Skip to main content

Aging of Adaptive/Acquired Immunity

  • Chapter
Aging, Immunity, and Infection

Part of the book series: Infectious Disease ((ID))

  • 178 Accesses

Abstract

It is appropriate to begin this chapter by quoting from an article (1) written by Philippa Marrack and John Kappler:

Spurred on by the great immunochemists of the early twentieth century, immunologists acted for many years as though one antigen was as good as another. Antigens were used because they were cheap or convenient, so we learned a lot about the properties of immunity to materials such as sheep red blood cells, egg albumin, dinitrophenol, and so on. What immunologists found out, of course, was tremendously important, and most of the principles that are the foundation of modern immunology were learned with these models. This course of action, however, was to some extent misleading, because the fact of the matter is that, in real life, most infectious organisms have spent their millions of years of coevolution with the immune system developing mechanisms of manipulating the system. The upshot is that no invading organism behaves exactly like a sheep red blood cell and, if immunologists really want to understand how infectious diseases interact with their hosts, they have to study the disease and host themselves. Artificial substitutes simply will not do.

It seems inconceivable that future generations will be able to discard B lymphocytes and immunoglobulin as absurd interpretations of reality, in much the same way as we today discard the four humours of Hippocratic medicine.

—John W. Fabre, “The Last Unknown Fact,” Nature Immunology 2002;3:3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marrack P, Kappler J. Subversion of the immune system by pathogens. Cell 1994; 76: 323–332.

    CAS  PubMed  Google Scholar 

  2. Goldsby RA, Kindt TJ, Osborne BA. Kuby’s Immunology, 4th ed. New York: Freeman, 2000.

    Google Scholar 

  3. Janeway CA, Travers T, Walport M, Shlomchik M. Immunology. New York: Garland, 2001.

    Google Scholar 

  4. Parham P. The Immune System. New York: Garland 2000.

    Google Scholar 

  5. Abbas AK, Lichtman AH, Pober JS. Cellular and Molecular Immunology, 4th ed. Philadelphia: Saunders, 2000.

    Google Scholar 

  6. Scollay RG, Butcher EC, Weissman IL. Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur J Immunol 1980; 10: 210–218.

    CAS  PubMed  Google Scholar 

  7. Mackall C, Gress RE. Thymic aging and T-cell regeneration. Immunol Rev 1997; 160: 91–102.

    CAS  PubMed  Google Scholar 

  8. Miller RA, Stutman O. T cell repopulation from functionally-restricted splenic progenitors: 10,000-fold expansion documented by limiting dilution analyses. J Immunol 1984; 133: 2925–2932.

    CAS  PubMed  Google Scholar 

  9. Miller RA. Age-related changes in T cell surface markers: A longitudinal analysis in genetically heterogeneous mice. Mech Ageing Dev 1997; 96: 181–196.

    CAS  Google Scholar 

  10. Mackall CL, Gress RE. Thymic aging and T-cell regeneration. Immunol Rev 1997; 160: 91–102.

    CAS  PubMed  Google Scholar 

  11. Haynes BF, Markert ML, Sempowski GD, et al. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV- I infection. Annu Rev Immunol 2000; 18: 529–560.

    CAS  PubMed  Google Scholar 

  12. Mackall CL, Granger L, Sheard MA, et al. T cell regeneration after bone marrow transplantation: Differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 1993; 82: 2585–2594.

    CAS  PubMed  Google Scholar 

  13. Hirokawa K, Utsuyama M, Kasai M, et al. Understanding the mechanism of the age-change of thymic function to promote T cell differentiation. Immunol Lett 1994; 40: 269–277.

    CAS  PubMed  Google Scholar 

  14. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149.

    CAS  PubMed  Google Scholar 

  15. Kong, F-K, Chen CH, Six A, et al. T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci USA 1999; 96: 1536–1540.

    CAS  PubMed  Google Scholar 

  16. Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396: 690–695.

    CAS  PubMed  Google Scholar 

  17. Callahan JE, Kappler JW, Marrack P. Unexpected expansions of CD8-bearing cells in old mice. J Immunol 1993; 151: 6657–6669.

    CAS  PubMed  Google Scholar 

  18. Ricalton NS, Robertson C, Norris JM, et al. Prevalence of CD8+ T-cell expansions in relation to age in healthy individuals. J Gerontol A Biol Sci Med Sci 1998; 53: B196 - B201.

    CAS  PubMed  Google Scholar 

  19. Ku C-C, Kotzin B, Kappler J, Marrack P. CD8+ T cell clones in old mice. Immunol Rev 1997; 160: 139–144.

    CAS  PubMed  Google Scholar 

  20. Ku C-C, Kappler J, Marrack P. The growth of the very large CD8+ T cell clones in older mice is controlled by cytokines. J Immunol 2001; 166: 2186–2193.

    CAS  PubMed  Google Scholar 

  21. Mackall CL, Fleisher TA, Brown MR, et al. Distinctions between CD8+ and CD4+ T cell regenerative pathways result in prolonged T cell subset imbalance after intensive chemotherapy. Blood 1997; 89: 3700–3707.

    CAS  PubMed  Google Scholar 

  22. Sagerstrom CG, Kerr EM, Allison JP, Davis MM. Activation and differentiation requirements of primary T cells in vitro. Proc Natl Acad Sci USA 1993; 90: 8987–8991.

    CAS  PubMed  Google Scholar 

  23. Mackall CL, Bare CV, Titus JA, et al. Thymic-independent T cell regeneration occurs via antigen driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996; 156: 4609–4616.

    CAS  PubMed  Google Scholar 

  24. Linton PI, Haynes L, Klinman NR, Swain SL. Antigen-independent changes in naive CD4 T cells with aging. J Exp Med 1996; 184: 1891–1900.

    CAS  PubMed  Google Scholar 

  25. Miller RA. 1999. Aging and immune function. In: Paul, WE, ed. Fundamental Immunology, 4th ed. Philadelphia: Lippincott-Raven, 1999: 947–966.

    Google Scholar 

  26. Tanchot C, Rocha B. The peripheral T cell repertoire: Independent homeostatic regulation of virgin and activated CD8+ T cell pools. Eur J Immunol 1995; 25: 2127–2136.

    CAS  PubMed  Google Scholar 

  27. Zhang X, Fujii H, Kishimoto H, et al. Aging leads to disturbed homeostasis of memory phenotype CD8+ cells. J Exp Med 2002; 195: 283–293.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol 1997; 158: 3037–3045.

    CAS  PubMed  Google Scholar 

  29. Aspinall R. Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 2000; 18: 1629–1637.

    CAS  PubMed  Google Scholar 

  30. Ben-Yehuda AB, Friedman G, Wirtheim E, et al. Checkpoints in thymocytopoiesis and aging: Expression of the recombination-activating genes Rag 1 and Rag 2. Mech Ageing Dev 1998; 102: 239–247.

    CAS  Google Scholar 

  31. Utsuyama M, Kasai M, Kurashima C, Hirokawa K. Age influence on the thymic capacity to promote differentiation of T cells: Induction of different composition of T cell subsets by aging thymus. Mech Ageing Dev 1991; 58: 267–277.

    CAS  PubMed  Google Scholar 

  32. Nakagawa T, Roth W, Wong P, et al. Cathepsin L: Critical role in Ii degradation and CD4 T cell selection in the thymus. Science 1998; 280: 450–453.

    CAS  PubMed  Google Scholar 

  33. Cresswell P. Proteases, processing, and thymic selection. Science 1998; 280: 394–395.

    CAS  PubMed  Google Scholar 

  34. Sempowski GD, Hale LP, Sundy JS, et al. Expression of thymic cytokines and human thymic atrophy. J Immunol 2000; 164: 2180–2187.

    CAS  PubMed  Google Scholar 

  35. Tyan ML. Age-related decrease in mouse T cell progenitors. J Immunol 1997; 118: 846–851.

    Google Scholar 

  36. Kadish JL, Basch RS. Hematopoietic thymocyte precursors. 1. Assay and kinetics of appearance of progeny. J Exp Med 1976; 143: 1082–1089.

    CAS  PubMed  Google Scholar 

  37. Kelley KW, Brief S, Westly HI, et al. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc Natl Acad Sci USA 1986; 83: 5663–5667.

    CAS  PubMed  Google Scholar 

  38. McCormick KR, Harr JL, Taubenberger JK, Krieg RJ. A murine model for regeneration of the senescent thymus using growth hormone therapy. Aging: Immunol Infect Dis 1991; 3: 19–26.

    Google Scholar 

  39. Cross RJ, Campbell JL, Markesbery WR, Roszman TL. Transplantation of pituitary grafts fail to restore immune function and to reconstitute the thymus glands of aged mice. Mech Ageing Dev 1990; 56: 11–22.

    CAS  PubMed  Google Scholar 

  40. Cross RJ, Bryson JS, Roszman TL. Immunologic disparity in the hypopituitary dwarf mouse. J Immunol 1992; 148: 1347–1352.

    CAS  PubMed  Google Scholar 

  41. Harrison DE, Archer JR, Astle CM. The effect of hypophysectomy on thymic aging in mice. J Immunol 1982; 129: 2673–2677.

    CAS  PubMed  Google Scholar 

  42. Bluestone JA. Cell fate in the immune system: Decisions, decisions, decisions. Immunol. Rev. 1998; 165: 5–12.

    CAS  Google Scholar 

  43. Chan S, Correia-Neves M, Benoist C, Mathis D. CD4/CD8 lineage commitment: Matching fate with competence. Immunol Rev 1998; 165: 195–207.

    CAS  PubMed  Google Scholar 

  44. Arstila TP, Casrouge A, Baron V, et al. A direct estimate of the human aß T cell receptor diversity. Science 1999; 286: 958–961.

    CAS  PubMed  Google Scholar 

  45. Makinodan T, Albright JF. Proliferative and differentiative manifestations of cellular immune potential. Progr Allergy 1967; 10: 1–36.

    CAS  Google Scholar 

  46. Brown RA, Makinodan T, Albright JF. Significance of a single hit event the initiation of antibody response. Nature 1966; 210: 1383–1384.

    CAS  PubMed  Google Scholar 

  47. Ahmed R, Gray D. Immunological memory and protective immunity: Understanding their relation. Science 1996; 272: 54–60.

    CAS  PubMed  Google Scholar 

  48. Abbas AK, Janeway CA Jr. Immunology: Improving on nature in the twenty-first century. Cell 2000; 100: 129–138.

    CAS  PubMed  Google Scholar 

  49. Sallusto F, Lenig D, Forster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    CAS  PubMed  Google Scholar 

  50. Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: Intermediates, effectors, and memory cells. Science 2000; 290: 92–97.

    CAS  PubMed  Google Scholar 

  51. Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274: 94–96.

    CAS  PubMed  Google Scholar 

  52. Murali-Krishna K, Altman JD, Suresh M, et al. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity 1998; 8: 177–187.

    CAS  PubMed  Google Scholar 

  53. McHeyzer-Williams MG, Davis MM. Antigen-specific development of primary and memory T cells in vivo. Science 1995; 268: 106–111.

    CAS  PubMed  Google Scholar 

  54. Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol 1998; 16: 201–223.

    CAS  PubMed  Google Scholar 

  55. Opferman JT, Ober BT, Ashton-Rickardt PG. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 1999; 283: 1745–1748.

    CAS  PubMed  Google Scholar 

  56. Jacob J, Baltimore D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 1999; 399: 593–597.

    CAS  PubMed  Google Scholar 

  57. Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291: 2413–2417.

    CAS  PubMed  Google Scholar 

  58. Reinhardt RL, Khoruts A, Meerica R, et al. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001; 410: 101–105.

    CAS  PubMed  Google Scholar 

  59. Nossal GJV, Ada GL. Antigens, Lymphoid Cells and the Immune Response. New York: Academic, 1971.

    Google Scholar 

  60. Celada F. The cellular basis of immunologic memory. Prog Allergy 1971; 15: 223–267.

    CAS  PubMed  Google Scholar 

  61. Lau LL, Jamieson BD, Somasundaram T, Ahmed R. Cytotoxic T-cell memory without antigen. Nature 1994; 369: 648–652.

    CAS  PubMed  Google Scholar 

  62. Bruno L, Kirberg J, von Boehmer H. On the cellular basis of immunological T cell memory. Immunity 1995; 2: 37–43.

    CAS  PubMed  Google Scholar 

  63. Murali-Krishna K, Lau LL, Sambhara S, et al. Persistence of memory CD8 T cells in MHC Class I-deficient mice. Science 1999; 286: 1377–1381.

    CAS  PubMed  Google Scholar 

  64. Swain SL, Hu H, Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science 1999; 286: 1381–1383.

    CAS  PubMed  Google Scholar 

  65. Kassiotis G, Garcia S, Simpson E, Stockinger B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nature Immunol 2002; 3: 244–250.

    CAS  Google Scholar 

  66. Rocha B. Requirements for memory maintenance. Nature Immunol 2002; 3: 209–210.

    CAS  Google Scholar 

  67. Tough DF, Sun S, Zhang X, Sprent J. Stimulation of memory T cells by cytokines. Vaccine 2002; 18: 1642–1648.

    Google Scholar 

  68. Sprent J, Surh CD. Generation and maintenance of memory T cells. Curr Opin Immunol 2001; 13: 248–254.

    CAS  PubMed  Google Scholar 

  69. Zhang X, Sun S, Hwang I, et al. Potent and selective stimulation of memory-phenotype CD8+ cells in vivo by IL-15. Immunity 1998; 8: 591–9.

    CAS  PubMed  Google Scholar 

  70. Nishimura H, Yajima T, Naiki Y, et al. Differential roles of interleukin 15 mRNA isoforms generated by alternative splicing in immune responses in vivo. J Exp Med 2000; 191: 157–170.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ku CC, Murakami M, Sakamoto A, et al. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000; 288: 675–678.

    CAS  PubMed  Google Scholar 

  72. Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669–676.

    CAS  PubMed  Google Scholar 

  73. Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–780.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Huang LR, Chen FL, Chen YT, et al. Potent induction of long-term CD8+ T cell memory by short-term IL-4 exposure during T cell receptor stimulation. Proc Natl Acad Sci USA 2000; 97: 3406–3411.

    CAS  PubMed  Google Scholar 

  75. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nature Immunol 2000; 1: 426–432.

    CAS  Google Scholar 

  76. Croft M, Bradley LM, Swain SL. Naïve versus memory CD4+ T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many B cells. J Immunol 1994; 152: 2675–2685.

    CAS  PubMed  Google Scholar 

  77. Norbury CC, Orinciotta MF, Bacik I, et al. Multiple antigen-specific processing pathways for activating naïve CD8+ T cells in vivo. J Immunol 2001; 166: 4355–4362.

    CAS  PubMed  Google Scholar 

  78. Kieper WC, Prlic M, Schmidt CS, et al. IL-12 enhances CD8 T cell homeostatic expansion. J Immunol 2001; 166: 5515–5521.

    CAS  PubMed  Google Scholar 

  79. Wan Y, Lu L, Bramson JL, et al. Dendritic cell-derived IL-12 is not required for the generation of cytotoxic, IFN-y-secreting, CD8+ CTL in vivo. J Immunol 2001; 167: 5027–5033.

    CAS  PubMed  Google Scholar 

  80. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348–2357.

    CAS  PubMed  Google Scholar 

  81. Mosmann TR, Coffman RL. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–173.

    CAS  PubMed  Google Scholar 

  82. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383: 787–793.

    CAS  PubMed  Google Scholar 

  83. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2 and more. Immunol Today 1996; 17: 138–146.

    CAS  PubMed  Google Scholar 

  84. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8: 275–283.

    PubMed  Google Scholar 

  85. O’Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000; 10: 542–550.

    PubMed  Google Scholar 

  86. Zhang S, Lukacs NW, Lawless VA, et al. Cutting edge: differential expression of chemokines in Thl and Th2 cells is dependent on stat 6 but not stat 4. J Immunol 2000; 165: 10–14.

    CAS  PubMed  Google Scholar 

  87. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cell (Thl s) and Th2s. J Exp Med 1998; 187: 129–137.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 1998; 187: 875–884.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Zingoni A, Soto H, Hedrick JA, et al. The chemokine receptor CCR8 is preferentially expressed in Th2 but not Thl cells. J Immunol 1998; 161: 547–555.

    CAS  PubMed  Google Scholar 

  90. Swain SL, Bradley LM, Croft M, et al. Helper T-cell subsets: Phenotype, function and the role of lymphokines in regulating their development. Immunol Rev 1991; 123: 115–144.

    CAS  PubMed  Google Scholar 

  91. Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment. Cell 2000; 100: 655–669.

    CAS  PubMed  Google Scholar 

  92. Afkarian M, Sedy JR, Yang J, et al. T-bet is a STAT 1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nature Immunol 2002; 3: 549–557.

    CAS  Google Scholar 

  93. Zheng W-P, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89: 587–596.

    CAS  PubMed  Google Scholar 

  94. Kim J, Ho IC, Grusby M, Glimcher LH. The transcription factor c-Maf controls the production of IL-4 but not other Th2 cytokines. Immunity 1999; 10: 745–51.

    CAS  PubMed  Google Scholar 

  95. Takemoto N, Kamogawa Y, Lee HJ, et al. Cutting edge: Chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for the Th2-specific cytokine gene cluster. J Immunol 2000; 165: 6687–6691.

    CAS  PubMed  Google Scholar 

  96. O’Shea JJ, Paul WE. Regulation of Thl differentiation-controlling the controllers. Nature Immunol 2002; 3: 506–508.

    Google Scholar 

  97. Xu D, Chan WL, Leung BP, et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med 1998; 188: 1485–1492.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Teague TK, Hildeman D, Kedl RM, et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci USA 1999; 96: 12691–12696.

    CAS  PubMed  Google Scholar 

  99. Chtanova T, Kemp RA, Sutherland APR, et al. Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type 1 and type 2 T cells. J Immunol 2001; 167: 3057–3063.

    CAS  PubMed  Google Scholar 

  100. Rink L, Cakman I, Kirchner H. Altered cytokine production in the elderly. Mech Ageing Dev 1998; 102: 199–209.

    CAS  PubMed  Google Scholar 

  101. Mu XY, Thoman ML. The age-dependent cytokine production by murine CD8+ T cells as determined by four-color flow cytometry analysis. J Gerontol Biol Sci Med Sci 1999; 54: B116 - B123.

    CAS  Google Scholar 

  102. Haynes L, Eaton SM, Swain SL. The defects in effector generation associated with aging can be reversed by addition IL-2 but not other related gamma-c receptor binding cytokines. Vaccine 1999; 18: 1649–1653.

    Google Scholar 

  103. Pioli C, Pucci S, Barile S, et al. Role of mRNA stability in the different patterns of cytokine production by CD4+ cells from young and old mice. Immunology 1998; 94: 380–387.

    CAS  PubMed  Google Scholar 

  104. Hobbs MV, Weigle WO, Noonan DJ, et al. Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J Immunol 1993; 150: 3602–3614.

    CAS  PubMed  Google Scholar 

  105. Castle SC, Uyemura K, Crawford W, et al. Age-related impaired proliferation of peripheral blood mononuclear cells is associated with an increase in both IL-10 and IL-12. Exp Gerontol 1999; 34: 243–252.

    CAS  PubMed  Google Scholar 

  106. Hobbs MV, Weigle WO, Ernst DN. Interleukin-10 production by splenic CD4+ cells and cell subsets from young and old mice. Cell Immunol 1994; 154: 264–272.

    CAS  PubMed  Google Scholar 

  107. Castle S, Uyemura K, Wong W, et al. Evidence of enhanced type 2 immune response and impaired upregulation of a type 1 response in frail elderly nursing home residents. Mech Ageing Dev 1997; 94: 7–16.

    CAS  PubMed  Google Scholar 

  108. Abraham GN, McCormick AM, Albright JF, Goldstein RA. Report of the Task Force on Immunology and Aging. Washington, DC: National Institute on Aging National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 1996.

    Google Scholar 

  109. Price GB, Makinodan T. Immunologic deficiencies in senescence. II. Characterization of extrinsic deficiencies. J Immunol 1972; 198: 413–417.

    Google Scholar 

  110. Paganelli R, Scala E, Rosso R, et al. A shift to Th0 cytokine production by CD4+ cells in human longevity: Studies on two healthy centenarians. Eur J Immunol 1996; 26: 2030–2034.

    CAS  PubMed  Google Scholar 

  111. Frasca D, Pucci S, Goso C, et al. Regulation of cytokine production in aging: Use of recombinant cytokines to upregulate mitogen-stimulated spleen cells. Mech Ageing Dev 1997; 93: 157–169.

    CAS  PubMed  Google Scholar 

  112. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    CAS  PubMed  Google Scholar 

  113. Sozzani S, Allavena P, Vecchi A, Mantovani A. The role of chemokines in the regulation of dendritic cell trafficking. J Leukoc Biol 1999; 66: 1–9.

    CAS  PubMed  Google Scholar 

  114. Kamath AT, Pooley J, O’Keeffe MA, et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 2000; 165: 6762–6770.

    CAS  PubMed  Google Scholar 

  115. Henri S, Vremec D, Kamath A, et al. The dendritic cell populations of mouse lymph nodes. J Immunol 2001; 167: 741–748.

    CAS  PubMed  Google Scholar 

  116. Bottomly K. T cells and dendritic cells get intimate. Science 1999; 283: 1124–1125.

    CAS  PubMed  Google Scholar 

  117. Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8a+ and CD8a-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587–592.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96: 1036–1039.

    CAS  PubMed  Google Scholar 

  119. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999; 283: 1183–1187.

    CAS  PubMed  Google Scholar 

  120. Maldonado-Lopez R, Maliszewski C, Urbain J, Moser M. Cytokines regulate the capacity of CD8a+ and CD8a-dendritic cells to prime Thl/Th2 cells in vivo. J Immunol 2001; 167: 4345–4350.

    CAS  PubMed  Google Scholar 

  121. MacDonald AS, Straw AD, Bauman B, Pearce EJ. CD8- dendritic cell activation status plays an integral role in influencing Th2 response development. J Immunol 2001; 167: 1982–1988.

    CAS  PubMed  Google Scholar 

  122. MacDonald AS, Pearce EJ. Cutting edge: Polarized Th cell response induction by transferred antigen-pulsed dendritic cells is dependent on IL-4 or IL-12 production by recipient cells. J Immunol 2002; 168: 3127–3130.

    CAS  PubMed  Google Scholar 

  123. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    CAS  PubMed  Google Scholar 

  124. Pulendran B, Maraskovsky E, Banchereau J, Maliszewski C. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol. 2001; 22: 41–47.

    CAS  PubMed  Google Scholar 

  125. Aste-Amezaga M, Ma X, Sartori A, Trinchieri G, Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J Immunol 1998; 160: 5936–5944.

    CAS  PubMed  Google Scholar 

  126. Rengarajan J, Tang B, Glimcher LH. NFATc2 and NFATc3 regulate Th2 differentiation and modulate TCR-responsiveness of naïve Th cells. Nature Immunol 2002; 3: 48–54.

    CAS  Google Scholar 

  127. Porter CM, Clipstone NA. Substained NFAT signaling promotes a Thl-like pattern of gene expression in primary murine CD4+ T cells. J Immunol 2002; 168: 4936–4945.

    CAS  PubMed  Google Scholar 

  128. Brogdon JL, Leitenberg D, Bottomly K. The potency of TCR signaling differentially regulates NFATc/p activity and early IL-4 transcription in naïve CD4+ T cells. J Immunol 2002; 168: 3825–3832.

    CAS  PubMed  Google Scholar 

  129. Skapenko A, Lipsky P, Kraetsch H-G, et al. Antigen-independent Th2 cell differentiation by stimulation of CD28: Regulation via IL-4 gene expression and mitogen-activated protein kinase activation. J Immunol 2001; 166: 4283–4292.

    CAS  PubMed  Google Scholar 

  130. Kalinski P, Hilkens CMU, Wierenga EA, Kapsenberg ML. T-cell priming by type 1 and type 2 polarized dendritic cells: The concept of a third signal. Immunol Today 1999; 20: 561–567.

    CAS  PubMed  Google Scholar 

  131. Anderson CF, Mosser DM. Cutting edge: Biasing immune responses by directing antigen to macrophage Fey receptors. J Immunol 2002; 168: 3697–3701.

    CAS  PubMed  Google Scholar 

  132. Shinitzky M, Inbar M. Difference in microviscosity induced by different cholesterol levels in the surface membrane and lipid layer of normal lymphocytes and malignant lymphoma cells. J Mol Biol 1974; 85: 603–611.

    CAS  PubMed  Google Scholar 

  133. Van Blitterswijk WJ, Emmelot P, Hilkmann HAM, et al. Differences in lipid fluidity among isolated plasma membranes of normal and leukemic lymphocytes and membranes exfoliated from their cell surface. Biochim Biophys Acta 1997; 467: 309–315.

    Google Scholar 

  134. Rivnay B, Bergman S, Shinitzky M, Globerson A. Correlations between membrane viscosity, serum cholesterol, lymphocyte activation and aging in man. Mech Ageing Dev 1980; 12; 119–126.

    CAS  PubMed  Google Scholar 

  135. Rivnay B, Orbital-Harel T, Shinitzky M, Globerson A. Enhancement of the response of ageing mouse lymphocytes by in vitro treatment with lecithin. Mech Ageing Dev 1983; 23: 329–336.

    CAS  PubMed  Google Scholar 

  136. Rabinowich H, Lyte M, Steiner Z, et al. Augmentation of mitogen responsiveness in the aged by a special lipid diet AL 721. Mech Ageing Dev 1987; 40: 131–138.

    CAS  PubMed  Google Scholar 

  137. Woda BA, Yguerabide J, Feldman JD. Mobility and density of Ag B, “Ia,” and Fc receptors on the surface of lymphocytes from young and old rats. J. Immunol. 1979; 123: 2161–2167.

    CAS  PubMed  Google Scholar 

  138. Gilman SC, Woda BA, Feldman JD. T lymphocytes of young and aged rats. I. Distribution, density, and capping of T antigens. J Immunol 1981; 127: 149–153.

    CAS  PubMed  Google Scholar 

  139. Gerosa F, Baldani-Guerra B, Nisii, et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002; 195: 327–333.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Piccioli D, Sbrana S, Melandri E, Valiante, NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 2002; 195: 335–341.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Ferlazzo G, Tsang ML, Moretta L, et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp 30 receptor by activated NK cells. J Exp Med 2002; 195: 343–351.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994; 76: 241–251.

    CAS  PubMed  Google Scholar 

  143. Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Sem Immunol 2000; 12: 23–34.

    CAS  Google Scholar 

  144. Simmons K, Toomre D. Lipid rafts and signal transduction. Nature Rev 2000; 1: 31–39.

    Google Scholar 

  145. Kropshofer H, Spindeldreher S, Rohn TA, et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC Class II complexes. Nature Immunol 2002; 3: 61–68.

    CAS  Google Scholar 

  146. Monks CRF, Freiberg BA, Kupfer H, et al. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395: 82–85.

    CAS  PubMed  Google Scholar 

  147. Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: A molecular machine controlling T cell activation. Science 1999; 285: 221–227.

    CAS  PubMed  Google Scholar 

  148. Krummel MF, Sjaastad MD, Wulfing C, Davis MM. Differential clustering of CD4 and CD34 during T cell recognition. Science 2000; 289: 1349–1352.

    CAS  PubMed  Google Scholar 

  149. Lee K-H, Holdorf AD, Dustin ML, et al. T cell receptor signaling precedes immunological synapse formation. Science 2002; 295: 1539–1542.

    CAS  PubMed  Google Scholar 

  150. Ingulli E, Mondino A, Khoruts A, Jenkins MK. In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J Exp Med 1997; 185: 2133–2141.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Stoll S, Delon J, Brotz TM, Germain RN. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 2002; 296: 1873–1876.

    PubMed  Google Scholar 

  152. Norbury CC, Malide D, Gibbs JS, et al. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nature Immunol 2002; 3: 265–271.

    CAS  Google Scholar 

  153. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999; 283: 680–682.

    CAS  PubMed  Google Scholar 

  154. Holdorf AD, Lee K-H, Burack WR, et al. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunol 2002; 3: 259–264.

    CAS  Google Scholar 

  155. Huang J-F, Young Y, Sepulveda H, et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 1999; 286: 952–954.

    CAS  PubMed  Google Scholar 

  156. Hwang I, Huang J-F, Kishimoto H, et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J Exp Med 2000; 191: 1137–1145.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Hudrisier D, Riond J, Mazarguil H, et al. Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol 2001; 166: 3645–3649.

    CAS  PubMed  Google Scholar 

  158. Kedl RM, Schaefer BC, Kappler JW, Marrack P. T cells down-modulate peptideMHC complexes on APCs in vivo. Nature Immunol 2002; 3: 27–32.

    CAS  Google Scholar 

  159. Lanzavecchia A. Lack of fair play in the T cell response. Nature Immunol 2002; 3: 9–10.

    CAS  Google Scholar 

  160. Schwab R, Szabo P, Manavalan JS, et al. Expanded CD4+ and CD8+ T cell clones in elderly humans. J Immunol 1997; 158: 4493–4498.

    CAS  PubMed  Google Scholar 

  161. Modley RL, Koker MM, Miller RA. Idiosyncratic alterations of TCR size distributions affecting both CD4 and CD8 T cell subsets in aging mice. Cell Immunol 1998; 189: 10–17.

    Google Scholar 

  162. Mariani E, Meneghetti A, Neri S, et al. Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 2002; 32: 1524–1529.

    CAS  PubMed  Google Scholar 

  163. Marmor MD, Julius M. Role for lipid rafts in regulating interleukin-2 receptor signaling. Blood 2001; 98: 1489–1497.

    CAS  PubMed  Google Scholar 

  164. Bining N, Miller RA. Cytokine production by subsets of CD4 memory T cells differing in P-glycoprotein expression: Effects of aging. J. Gerontol A Biol Sci Med Sci 1997; 52: B137 - B145.

    CAS  PubMed  Google Scholar 

  165. Kubin M, Kamoun M, Trinchieri G. Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med 1994; 180: 211–222.

    CAS  PubMed  Google Scholar 

  166. Buelens C, Verhasselt V, De Groote D, et al. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by IL-10. Eur J Immunol 1997; 27: 1848–1852.

    CAS  PubMed  Google Scholar 

  167. O’Farrell A-M, Liu Y, Moore KW, Mui AL-F. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: Evidence for Stat 3-dependent and -independent pathways. EMBO J 1998; 17: 1006–1018.

    PubMed  Google Scholar 

  168. Skeen MJ, Miller MA, Shinnick TM, Ziegler HK. Regulation of murine macrophage IL-12 production. J Immunol 1996; 156: 1196–1206.

    CAS  PubMed  Google Scholar 

  169. Fleming SD, Leenen PJ, Freed JH, Campbell PA. Surface interleukin-10 inhibits listericidal activity by primary macrophages. J Leukoc Biol 1999; 66: 961–967.

    CAS  PubMed  Google Scholar 

  170. Lung TL, Saurwein-Teissl M, Parson W, et al. Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 2000; 18: 1606–1612.

    CAS  PubMed  Google Scholar 

  171. Kupfer H, Monks CR, Kupfer A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med 1994; 179: 1507–1516.

    CAS  PubMed  Google Scholar 

  172. Poo WJ, Conrad L, Janeway CA Jr. Receptor-directed focusing of lymphokine release by helper T cells. Nature 1988; 332: 378–381.

    CAS  PubMed  Google Scholar 

  173. Reichert P, Reinhardt RL, Ingulli E, Jenkins MK. Cutting edge: In vivo identification of TCR redistribution and polarized IL-2 production by naïve CD4 T cells. J Immunol 2001; 166: 4278–4281.

    CAS  PubMed  Google Scholar 

  174. Jenkins MK, Taylor PS, Norton SO, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991; 147: 2461–2466.

    CAS  PubMed  Google Scholar 

  175. Wulfing C, Davis MM. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 1998; 282: 2266–2269.

    CAS  PubMed  Google Scholar 

  176. Kirk CJ, Freilich AM, Miller RA. Age-related decline in activation of JNK by TCR-and CD28-mediated signals in murine T lymphocytes. Cell Immunol 1999; 197: 75–82.

    CAS  PubMed  Google Scholar 

  177. Vallejo AN, Nestel AR, Schirmer M, et al. Aging-related deficiency of CD28 expression in CD4+ T cells is associated with the loss of gene-specific nuclear factor binding activity. J Biol Chem 1998; 273: 8119–8129.

    CAS  PubMed  Google Scholar 

  178. Effros RB. Costimulatory mechanisms in the elderly. Vaccine 2000; 18: 1661–1665.

    CAS  PubMed  Google Scholar 

  179. Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 1993; 23: 2375–2380.

    CAS  PubMed  Google Scholar 

  180. O’Mahony L, Holland J, Jackson J, et al. Quantitative intracellular cytokine measurement: Age-related changes in proinflammatory cytokine production. Clin Exp Immunol 1998; 113: 213–219.

    PubMed Central  PubMed  Google Scholar 

  181. Vallejo AN, Weyand CM, Goronzy JJ. Functional disruption of the CD28 gene transcriptional initiator in senescent cells. J Biol Chem 2001; 276: 2565–2570.

    CAS  PubMed  Google Scholar 

  182. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ. Down-regulation of CD28 expression by TNF-a. J Immunol 2001; 167: 3231–3238.

    CAS  PubMed  Google Scholar 

  183. Engwerda CR, Fox BS, Handwerger BS. Cytokine production by T lymphocytes from young and aged mice. J Immunol 1996; 156: 3621–3630.

    CAS  PubMed  Google Scholar 

  184. Sansoni P, Fagnoni F, Vescovini R, et al. T lymphocyte proliferative capability to defined stimuli and costimulatory CD28 pathway is not impaired in healthy centenarians. Mech Ageing Dev 1997; 96: 127–136.

    CAS  PubMed  Google Scholar 

  185. Miller RA, Garcia G, Kirk CJ, Witkowski JM. Early activation defects in T lymphocytes from aged mice. Immunol Rev 1997; 160: 79–90.

    CAS  PubMed  Google Scholar 

  186. Miller RA. Effect of aging on T lymphocyte activation. Vaccine 2000; 18: 1654–1660.

    CAS  PubMed  Google Scholar 

  187. Garcia GG, Miller RA. Single-cell analyses reveal two defects in peptide-specific activation of naïve T cells from aged mice. J Immunol 2001; 166: 3151–3157.

    CAS  PubMed  Google Scholar 

  188. Feske S, Drager R, Peter H, et al. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J Immunol 2000; 165: 297–204.

    CAS  PubMed  Google Scholar 

  189. Beals CR, Sheridan CM, Turck CW, et al. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 1997; 275: 1930–1933.

    CAS  PubMed  Google Scholar 

  190. Zitvogel L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 2002; 195: F9 - F14.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293: 253–256.

    CAS  PubMed  Google Scholar 

  192. De Jong EC, Vireira PL, Kalinski P, et al. Microbial compounds selectively induce Thl cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals. J Immunol 2002; 168: 1704–1709.

    PubMed  Google Scholar 

  193. Aman MJ, Ravichandran KS. A requirement for lipid rafts in B cell receptor induced Cat+ flux. Curr Biol 2000; 10: 393–396.

    CAS  PubMed  Google Scholar 

  194. Cheng PC, Brown BK, Song W, Pierce SK. Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling. J Immunol 2001; 166: 3693–3701.

    CAS  PubMed  Google Scholar 

  195. MacLennan ICM. Germinal centers. Annu Rev Immunol 1994; 12: 117–139.

    CAS  PubMed  Google Scholar 

  196. Kelsoe G. The germinal center: A crucible for lymphocyte selection. Sem Immunol 1996; 8: 179–184.

    CAS  Google Scholar 

  197. Camacho SA, Kosco-Vibois MH, Berek C. The dynamic structure of the germinal center. Immunol Today 1998; 19: 511–514.

    CAS  PubMed  Google Scholar 

  198. Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science 1999; 286: 2098–2102.

    CAS  PubMed  Google Scholar 

  199. De Togni P, Goellner J, Ruddle NH, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994; 264: 703–706.

    PubMed  Google Scholar 

  200. Matsumoto M, Mariathasan S, Nahm MH, et al. Role of lymphotoxin and the type 1 TNF receptor in the formation of germinal centers. Science 1996; 271: 1289–1291.

    CAS  PubMed  Google Scholar 

  201. Koni PA, Sacca R, Lawton P, et al. Distinct roles in lymphoid organogenesis for lymphotoxins a and ß revealed in lymphotoxin n-deficient mice. Immunity 1997; 6: 491–499.

    CAS  PubMed  Google Scholar 

  202. Rennert PD, Browning JL, Mebius R, et al. Surface lymphotoxin a/(3 complex is required for the development of peripheral lymphoid organs. J Exp Med 1996; 184: 1999–2006.

    CAS  PubMed  Google Scholar 

  203. Fu YX, Molina H, Matsumoto M, et al. Lymphotoxin-a supports development of splenic follicular structure that is required for IgG responses. J Exp Med 1997; 185: 2111–2120.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Forster R, Mattis AE, Kremmer E, et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87: 1037–1044.

    CAS  PubMed  Google Scholar 

  205. Fu Y-X, Chaplin DD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 1999; 17: 399–433.

    CAS  PubMed  Google Scholar 

  206. Luther SA, Bidgol A, Hargreaves DC, et al. Differing activities of homeostatic chemokines CCL 19, CCL 21 and CXCL 12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002; 169: 424–433.

    CAS  PubMed  Google Scholar 

  207. Yu P, Wang Y, Chin RK, et al. B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxindependent fashion. J Immunol 2002; 168: 5117–5123.

    CAS  PubMed  Google Scholar 

  208. Saeki H, Wu MT, Olasz E, Hwang ST. A migratory population of skin-derived dendritic cells expresses CXCR 5, responds to B lymphocyte chemoattractants in vitro, and co-localizes to B cell zones in lymph nodes in vivo. Eur J Immunol 2000; 30: 2808–2814.

    CAS  PubMed  Google Scholar 

  209. Lappin MB, Weiss JM, Delattre V, et al. Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 1999; 98: 181–190.

    CAS  PubMed  Google Scholar 

  210. Wu M-T, Hwang ST. CXCR-transduced bone marrow-derived dendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses. J Immunol 2002; 168: 5096–5102.

    CAS  PubMed  Google Scholar 

  211. Gunn MD, Ngo VN, Ansel KM, et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’ s lymphoma receptor-1. Nature 1998; 391: 799–802.

    CAS  PubMed  Google Scholar 

  212. Martinez-Pomares L, Kosco-Vilbois M, Darley E, et al. Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med 1996; 184: 1927–1937.

    CAS  PubMed  Google Scholar 

  213. Randolph DA, Huang G, Carruthers CJL, et al. The role of CCR 7 in Thl and Th2 cell localization and delivery of B cell help in vivo. Science 1999; 286: 2159–2162.

    CAS  PubMed  Google Scholar 

  214. Hibi T, Dosch HM. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur. J. Immunol. 1986; 16: 139–145.

    CAS  PubMed  Google Scholar 

  215. Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol 1999; 162: 3342–3349.

    CAS  PubMed  Google Scholar 

  216. Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity 1998; 8: 363–372.

    CAS  PubMed  Google Scholar 

  217. Benner R, Hijmans W, Haaijman JJ. The bone marrow: The major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin Exp Immunol 1981; 46: 1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Haaijman JJ, Henrica R, Schuit E, Hijmans W. Immunoglobulin-containing cells in different lymphoid organs of the CBA mouse during its life-span. Immunology 1977; 32: 427–434.

    CAS  PubMed  Google Scholar 

  219. Zhang X, Li L, Jung J, et al. The distinct roles of T cell-derived cytokines and a novel follicular dendritic cell signaling molecule 8D6 in germinal center B cell differentiation. J Immunol 2001; 167: 49–56.

    CAS  PubMed  Google Scholar 

  220. Nagumo H, Agematsu K, Shinozaki K, et al. CD27/CD70 interaction augments Ig E secretion by promoting the differentiation of memory B cells into plasma cells. J Immunol 1998; 161: 6496–6502.

    CAS  Google Scholar 

  221. Agematsu K, Nagumo H, Oguchi Y, et al. Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD 27/CD70 interaction. Blood 1998; 91: 173–180.

    CAS  PubMed  Google Scholar 

  222. Raman VS, Bal V, Rath S, George A. Ligation of CD 27 on murine B cells responding to T-dependent and T-independent stimuli inhibits the generation of plasma cells. J Immunol 2000; 165: 6809–6815.

    CAS  PubMed  Google Scholar 

  223. Lentz VM, Manser T. Cutting edge: Germinal centers can be induced in the absence of T cells. J Immunol 2001; 167: 15–20.

    CAS  PubMed  Google Scholar 

  224. Koni PA, Flavell RA. Lymph node germinal centers form in the absence of follicular dendritic cell networks. J Exp Med 1999; 189: 855–864.

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Kroese FGM, Wubbena AS, Nieuwenhuis P. Germinal center formation and follicular antigen trapping in the spleen of lethally X-irradiated and reconstituted rats. Immunology 1986; 57: 99–104.

    CAS  PubMed  Google Scholar 

  226. Ben-Yehuda A, Szabo P, Le Maoult J, et al. Increased VH 11 and VH Q52 gene use by splenic B cells in old mice associated with oligoclonal expansions of CD5+ B cells. Mech Ageing Dev 1998; 103: 111–121.

    CAS  PubMed  Google Scholar 

  227. Le Maoult J, Manavalan JS, Dyall R, et al. Cellular basis of B cell clonal populations in old mice. J. Immunol. 1999; 162: 6384–6391.

    Google Scholar 

  228. Klinman NR, Kline GH. The B-cell biology of aging. Immunol Rev 1997; 160: 103–114.

    CAS  PubMed  Google Scholar 

  229. Riley SC, Froscher BG, Linton PJ, et al. Altered VH gene segment utilization in the response to phosphorylcholine of aged mice. J Immunol 1989; 143: 3798–3805.

    CAS  PubMed  Google Scholar 

  230. Nicoletti C, Borghesi-Nicoletti C, Young X, et al. Repertoire diversity of antibody response to bacterial antigens in aged mice. II. Phosphorylcholine-antibody in young and aged mice differ in both VH/VL gene repertoire and in specificity. J Immunol 1991; 147: 2750–2755.

    CAS  PubMed  Google Scholar 

  231. Nicoletti C, Yang X, Cerny J. Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae. J Immunol 1993; 150: 543–549.

    CAS  PubMed  Google Scholar 

  232. Riley RL, Kruger MG, Elia J. B cell precursors are decreased in senescent BALB/ c mice, but retain normal mitotic activity in vivo and in vitro. Clin Immunol Immunopathol 1991; 59: 301–313.

    CAS  PubMed  Google Scholar 

  233. Zharhary D. Age-related changes in the capability of the bone marrow to generate B cells. J Immunol 1998; 141: 1863–1869.

    Google Scholar 

  234. Stephan RP, Sanders VM, Witte PL. Stage specific alterations in murine B-lymphopoiesis with age. Int Immunol 1996; 8: 509–518.

    CAS  PubMed  Google Scholar 

  235. Hardy RR, Carmack CE, Shinton SA, et al. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 1991; 173: 1213–1225.

    CAS  PubMed  Google Scholar 

  236. Johnson SA, Rozzo SJ, Cambier JC. Aging-dependent exclusion of antigen-inexperienced cells from the peripheral B cell repertoire. J Immunol 2002; 168: 5014–5023.

    CAS  PubMed  Google Scholar 

  237. Martin F, Kearney JF. B cell subsets and the mature preimmune repertoire: Marginal zone and B1 B cells as part of a “natural immune memory. ” Immunol Rev 2000; 175: 70–79.

    CAS  PubMed  Google Scholar 

  238. Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev 1997; 160: 63–77.

    CAS  PubMed  Google Scholar 

  239. Szakal AK, Taylor JK, Smith JP, et al. Kinetics of germinal center development in lymph nodes of young and aging immune mice. Anat Rec 1990; 227: 475–485.

    CAS  PubMed  Google Scholar 

  240. Kosco MH, Burton GF, Kapasi ZF, et al. Antibody-forming cell induction during an early phase of germinal center development and its delay with aging. Immunology 1989; 68: 312–318.

    CAS  PubMed  Google Scholar 

  241. Tew JG, Phipps RP, Mandel TE. The maintenance and regulation of the humoral immune response: Persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunol Rev 1980; 54: 175–201.

    Google Scholar 

  242. Szakal AK, Kosco MH, Tew JG. A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-presenting cells. J Immunol 1988; 140: 341–353.

    CAS  PubMed  Google Scholar 

  243. Szakal AK, Taylor JK, Smith JP, et al. Morphometry and kinetics of antigen transport and developing antigen retaining reticulum of follicular dendritic cells in lymph nodes of aging immune mice. Aging Immunol Infect Dis 1: 7–22.

    Google Scholar 

  244. Miller C, Kelsoe G. Ig VH hypermutation is absent in the germinal centers of aged mice. J Immunol 1995; 155: 3377–3384.

    CAS  PubMed  Google Scholar 

  245. Engwerda CR, Handwerger BS, Fox BS. Aged T cells are hyperresponsive to co-stimulation mediated by CD 28. J Immunol 1994; 152: 3740–3747.

    CAS  PubMed  Google Scholar 

  246. Harrison D, Astle C, Stone M. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol 1989; 142: 3833–3840.

    CAS  PubMed  Google Scholar 

  247. Morrison SJ, Wandycz AM, Akashi K, et al. The aging of hematopoietic stem cells. Nature Med 1996; 2: 1011–1016.

    CAS  PubMed  Google Scholar 

  248. Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunity, 2nd ed. New York: Academic, 1994.

    Google Scholar 

  249. Szewczuk MR, Campbell RJ, Jung LK. Lack of age-associated immune dysfunction in mucosal-associated lymph nodes. J Immunol 1981; 126: 2200–2204.

    CAS  PubMed  Google Scholar 

  250. Schmucker DL, Daniels CK, Wang RK, Smith K. Mucosal immune response to cholera toxin in ageing rats. I. Antibody and antibody-containing cell response. Immunology 1988; 64: 691–695.

    CAS  PubMed  Google Scholar 

  251. Ebersole JL, Steffen MJ. Aging effects on secretory IgA immune responses. Immunol Invest 1989; 18: 59–68.

    CAS  PubMed  Google Scholar 

  252. Humphreys NE, Grencis RK. Effects of ageing on the immunoregulation of parasitic infection. Infect Immun 2002; 70: 5148–5157.

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Albright JW, Albright JF. The decline of immunological resistance of aging mice to Trypanosoma musculi. Mech Ageing Dev 1982; 20: 315–330.

    CAS  PubMed  Google Scholar 

  254. Macpherson AJ, Gatto D, Sainsbury E, et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288: 2222–2226.

    CAS  PubMed  Google Scholar 

  255. Faragasan S, Honjo T. T-independent immune response: New aspects of B cell biology. Science 2000; 290: 89–92.

    Google Scholar 

  256. Shimoda M, Inoue Y, Azuma N, Kanno C. Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer’s patches. Immunology 1999; 97: 9–17.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Albright, J.F., Albright, J.W. (2003). Aging of Adaptive/Acquired Immunity. In: Aging, Immunity, and Infection. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-402-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-402-3_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9787-8

  • Online ISBN: 978-1-59259-402-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics