Skip to main content

Hypothalamus and Neurohypophysis

  • Chapter
  • 157 Accesses

Abstract

An English scientist, Geoffrey Harris, first suggested that the brain controlled the pituitary gland through chemical mediators [1]. He supposed that the cells of the hypothalamus might synthesize pituitary-controlling hormones and release them into nearby blood vessels, which reach and distribute the “Turkish saddle.” Harris showed that cutting of the portal vessels impeded pituitary hormone production. However, it was not until the hypothalamic hormones were discovered that Harris’ theory was proved. Hypothalamic hormones, which are secreted by the hypothalamic neurons and regulate the anterior pituitary hormones (Table 1), were mostly discovered by two competiting researchers: Dr. Roger Guillemin and Dr. Andrew Schally [1–3]. Thyrotropin-releasing hormone (TRH) was the first hypothalamic hormone identified [4,5], followed by luteinizing hormone-releasing hormone ([LH-RH] or gonadotropin-releasing hormone [Gn-RH]) [6], somatostatin [7], and growth hormone-releasing hormone (GH-RH) [8,9]. The search for hypothalamic hormones by Guillemin and Schally was so competitive that it was called “the Nobel duel.” Both research groups had attempted to discover corticotropin-releasing hormone (CRH), a hypothalamic hormone that is secreted by stress and releases adrenocorticotropin (ACTH) from the anterior pituitary, but without success. Although both Schally and Guillemin were awarded the Nobel Prize in 1977 [1–3], the identification of CRH needed to await the isolation of CRH from ovine brain by Vale et al. [10] and the subsequent molecular cloning of the human C RH gene by Shibahara et al. [11].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wade N. Guillemin and Schally: the years in the wilderness. Science 1978; 200: 279–282.

    Article  PubMed  CAS  Google Scholar 

  2. Wade N. Guillemin and Schally: the three-lap race to Stockholm. Science 1978; 200: 411–415.

    Article  PubMed  CAS  Google Scholar 

  3. Wade N. Guillemin and Schally: a race spurred by rivalry. Science 1978; 200: 510–513.

    Article  PubMed  CAS  Google Scholar 

  4. Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun 1969; 37: 705–710.

    Article  PubMed  CAS  Google Scholar 

  5. Burgus R, Dunn TF, Desiderio D, Ward DN, Vale W, Guillemin R. Characterization of ovine hypothalamic hypophysiotropic TSHreleasing factor. Nature 1970; 226: 321–325.

    Article  PubMed  CAS  Google Scholar 

  6. Schally AV, Arimura A, Baba Y, et al. Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun 1971; 43: 393–399.

    Article  PubMed  CAS  Google Scholar 

  7. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973; 179: 77–79.

    Article  PubMed  CAS  Google Scholar 

  8. Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 1982; 218: 585–587.

    Article  PubMed  CAS  Google Scholar 

  9. Rivier J, Spiess J, Thorner M, Vale W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 1982; 300: 276–278.

    Article  PubMed  CAS  Google Scholar 

  10. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  11. Shibahara S, Morimoto Y, Furutani Y, et al. Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. EMBO J 1983; 2: 775–779.

    PubMed  CAS  Google Scholar 

  12. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  PubMed  CAS  Google Scholar 

  13. Mouri T, Itoi K, Takahashi K, et al. Colocalization of corticotropinreleasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology 1993; 57: 34–39.

    Article  PubMed  CAS  Google Scholar 

  14. de Keyzer Y, Auzan C, Lenne F, et al. Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett 1994; 356: 215–220.

    Article  PubMed  Google Scholar 

  15. Jard S, Gaillard RC, Guillon G, et al. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 1986; 30: 171–177.

    PubMed  CAS  Google Scholar 

  16. Morley JE. Neuroendocrine control of thyrotropin secretion. Endocr Rev 1981; 2: 396–436.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi K, Murakami O, Satoh F, Mouri T. The hypothalamus and neurohypophysis. In: Stefaneanu L, Sasano H, Kovacs K, eds. Molecular and Cellular Endocrine Pathology. London: Arnold, 2000: 45–74.

    Google Scholar 

  18. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 2001; 7: 605–611.

    Article  PubMed  CAS  Google Scholar 

  19. Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 2001; 98: 2843–2848.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis K, Li C, Perrin MH, et al. Identiifcation of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high afifnity for the CRF2 receptor. Proc Natl Acad Sci USA 2001; 98: 7570–7575.

    Article  PubMed  CAS  Google Scholar 

  21. Bloch B, Gaillard RC, Brazeau P, Lin HD, Ling N. Topographical and ontogenetic study of the neurons producing growth hormone-releasing factor in human hypothalamus. Regul Pept 1984; 8: 21–31.

    Article  PubMed  CAS  Google Scholar 

  22. Desy L, Pelletier G. Immunohistochemical localization of somatostatin in the human hypothalamus. Cell Tissue Res 1977; 184: 491–497.

    Article  PubMed  CAS  Google Scholar 

  23. Bowers CY, Momany FA, Reynolds GA, Hong A. On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to speciifcally release growth hormone. Endocrinology 1984; 114: 1537–1545.

    Article  PubMed  CAS  Google Scholar 

  24. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996; 273: 974–977.

    Article  PubMed  CAS  Google Scholar 

  25. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.

    Google Scholar 

  26. Sherwood NM, Lovejoy DA, Coe IR. Origin of mammalian gonadotropin-releasing hormones. Endocr Rev 1993; 14: 241–254.

    PubMed  CAS  Google Scholar 

  27. Schwanzel-Fukuda M, Jorgenson KL, Bergen HT, Weesner GD, Pfaff DW. Biology of normal luteinizing hormone-releasing hormone neurons during and after their migration from olfactory placode. Endocr Rev 1992; 13: 623–634.

    PubMed  CAS  Google Scholar 

  28. King JC, Anthony EL. LHRH neurons and their projections in humans and other mammals: species comparisons. Peptides 1984; 5 (Suppl 1): 195–207.

    Article  PubMed  CAS  Google Scholar 

  29. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001; 22: 111–151.

    Article  PubMed  CAS  Google Scholar 

  30. Lamberts SW, Macleod RM. Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev 1990; 70: 279–318.

    PubMed  CAS  Google Scholar 

  31. Kato Y, Iwasaki Y, Iwasaki J, Abe H, Yanaihara N, Imura H. Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology 1978; 103: 554–558.

    Article  PubMed  CAS  Google Scholar 

  32. Hinuma S, Habata Y, Fujii R, et al. A prolactin-releasing peptide in the brain. Nature 1998; 393: 272–276.

    Article  PubMed  CAS  Google Scholar 

  33. Itoh N, Obata K, Yanaihara N, Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM27. Nature 1983; 304: 547–549.

    Article  PubMed  CAS  Google Scholar 

  34. de Roux N, Young J, Misrahi M, et al. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 1997; 337: 1597–1602.

    Article  PubMed  Google Scholar 

  35. Layman LC, Cohen DP, Jin M, et al. Mutations in gonadotropinreleasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 1998; 18: 14–15.

    Article  PubMed  CAS  Google Scholar 

  36. Wajnrajch MP, Gertner JM, Harbison MD, Chua SC Jr, Leibel RL. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat Genet 1996;12:88–90.

    Google Scholar 

  37. Maheshwari HG, Silverman BL, Dupuis J, Baumann G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: dwarfism of Sindh. J Clin Endocrinol Metab 1998; 83: 4065–4074.

    Article  PubMed  CAS  Google Scholar 

  38. Netchine I, Talon P, Dastot F, Vitaux F, Goossens M, Amselem S. Extensive phenotypic analysis of a family with growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. J Clin Endocrinol Metab 1998; 83: 432–436.

    Article  PubMed  CAS  Google Scholar 

  39. Collu R, Tang J, Castagne J, et al. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropinreleasing hormone receptor gene. J Clin Endocrinol Metab 1997; 82: 1561–1565.

    Article  PubMed  CAS  Google Scholar 

  40. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340: 692–696.

    Article  PubMed  CAS  Google Scholar 

  41. Lyons J, Landis CA, Harsh G, et al. Two G protein oncogenes in human endocrine tumors. Science 1990; 249: 655–659.

    Article  PubMed  CAS  Google Scholar 

  42. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991; 325: 1688–1695.

    Article  PubMed  CAS  Google Scholar 

  43. Schwindinger WF, Francomano CA, Levine MA. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 1992; 89: 5152–5156.

    Article  PubMed  CAS  Google Scholar 

  44. Debeneix C, Bourgeois M, Trivin C, Sainte-Rose C, Brauner R. Hypothalamic hamartoma: comparison of clinical presentation and magnetic resonance images. Horm Res 2001; 56: 12–18.

    Article  PubMed  CAS  Google Scholar 

  45. Asa SL, Kovacs K, Tindall GT, Barrow DL, Horvath E, Vecsei P. Cushing’s disease associated with an intrasellar gangliocytoma producing corticotrophin-releasing factor. Ann Intern Med 1984; 101: 789–793.

    PubMed  CAS  Google Scholar 

  46. Asa SL, Scheithauer B W, Bilbao JM, et al. A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor. J Clin Endocrinol Metab 1984; 58: 796–803.

    Article  PubMed  CAS  Google Scholar 

  47. Stevens RE, Moore GE. Inadequacy of APUD concept in explaining production of peptide hormones by tumours. Lancet 1983;i: 118–119.

    Google Scholar 

  48. Zuniga OF, Tanner SM, Wild WO, Mosier HD Jr. Hamartoma of CNS associated with precocious puberty. Am J Dis Child 1983; 137: 127–133.

    PubMed  CAS  Google Scholar 

  49. Culler FL, James HE, Simon ML, Jones KL. Identiifcation of gona-dotropin-releasing hormone in neurons of a hypothalamic hamartoma in a boy with precocious puberty. Neurosurgery 1985; 17: 408–412.

    Article  PubMed  CAS  Google Scholar 

  50. Judge DM, Kulin HE, Page R, Santen R, Trapukdi S. Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty. N Engl J Med 1977; 296: 7–10.

    Article  PubMed  CAS  Google Scholar 

  51. Losa M, Schopohl J, von Werder K. Ectopic secretion of growth hormone-releasing hormone in man. J Endocrinol Invest 1993; 16: 69–81.

    PubMed  CAS  Google Scholar 

  52. Faglia G, Arosio M, Bazzoni N. Ectopic acromegaly. Endocrinol Metab Clin North Am 1992; 21: 575–595.

    PubMed  CAS  Google Scholar 

  53. Carey RM, Varma SK, Drake CR Jr, et al. Ectopic secretion of corticotropin-releasing factor as a cause of Cushing’s syndrome. A clinical, morphologic, and biochemical study. N Engl J Med 1984; 311: 13–20.

    Article  PubMed  CAS  Google Scholar 

  54. Belsky JL, Cuello B, Swanson LW, Simmons DM, Jarrett RM, Braza F. Cushing’s syndrome due to ectopic production of corticotropinreleasing factor. J Clin Endocrinol Metab 1985; 60: 496–500.

    Article  PubMed  CAS  Google Scholar 

  55. Suda T, Tomori N, Tozawa F, et al. Immunoreactive corticotropin and corticotropin-releasing factor in human hypothalamus, adrenal, lung cancer, and pheochromocytoma. J Clin Endocrinol Metab 1984; 58: 919–924.

    Article  PubMed  CAS  Google Scholar 

  56. White A, Ray DW, Talbot A, Abraham P, Thody AJ, Bevan JS. Cushing’s syndrome due to phaeochromocytoma secreting the precursors of adrenocorticotropin. J Clin Endocrinol Metab 2000; 85: 4771–4775.

    Article  PubMed  CAS  Google Scholar 

  57. Soga J, Yakuwa Y. Somatostatinoma/inhibitory syndrome: a statistical evaluation of 173 reported cases as compared to other pancreatic endocrinomas. J Exp Clin Cancer Res 1999; 18: 13–22.

    PubMed  CAS  Google Scholar 

  58. Nakai S, Kawano H, Yudate T, et al. The POU domain transcription factor Brn-2 is required for the determination of speciifc neuronal lineages in the hypothalamus of the mouse. Genes Dev 1995; 9: 3109–3121.

    Article  PubMed  CAS  Google Scholar 

  59. Schonemann MD, Ryan AK, McEvilly RJ, et al. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 1995; 9: 3122–3135.

    Article  PubMed  CAS  Google Scholar 

  60. Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 1998; 12: 3264–3275.

    Article  PubMed  CAS  Google Scholar 

  61. Hosoya T, Oda Y, Takahashi S, et al. Defective development of secretory neurones in the hypothalamus of Arnt2-knockout mice. Genes Cells 2001; 6: 361–374.

    Article  PubMed  CAS  Google Scholar 

  62. Acampora D, Postiglione MP, Avantaggiato V, et al. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 1999; 13: 2787–2800.

    Article  PubMed  CAS  Google Scholar 

  63. Li H, Zeitler PS, Valerius MT, Small K, Potter SS. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J 1996; 15: 714–724.

    PubMed  CAS  Google Scholar 

  64. Stopa EG, LeBlanc VK, Hill DH, Anthony EL. A general overview of the anatomy of the neurohypophysis. Ann NY Acad Sci 1993; 689: 6–15.

    Article  PubMed  CAS  Google Scholar 

  65. Fahrenholz F, Jurzak M, Gerstberger R, Haase W. Renal and central vasopressin receptors: immunocytochemical localization. Ann NY Acad Sci 1993; 689: 194–206.

    Article  PubMed  CAS  Google Scholar 

  66. Gutkowska J, Jankowski M, Lambert C, Mukaddam-Daher S, Zingg HH, McCann SM. Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc Natl Acad Sci USA 1997; 94: 11704–11709.

    Article  PubMed  CAS  Google Scholar 

  67. Jankowski M, Wang D, Hjjaar F, Mukaddam-Daher S, McCann SM, Gutkowska J. Oxytocin and its receptors are synthesized in the rat vasculature. Proc Natl Acad Sci USA 2000; 97: 6207–6211.

    Article  CAS  Google Scholar 

  68. Mukaddam-Daher S, Yin YL, Roy J, Gutkowska J, Cardinal R. Negative inotropic and chronotropic effects of oxytocin. Hypertension 2001; 38: 292–296.

    Article  PubMed  CAS  Google Scholar 

  69. Conrad KP, Gellai M, North WG, Valtin H. Influence of oxytocin on renal hemodynamics and sodium excretion. Ann NY Acad Sci 1993; 689: 346–362.

    Article  PubMed  CAS  Google Scholar 

  70. Ito M, Mori Y, Oiso Y, Saito H. A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest 1991; 87: 725–728.

    Article  PubMed  CAS  Google Scholar 

  71. Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 1992; 11: 19–23.

    PubMed  CAS  Google Scholar 

  72. Krishnamani MR, Phillips JA 3rd, Copeland KC. Detection of a novel arginine vasopressin defect by dideoxy ifngerprinting. J Clin Endocrinol Metab 1993; 77: 596–598.

    Article  PubMed  CAS  Google Scholar 

  73. McLeod JF, Kovacs L, Gaskill MB, Rittig S, Bradley GS, Robertson GL. Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J Clin Endocrinol Metab 1993;77:599A– 599G.

    Google Scholar 

  74. Ito M, Oiso Y, Murase T, et al. Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus. J Clin Invest 1993;91:2565– 2571.

    Google Scholar 

  75. Miller WL. Molecular genetics of familial central diabetes insipidus. J Clin Endocrinol Metab 1993; 77: 592–595.

    Article  PubMed  CAS  Google Scholar 

  76. Green JR, Buchan GC, Alvord EC Jr, Swanson AG. Heredtary and idiopathic types of diabetes insipidus. Brain 1967; 90: 707–714.

    Article  PubMed  CAS  Google Scholar 

  77. Braverman LE, Mancini JP, McGoldrick DM. Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Intern Med 1965; 63: 503–508.

    PubMed  CAS  Google Scholar 

  78. Barrett TG, Bundey SE. Wolfram (DIDMOAD) syndrome. J Med Genet 1997;34:838–841.

    Google Scholar 

  79. Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 1995; 346: 1458–1463.

    Article  PubMed  CAS  Google Scholar 

  80. Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998; 20: 143–148.

    Article  PubMed  CAS  Google Scholar 

  81. Takeda K, Inoue H, Tanizawa Y, et al. WFS 1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 2001; 10: 477–484.

    Article  PubMed  CAS  Google Scholar 

  82. Imura H, Nakao K, Shimatsu A, et al. Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 1993; 329: 683–689.

    Article  PubMed  CAS  Google Scholar 

  83. Thodou E, Asa SL, Kontogeorgos G, Kovacs K, Horvath E, Ezzat S. Clinical case seminar: lymphocytic hypophysitis: clinico-pathological ifndings. J Clin Endocrinol Metab 1995;80:2302– 2311.

    Google Scholar 

  84. Rosenthal W, Seibold A, Antaramian A, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992; 359: 233–235.

    Article  PubMed  CAS  Google Scholar 

  85. Deen PM, Verdijk MA, Knoers NV, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994; 264: 92–95.

    Article  PubMed  CAS  Google Scholar 

  86. van Lieburg AF, Verdijk MA, Knoers VV, et al. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 1994; 55: 648–652.

    PubMed  Google Scholar 

  87. Welt LG. Hypo-and hypernatremia. Ann Intern Med 1962;56:161– 164.

    Google Scholar 

  88. Gossain VV, Kinzel T, Strand CV, Rovner DR. Essential hypernatremia. Am J Med Sci 1978; 275: 353–358.

    Article  PubMed  CAS  Google Scholar 

  89. DeRubertis FR, Michelis MF, Beck N, Field JB, Davis BB. “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. J Clin Invest 1971; 50: 97–111.

    Article  PubMed  CAS  Google Scholar 

  90. DeRubertis FR, Michelis MF, Davis BB. “Essential” hypernatremia. Report of three cases and review of the literature. Arch Intern Med 1974; 134: 889–895.

    Article  PubMed  CAS  Google Scholar 

  91. Voelker JL, Campbell RL, Muller J. Clinical, radiographic, and pathological features of symptomatic Rathke’s cleft cysts. J Neurosurg 1991;74:535–544. Review.

    Google Scholar 

  92. Iwai H, Ohno Y, Hoshiro M, et al. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) and adrenal insufficiency induced by rathke’ s cleft cyst: a case report. Endocr J 2000; 47: 393–399.

    Article  PubMed  CAS  Google Scholar 

  93. Barrow DL, Spector RH, Takei Y, Tindall GT. Symptomatic Rathke’s cleft cysts located entirely in the suprasellar region: review of diagnosis, management, and pathogenesis. Neurosurgery 1985; 16: 766–772.

    Article  PubMed  CAS  Google Scholar 

  94. Hoffman HJ, Yoshida M, Becker LE, Hendrick EB, Humphreys RP. Experience with pineal region tumours in childhood. Neurol Res 1984; 6: 107–112.

    PubMed  CAS  Google Scholar 

  95. Sawamura Y, Ikeda J, Shirato H, Tada M, Abe H. Germ cell tumours of the central nervous system: treatment consideration based on 111 cases and their long-term clinical outcomes. Eur J Cancer 1998; 34: 104–110.

    Article  PubMed  CAS  Google Scholar 

  96. Hurwitz CA, Faquin WC. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 5–2002. A 15-year-old boy with a retro-orbital mass and impaired vision. N Engl J Med 2002; 346: 513–520.

    Article  PubMed  Google Scholar 

  97. Ladisch S. Langerhans cell histiocytosis. Curr Opin Hematol 1998; 5: 54–58.

    Article  PubMed  CAS  Google Scholar 

  98. Murphy GF, Bhan AK, Sato S, Mihm MC Jr, Harrist TJ. A new immunologic marker for human Langerhans cells. N Engl J Med 1981; 304: 791–792.

    PubMed  CAS  Google Scholar 

  99. Broadbent V, Dunger DB, Yeomans E, Kendall B. Anterior pituitary function and computed tomography/magnetic resonance imaging in patients with Langerhans cell histiocytosis and diabetes insipidus. Med Pediatr Oncol 1993; 21: 649–654.

    Article  PubMed  CAS  Google Scholar 

  100. Braunstein GD, Kohler PO. Endocrine manifestations of histiocytosis. Am J Pediatr Hematol Oncol 1981; 3: 67–75.

    PubMed  CAS  Google Scholar 

  101. Winnacker JL, Becker KL, Katz S. Endocrine aspects of sarcoidosis. N Engl J Med 1968; 278: 483–492.

    Article  PubMed  CAS  Google Scholar 

  102. Vesely DL, Maldonodo A, Levey GS. Partial hypopituitarism and possible hypothalamic involvement in sarcoidosis: report of a case and review of the literature. Am J Med 1977; 62: 425–431.

    Article  PubMed  CAS  Google Scholar 

  103. Stuart CA, Neelon FA, Lebovitz HE. Hypothalamic insufifciency: the cause of hypopituitarism in sarcoidosis. Ann Intern Med 1978; 88: 589–594.

    PubMed  CAS  Google Scholar 

  104. Stern BJ, Krumholz A, Johns C, Scott P, Nissim J. Sarcoidosis and its neurological manifestations. Arch Neurol 1985; 42: 909–917.

    Article  PubMed  CAS  Google Scholar 

  105. Cone L, Srinivasan M, Romanul FC. Granular cell tumor (choristoma) of the neurohypophysis: two cases and a review of the literature. Am J Neuroradiol 1990; 11: 403–406.

    PubMed  CAS  Google Scholar 

  106. Loh KC, Green A, Dillon WP Jr, Fitzgerald PA, Weidner N, Tyrrell JB. Diabetes insipidus from sarcoidosis conifned to the posterior pituitary. Eur J Endocrinol 1997; 137: 514–519.

    Article  PubMed  CAS  Google Scholar 

  107. MacColl G, Quinton R, Bouloux PM. GnRH neuronal development: insights into hypogonadotrophic hypogonadism. Trends Endocrinol Metab 2002; 13: 112–118.

    Article  PubMed  CAS  Google Scholar 

  108. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-ifnding molecules. Nature 1991; 353: 529–536.

    Article  PubMed  CAS  Google Scholar 

  109. Krieger DT, Perlow MJ, Gibson MJ, et al. Brain grafts reverse hypogonadism of gonadotropin releasing hormone deficiency. Nature 1982; 298: 468–471.

    Article  PubMed  CAS  Google Scholar 

  110. Weiss J, Crowley WF Jr, Jameson JL. Normal structure of the gonadotropin-releasing hormone (GnRH) gene in patients with GnRH deifciency and idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 1989; 69: 299–303.

    Article  PubMed  CAS  Google Scholar 

  111. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deifciency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  PubMed  CAS  Google Scholar 

  112. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin mis-sense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18: 213–215.

    Article  PubMed  CAS  Google Scholar 

  113. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human lep-tin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401.

    Article  PubMed  CAS  Google Scholar 

  114. O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med 1995; 333: 1386–1390.

    Article  PubMed  Google Scholar 

  115. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired pro-hormone processing associated with mutations in the human pro-hormone convertase 1 gene. Nat Genet 1997; 16: 303–306.

    Article  PubMed  CAS  Google Scholar 

  116. Mantzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab 1997; 82: 1066–1070.

    Article  PubMed  CAS  Google Scholar 

  117. Yu WH, Kimura M, Walczewska A, Karanth S, McCann SM. Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci USA 1997; 94: 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  118. Strosberg AD, Issad T. The involvement of leptin in humans revealed by mutations in leptin and leptin receptor genes. Trends Pharmacol Sci 1999; 20: 227–230.

    Article  PubMed  CAS  Google Scholar 

  119. Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982; 296: 659–660.

    Article  PubMed  CAS  Google Scholar 

  120. Takahashi K. Adrenomedullin from a pheochromocytoma to the eye: implications of the adrenomedullin research for endocrinology in the 21st century. Tohoku J Exp Med 2001; 193: 79–114.

    Article  PubMed  CAS  Google Scholar 

  121. Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neuro-chemical inducer of hyperphagia and obesity. Peptides 1986; 7: 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  122. Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI. Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 1983; 305: 321–323.

    Article  PubMed  CAS  Google Scholar 

  123. Mouri T, Takahashi K, Kawauchi H, et al. Melanin-concentrating hormone in the human brain. Peptides 1993; 14: 643–646.

    Article  PubMed  CAS  Google Scholar 

  124. Takahashi K, Suzuki H, Totsune K, et al. Melanin-concentrating hormone in human and rat. Neuroendocrinology 1995; 61: 493–498.

    Article  PubMed  CAS  Google Scholar 

  125. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380: 243–247.

    Article  PubMed  CAS  Google Scholar 

  126. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998; 396: 670–674.

    Article  PubMed  CAS  Google Scholar 

  127. Chambers J, Ames RS, Bergsma D, et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 1999; 400: 261–265.

    Article  PubMed  CAS  Google Scholar 

  128. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 1999; 400: 265–269.

    Article  PubMed  CAS  Google Scholar 

  129. Hill J, Duckworth M, Murdock P, et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 2001; 276: 20125–20129.

    Article  PubMed  CAS  Google Scholar 

  130. de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 1998; 95: 322–327.

    Article  PubMed  Google Scholar 

  131. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92: 573–585.

    Article  PubMed  CAS  Google Scholar 

  132. Broberger C. Hypothalamic cocaine-and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/ hypocretin and neuropeptide Y. Brain Res 1999; 848: 101–113.

    Article  PubMed  CAS  Google Scholar 

  133. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999; 20: 68–100.

    Article  PubMed  CAS  Google Scholar 

  134. Ollmann MM, Wilson BD, Yang YK, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135–138.

    Article  PubMed  CAS  Google Scholar 

  135. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature 2001; 409: 194–198.

    Article  PubMed  CAS  Google Scholar 

  136. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000; 141: 4325–4328.

    Article  PubMed  CAS  Google Scholar 

  137. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50: 1714–1719.

    Article  PubMed  CAS  Google Scholar 

  138. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999; 84: 3686–3695.

    Article  PubMed  CAS  Google Scholar 

  139. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufifciency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–157.

    Article  PubMed  CAS  Google Scholar 

  140. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deifciency responds to peripheral melanocortin. Nat Med 1999; 5: 1066–1070.

    Article  PubMed  CAS  Google Scholar 

  141. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  PubMed  CAS  Google Scholar 

  142. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106: 253–262.

    Article  PubMed  CAS  Google Scholar 

  143. Farooqi IS, Yeo GS, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deifciency. J Clin Invest 2000; 106: 271–279.

    Article  PubMed  CAS  Google Scholar 

  144. Lee YS, Poh LK, Loke KY. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J Clin Endocrinol Metab 2002; 87: 1423–1426.

    Article  PubMed  CAS  Google Scholar 

  145. Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA. BardetBiedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 1997; 34: 92–98.

    Article  PubMed  CAS  Google Scholar 

  146. Grumbach MM, Styne DM. Puberty: ontogeny, neuroendocrinology, physiology, and Disorders. In: Wilson JD, Foster DW, Krone-berg HM, Larsen PR, eds. Williams Textbook of Endocrinology, 9th edit., Philadelphia: Saunders, 1998: 1509–1625.

    Google Scholar 

  147. Burman P, Ritzen EM, Lindgren AC. Endocrine dysfunction in Prader–Willi syndrome: a review with special reference to GH. Endocr Rev 2001; 22: 787–799.

    Article  PubMed  CAS  Google Scholar 

  148. Swaab DF, Purba JS, Hofman MA. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader–Willi syndrome: a study of ifve cases. J Clin Endocrinol Metab 1995; 80: 573–579.

    Article  PubMed  CAS  Google Scholar 

  149. Swaab DF. Prader–Willi syndrome and the hypothalamus. Acta Paediatr Suppl 1997; 423: 50–54.

    Article  PubMed  CAS  Google Scholar 

  150. Miller L, Angulo M, Price D, Taneja S. MR of the pituitary in patients with Prader–Willi syndrome: size determination and imaging ifndings. Pediatr Radiol 1996; 26: 43–47.

    Article  PubMed  CAS  Google Scholar 

  151. Reichlin S. Neuroendocrinology. In: Wilson JD, Foster DW, Krone-berg HM, Larsen PR, eds. Williams Textbook of Endocrinology, 9th edit., Philadelphia: Saunders, 1998: 165–248.

    Google Scholar 

  152. Russell GF, Beardwood CJ. Amenorrhoea in the feeding disorders: anorexia nervosa and obesity. Psychother Psychosom 1970; 18: 359–364.

    Article  PubMed  CAS  Google Scholar 

  153. Grinspoon S, Gulick T, Askari H, et al. Serum leptin levels in women with anorexia nervosa. J Clin Endocrinol Metab 1996;81:3861– 3863.

    Google Scholar 

  154. Brann DW, Wade MF, Dhandapani KM, Mahesh VB, Buchanan CD. Leptin and reproduction. Steroids 2002; 67: 95–104.

    Article  PubMed  CAS  Google Scholar 

  155. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98: 365–376.

    Article  PubMed  CAS  Google Scholar 

  156. Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001; 30: 345–354.

    Article  PubMed  CAS  Google Scholar 

  157. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypo-cretin (orexin) deifciency in human narcolepsy. Lancet 2000; 355: 39–40.

    Article  PubMed  CAS  Google Scholar 

  158. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000; 6: 991–997.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takahashi, K., Murakami, O., Mouri, T. (2004). Hypothalamus and Neurohypophysis. In: Lloyd, R.V. (eds) Endocrine Pathology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-403-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-403-0_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-423-4

  • Online ISBN: 978-1-59259-403-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics