., and Abbas, A. K. (1996) The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4, 321 - 328.

    Article  PubMed  CAS  Google Scholar 

  29. Refaeli, Y., Van Parijs, L., Alexander, S. I., and Abbas, A. K. (2002) Interferon gamma is required for activation-induced death of T lymphocytes. J. Exp. Med. 196, 999 - 1005.

    Article  PubMed  CAS  Google Scholar 

  30. Brunner, T., Mogil, R. J., LaFace, D., et al. (1995) Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441 - 444.

    Article  PubMed  CAS  Google Scholar 

  31. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M., and Krammer, P. H. (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438 - 441.

    Article  PubMed  CAS  Google Scholar 

  32. MacMicking, J., Xie, Q. W., and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323 - 350.

    Article  PubMed  CAS  Google Scholar 

  33. Adams, L. B., Scollard, D. M., Ray, N. A., et al. (2002) The study of Mycobacterium leprae infection in interferon-gamma gene-disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J. Infect. Dis. 185(Suppl. 1), Sl-S8.

    Google Scholar 

  34. Martins, G. A., Vieira, L. Q., Cunha, F. Q., and Silva, J. S. (1999) Gamma interferon modulates CD95 (Fas) and CD95 ligand (Fas-L) expression and nitric oxide-induced apoptosis during the acute phase of Trypanosoma cruzi infection: a possible role in immune response control. Infect. Immun. 67, 3864 - 3871.

    PubMed  CAS  Google Scholar 

  35. Tsuji, M., Miyahira, Y., Nussenzweig, R. S., Aguet, M., Reichel, M., and Zavala, F. (1995) Development of antimalaria immunity in mice lacking IFN-gamma receptor. J. Immunol. 154, 5338 - 5344.

    PubMed  CAS  Google Scholar 

  36. Xu, H., Wipasa, J., Yan, H., et al. (2002) The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection. J. Exp. Med. 195, 881 - 892.

    Article  PubMed  CAS  Google Scholar 

  37. Cauley, L. S., Miller, E. E., Yen, M., and Swain, S. L. (2000) Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma. J. Immunol. 165, 6056 - 6066.

    PubMed  CAS  Google Scholar 

  38. Wu, C. Y., Kirman, J. R., Rotte, M. J., et al. (2002) Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo. Nat. Immunol. 3, 852 - 858.

    Article  PubMed  CAS  Google Scholar 

  39. Murray, P. J., Young, R. A., and Daley, G. Q. (1998) Hematopoietic remodeling in interferongamma-deficient mice infected with mycobacteria. Blood 91, 2914 - 2924.

    PubMed  CAS  Google Scholar 

  40. Scharton-Kersten, T. M., Wynn, T. A., Denkers, E. Y., et al. (1996) In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J. Immunol. 157, 4045 - 4054.

    PubMed  CAS  Google Scholar 

  41. Ferber, I. A., Brocke, S., Taylor-Edwards, C., et al. (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5 - 7.

    PubMed  CAS  Google Scholar 

  42. Tran, E. H., Prince, E. N., and Owens, T. (2000) IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J. Immunol. 164, 2759 - 2768.

    PubMed  CAS  Google Scholar 

  43. Jones, L. S., Rizzo, L. V., Agarwal, R. K., et al. (1997) IFN-gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J. Immunol. 158, 5997 - 6005.

    PubMed  CAS  Google Scholar 

  44. Wekerle, H. (1997) CD4 effector cells in autoimmune diseases of the central nervous system. In: Keane, H. F., ed. Immunology of the Nervous System. Oxford University Press, New York, pp. 460 - 492.

    Google Scholar 

  45. Krakowski, M. and Owens, T. (1996) Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641 - 1646.

    Article  PubMed  CAS  Google Scholar 

  46. Chu, C. Q., Wittmer, S., and Dalton, D. K. (2000) Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123 - 128.

    Article  PubMed  CAS  Google Scholar 

  47. Tabi, Z., McCombe, P. A., and Pender, M. P. (1995) Antigen-specific down-regulation of myelin basic protein-reactive T cells during spontaneous recovery from experimental autoimmune encephalomyelitis: further evidence of apoptotic deletion of autoreactive T cells in the central nervous system. Int. Immunol. 7, 967 - 973.

    Article  PubMed  CAS  Google Scholar 

  48. Xiao, B. G., Huang, Y. M., Xu, L. Y., Ishikawa, M., and Link, H. (1999) Mechanisms of recovery from experimental allergic encephalomyelitis induced with myelin basic protein peptide 68-86 in Lewis rats: a role for dendritic cells in inducing apoptosis of CD4+ T cells. J. Neuroimmunol. 97, 25 - 36.

    Article  PubMed  CAS  Google Scholar 

  49. Furlan, R., Brambilla, E., Ruffini, F., et al. (2001) Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J. Immunol. 167, 1821 - 1829.

    PubMed  CAS  Google Scholar 

  50. Tarrant, T. K., Silver, P. B., Wahlsten, J. L., et al. (1999) Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J. Exp. Med. 189, 219 - 230.

    Article  PubMed  CAS  Google Scholar 

  51. Harty, J. T. and Badovinac, V. P. (2002) Influence of effector molecules on the CD8(+) T cell response to infection. Curr. Opin. Immunol. 14, 360 - 365.

    Article  PubMed  CAS  Google Scholar 

  52. Lohman, B. L. and Welsh, R. M. (1998) Apoptotic regulation of T cells and absence of immune deficiency in virus-infected gamma interferon receptor knockout mice. J. Virol. 72, 7815 - 7821.

    PubMed  CAS  Google Scholar 

  53. Badovinac, V. P., Tvinnereim, A. R., and Harty, J. T. (2000) Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290, 1354 - 1358.

    Article  PubMed  CAS  Google Scholar 

  54. Graham, M., Dalton, D., Giltinan, D., Braciale, V., Stewart, T., and Braciale, T. (1993) Response to influenza infection in mice with a targeted disruption of the interferon-y gene. J. Exp. Med. 178, 1725 - 1732.

    Article  PubMed  CAS  Google Scholar 

  55. Rowell, J. F. and Griffin, D. E. (2002) Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. J. Neuroimmunol. 127, 106 - 114.

    Article  PubMed  CAS  Google Scholar 

  56. Finke, D., Brinckmann, U. G., ter Meulen, V., and Liebert, U. G. (1995) Gamma interferon is a major mediator of antiviral defense in experimental measles virus-induced encephalitis. J. Virol. 69, 5469 - 5474.

    PubMed  CAS  Google Scholar 

  57. Parra, B., Hinton, D. R., Marten, N. W., et al. (1999) IFN-gamma is required for viral clearance from central nervous system oligodendroglia.. 1. Immunol. 162, 1641 - 1647.

    CAS  Google Scholar 

  58. Bergmann, C., Parra, B., Hinton, D. R., Chandran, R., Morrison, M., and Stohlman, S. A. (2002) Perforin mediated effector function within the CNS requires IFN-y mediated MHC upregulation.Viral Immunol. 14, 1-18.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dalton, D. (2003). IFN-γ and IFN-γ Receptor Knockout Mice. In: Fantuzzi, G. (eds) Cytokine Knockouts. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-405-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-405-4_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-415-9

  • Online ISBN: 978-1-59259-405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics