Skip to main content

Cell Cycle Regulators as Targets of Anticancer Therapy

  • Chapter
Cell Cycle Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 148 Accesses

Abstract

In recent years, dramatic progress has been made in our understanding of the cell cycle regulation and signal transduction, thus facilitating the development of mechanism-based therapeutics. Compounds are becoming available that target almost every key regulator that governs the entry into S phase and mitosis: from growth factors to cyclin-dependent kinases. Given the increasing number of experimental therapeutic compounds, I will limit the discussion to those therapeutic agents that are undergoing at least Phase I clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agami R, Bernards R. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 2000; 102: 55–66.

    Article  PubMed  CAS  Google Scholar 

  2. Koepp DM, Harper JW, Elledge SJ. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 1999; 97: 431–434.

    Article  PubMed  CAS  Google Scholar 

  3. Shen CJ. The Pezcoller lecture: cancer cell cycle revisited. Cancer Res 2000; 60: 3689–3695.

    Google Scholar 

  4. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of Gl-phase progression. Genes Dey 1999; 13: 1501–1512.

    Article  CAS  Google Scholar 

  5. Pardee AB. A restriction point for control of normal animal cell proliferation. ProcNatlAcad Sci USA 1974; 71: 1286–1290.

    Article  CAS  Google Scholar 

  6. Hunter T. Oncoprotein networks. Cell 1997; 88: 333–346.

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Sherr CJ. Cancer cell cycles. Science 1999; 274: 1672–1677.

    Article  Google Scholar 

  9. Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ. Induction of cyclin D1 overexpression by activated ras. Oncogene 1994; 9: 3627–3633.

    PubMed  CAS  Google Scholar 

  10. Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol 1997; 17: 3850–3857.

    PubMed  CAS  Google Scholar 

  11. Winston JT, Coats SR, Wang YZ, Pledger WJ. Regulation of the cell cycle machinery by oncogenic ras. Oncogene 1996; 12: 127–134.

    PubMed  CAS  Google Scholar 

  12. Surmacz E, Reiss K, Sell C, Baserga R. Cyclin D1 messenger RNA is inducible by platelet-derived growth factor in cultured fibroblasts. Cancer Res 1992; 52: 4522–4525.

    PubMed  CAS  Google Scholar 

  13. Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dey 1997; 11: 957–972.

    Article  CAS  Google Scholar 

  14. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin DI proteolysis and subcellular localization. Genes Dey 1998; 12: 3499–3511.

    Article  CAS  Google Scholar 

  15. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 1998; 95: 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  16. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    Article  PubMed  CAS  Google Scholar 

  17. Marais R, Light Y, Mason C, Paterson H, Olson MF, Marshall CJ. Requirement of Ras GTPRaf complexes for activation of Raf-1 by protein kinase C. Science 1998; 280: 109–112.

    Article  PubMed  CAS  Google Scholar 

  18. LaRocca RV, Cooper MR, Uhrich M, Danesi R, Walther MM, Linehan WM, Myers CE. Use of suramin in treatment of prostatic carcinoma refractory to conventional hormonal manipulation. Urol Clin North Am 1991; 18: 123–129.

    CAS  Google Scholar 

  19. Small EJ, Meyer M, Marshall ME, Reyno LM, Meyers FJ, Natale RB, et al. Suramin therapy for patients with symptomatic hormone refractory prostate cancer: results of a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J Clin Oncol 2000; 18: 1440–1450.

    PubMed  CAS  Google Scholar 

  20. Gradishar WJ, Soff G, Liu J, Cisneros A, French S, Rademaker A, et al. A pilot trial of suramin in metastatic breast cancer to assess antiangiogenic activity in individual patients. Oncology 2000; 58: 324–333.

    Article  PubMed  CAS  Google Scholar 

  21. Baselga J, Tripathy D, Mendelsohn J, Baugman S, Benz CC, Dantis L, et al. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol 1999; 26: 78–83.

    PubMed  CAS  Google Scholar 

  22. Fan Z, Mendelsohn J. Therapeutic application of anti-growth factor receptors antibodies. Carr Opin Oncol 1998; 10: 67–73.

    Article  CAS  Google Scholar 

  23. Goldenberg MM. Trastuzumab, a recommbinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 1999; 21: 309–318.

    Article  PubMed  CAS  Google Scholar 

  24. Burris HA. Docetaxel (Taxotere) in HER-2-positive patients and in combination with trastuzumab (Herceptin). Semin Oncol 2000; 27 (2 Suppl 3): 19–23.

    PubMed  CAS  Google Scholar 

  25. Ewer MS, Gibbs HR, Swafford J, Benjamin RS. Cardiotoxicity in patients receiving transtuzumab (Herceptin): primary toxicity, synergistic or sequential stress, or surveillance artifact? Semin Oncol 1999; 26: 96–101.

    PubMed  CAS  Google Scholar 

  26. Mandler R, Wu C, Sausville EA, Roettinger AJ, Newman DJ, Ho DK, et al. Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines. J Natl Cancer Inst 2000; 92: 1573–1581.

    Article  PubMed  CAS  Google Scholar 

  27. Mendelsohn J. Use of an antibody to target geldanamycin. J Natl Cancer Inst 2000; 92: 1549–1551.

    Article  PubMed  CAS  Google Scholar 

  28. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992; 52: 3213–3219.

    PubMed  CAS  Google Scholar 

  29. Gibbs JB. Mechanism-based target identification and drug discovery in cancer. Science 2000; 287: 1969–1973.

    Article  PubMed  CAS  Google Scholar 

  30. Eckhardt SG, Rizzo J, Sweeney KR, Cropp G, Baker SD, Kraynak MA, et al. Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J Clin Oncol 1999; 17: 1095–1104.

    PubMed  CAS  Google Scholar 

  31. Fry DW. Inhibition of the epidermal growth factor receptor family of tyrosine kinases as an approach to cancer chemotherapy: progression from reversible to irreversible inhibitors. Pharmacol Ther 1999; 82: 207–218.

    Article  PubMed  CAS  Google Scholar 

  32. Moyer JD, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997; 57: 4838–4848.

    PubMed  CAS  Google Scholar 

  33. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 2000; 6: 2053–2063.

    PubMed  CAS  Google Scholar 

  34. Song SY, Meszoely IM, Coffey RI, Pietenpol JA, Leach SD. K-Ras-independent effects of the farnesyl transferase inhibitor L-744,832 on cyclin B1/Cdc2 kinase activity, G2/M cell cycle progression and apoptosis in human pancreatic ductal adenocarcinoma cells. Neoplasia 2000; 2: 261–272.

    Article  PubMed  CAS  Google Scholar 

  35. Blagosklonny MV. Cell death beyond apoptosis. Leukemia 2000; 14: 1502–1508.

    Article  PubMed  CAS  Google Scholar 

  36. Fadeel B, Orrenius S, Zhivotovsky B. The most unkindest cut of all: on the multiple roles of mammalian caspases. Leukemia 2000; 14: 1514–1525.

    Article  PubMed  CAS  Google Scholar 

  37. Omer CA, Chen Z, Diehl RE, Conner MW, Chen HY, Trumbauer ME, et al. Mouse mammary tumor virus-Ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res 2000; 60: 2680–2688.

    PubMed  CAS  Google Scholar 

  38. Feldkamp MM, Lau N, Guha A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti angiogenic effects. Oncogene 1999; 18: 7514–7526.

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki N, Urano J, Tamanoi F. Farnesyltransferase inhibitors induce cytochrome c release and caspase 3 activation preferentially in transformed cells. Proc Natl Acad Sci USA 1998; 95: 15356–15361.

    Article  PubMed  CAS  Google Scholar 

  40. Oliff A. Farnesyltranssferase inhibitors: targeting the molecular basis of cancer. Biochim Biophys Acta 1999; 1423: 019 - C30.

    Google Scholar 

  41. Ferrante K, Winograd B, Canetta R. Promising new developments in cancer chemotherapy. Cancer Chemother Pharmacol 1999; 43: 61–68.

    Article  Google Scholar 

  42. Adjei AA, Erlichman C, Davis JN, Cutler DL, Sloan JA, Marks RS, et al. A Phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000; 60: 1871–1877.

    PubMed  CAS  Google Scholar 

  43. Sun J, Blaskovich MA, Knowles D, Qian Y, Ohkanda J, Bailey RD, et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res 1999; 59: 4919–4926.

    PubMed  CAS  Google Scholar 

  44. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 1999; 18: 813–822.

    Article  PubMed  CAS  Google Scholar 

  45. Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 1999; 5: 810–816.

    Article  PubMed  CAS  Google Scholar 

  46. Dudley DT, Pang SJ, Decker AJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogenactivated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–7689.

    Article  PubMed  CAS  Google Scholar 

  47. Busse D, Doughty RS, Ramsey TT, Russell WE, Price JO, Flanagan WM, et al. Reversible GI arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27KIP1 independent of MAPK activity. J Biol Chem 2000; 275: 6987–6995.

    Article  PubMed  CAS  Google Scholar 

  48. Blagosklonny MV, Bishop PC, Robey R, Fojo T, Bates S. Loss of cell cycle control allows for selective microtubule drug-induced Bd-2 phosphorylation and cytotoxicity in highly autonomous cancer cells. Cancer Res 2000; 60: 3425–3428.

    PubMed  CAS  Google Scholar 

  49. Sokal E, Baccarani M, Russo B, et al. Staging and prognosis in chronic myelogenous leukemia. Semin Hematol 1988; 25: 19–61.

    Google Scholar 

  50. Shtivelman EB, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogennnnous leukemia. Nature 1985; 315: 550–554.

    Article  PubMed  CAS  Google Scholar 

  51. Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genet 2000; 24: 57–60.

    Article  PubMed  CAS  Google Scholar 

  52. Winter SS, Greene JM, McConnell TS, Willman CL. Pre-B acute lymphoblastic leukemia with b3a2 (p210) and ela2 (p190) BCR-ABL fusion transcripts relapsing as chronic myelogenous leukemia with a less differentiated b3a2 (p210) clone. Leukemia 1999; 13: 2007–2011.

    Article  PubMed  CAS  Google Scholar 

  53. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS, et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86: 1148–1158.

    PubMed  CAS  Google Scholar 

  54. Druker BJ, Tamura S, Buchdunger E, Ohno S, Gegal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med 1996; 2: 561–566.

    Article  PubMed  CAS  Google Scholar 

  55. Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR. Bel 2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with upregulation of Bcl-xL. Oncogene 1998; 16: 1383–1390.

    Article  PubMed  CAS  Google Scholar 

  56. Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 1998; 91: 1700–1705.

    PubMed  CAS  Google Scholar 

  57. Dan S, Naito M, Tsuruo T. Selective induction of apoptosis in Philadelphia chromosome positive chronic myelogenous leukemia cells by an inhibitor of BCR–ABL tyrosine kinase, CGP 57148. Cell Death Differ 1998; 5: 710–715.

    Article  PubMed  CAS  Google Scholar 

  58. Dubrez L, Eymin B, Sordet O, Droin N, Turban AG, Solary E. BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 1998; 91: 2415–2422.

    PubMed  CAS  Google Scholar 

  59. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bel xL. JExp Med 2000; 191: 977–984.

    Article  CAS  Google Scholar 

  60. Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-xL. Blood 2000; 95: 1014–1022.

    PubMed  CAS  Google Scholar 

  61. An WG, Hwang SG, Trepel JB, Blagosklonny MV. Protease inhibitor-induced apoptosis: accumulation wt p53, p21 WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000; 14: 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  62. Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    PubMed  CAS  Google Scholar 

  63. Svingen PA, Tefferi A, Kottke TJ, Kaur G, Narayanan VL, Sausville EA, Kaufmann SH. Effect of the bcr/abl kinase inhibitors AG957 and NSC 680410 on chronic myelogenous leukemia cells in vitro. Clin Cancer Res 2000; 6: 237–249.

    PubMed  CAS  Google Scholar 

  64. Dorsey JF, Jove R, Kraker AJ, Wu J. The pyrido[2,3-dlpyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Res 2000; 60: 3127–3131.

    PubMed  CAS  Google Scholar 

  65. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000; 105: 3–7.

    Article  PubMed  CAS  Google Scholar 

  66. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of HSP90 pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. PNAS 1994; 91: 8324–8328.

    Article  PubMed  CAS  Google Scholar 

  67. Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 1999; 17: 361–373.

    Article  PubMed  CAS  Google Scholar 

  68. Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, et al. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 1999; 59: 2931–2938.

    PubMed  CAS  Google Scholar 

  69. Stebbins CE, Russo AA, Schnieder C, Rosen N, Hard FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 1997; 89: 239–250.

    Article  PubMed  CAS  Google Scholar 

  70. Grenert JP, Sullivan WP, Fadden P, Haystead TAJ, Clark J, Mimnaugh E, et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997; 272: 23843–23850.

    Article  PubMed  CAS  Google Scholar 

  71. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 1999; 42: 260–266.

    Article  PubMed  CAS  Google Scholar 

  72. Blagosklonny MV, Toretskey J, Bohen S, Neckers LM. Conformation of mutated p53 requires functional HSP90. Proc Natl Acad Sci USA 1996; 93: 8379–8383.

    Article  PubMed  CAS  Google Scholar 

  73. Blagosklonny MV, Toretskey J, Neckers LM. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 1995; 11: 933–939.

    PubMed  CAS  Google Scholar 

  74. Whitesell L, Sutphin P, An WG, Schulte T, Blagosklonny MV, Neckers L. Geldanamycinstimulated destabolization of mutated p53 is mediated by the proteasome in vivo. Oncogene 1997; 14: 2809–2816.

    Article  PubMed  CAS  Google Scholar 

  75. Nagata Y, Anan T, Yoshida T, Mizukami T, Taya Y, Fujiwara T, et al. The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild type p53 function and the hsp90 association. Onco gene 1999; 18: 6037–6049.

    Article  CAS  Google Scholar 

  76. An WG, Schnur RC, Neckers LM, Blagosklonny MV. Depletion of ErbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother Pharmacol 1997; 40: 60–64.

    Article  PubMed  CAS  Google Scholar 

  77. Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17 demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998; 42: 273–279.

    Article  PubMed  CAS  Google Scholar 

  78. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  PubMed  CAS  Google Scholar 

  79. DeGregori J, Leone G, Ohtani K, Miron A, Nevins J. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dey 1995; 9: 2873–2887.

    Article  CAS  Google Scholar 

  80. Nevins JR. Toward an understanding of the functional complexity of the E2F and retinoblastoma families Cell Growth Diff 1998; 9: 585–593.

    PubMed  CAS  Google Scholar 

  81. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by pl6INK4a, TGFbeta, and contact inhibition. Cell 1999; 97: 53–61.

    Article  PubMed  CAS  Google Scholar 

  82. Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 1998; 2: 293–304.

    Article  PubMed  CAS  Google Scholar 

  83. Chen Y-NP, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K, et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad. Sci USA 1999; 96: 4325–4329.

    Article  PubMed  CAS  Google Scholar 

  84. Lees JA, Weinberg RA. Tossing monkey wrenches into the clock: new ways of treating cancer. Proc Natl Acad Sci USA 1999; 96: 4221–4223.

    Article  PubMed  CAS  Google Scholar 

  85. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK 4 in human breast carcinoma cells. Cancer Res 1996; 56: 2973–2978.

    PubMed  CAS  Google Scholar 

  86. Bible KC, Kaufmann SH. Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells. Cancer Res 1996; 56: 4856–4861.

    PubMed  CAS  Google Scholar 

  87. Carlson B, lahusen T, Singh S, Loaiza-Perez A, Worland PJ, Pestell R, et al. Downregulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 1998; 59: 4634–4641.

    Google Scholar 

  88. Li Y, Bhuiyan M, Alhasan S, Senderowitcz AM, Sarkar FH. Induction of apoptosis and inhibition of c-erbB-2 in breast cancer cells by flavopiridol. Clin Cancer Res 2000; 6: 223–229.

    PubMed  CAS  Google Scholar 

  89. Shapiro GI, Koestner DA, Matranga CB, Rollins BJ. Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin Cancer Res 1999; 5: 2925–2938.

    PubMed  CAS  Google Scholar 

  90. Schrump DS, Matthews W, Chen GA, Mixon A, Altorki NK. Flavopiridol mediates cell cycle arrest and apoptosis in esophageal cancer cells. Clin Cancer Res 1998; 2885–2890.

    Google Scholar 

  91. Li Y, Chinni SR, Senderowicz AM, Sarkar FH. Induction of growth inhibition and apoptosis in prostate cancer cells by flavopiridol. Int J Oncol 2000; 17: 755–759.

    PubMed  CAS  Google Scholar 

  92. Parker BW, Kaur G, Nieves-Neira W, Taimi M, Kohlhagen G, Shimizu T, et al. Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 1998; 91: 458–465.

    PubMed  CAS  Google Scholar 

  93. Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen FL, et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via cativation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood 1998; 92: 3804–3816.

    PubMed  CAS  Google Scholar 

  94. Achenbach T, Muller R, Slater EP. Bc1–2 independence of flavopiridol-induced apoptosis: mitochondrial depolarization in the absence of cytochrome c release. J Biol Chem 2000; 3289–3297.

    Google Scholar 

  95. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 2000; 92: 376–387.

    Article  PubMed  CAS  Google Scholar 

  96. Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N, Villalba L, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998; 16: 2986–2999.

    PubMed  CAS  Google Scholar 

  97. Stadler WM, Vogelzang NJ, Amato R, Sosman J, Taber D, Liebowitz D, Vokes EE. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study. J Clin Oncol 2000; 18: 371–375.

    PubMed  CAS  Google Scholar 

  98. Patel V, Senderowicz AM, Pinto DJ, Igishi T, Raffeld M, Quintanilla-Martinez L, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest 1998; 102: 1674–1681.

    Article  PubMed  CAS  Google Scholar 

  99. Motwani M, Delohery TM, Schwartz GK. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 1999; 5: 1876–1883.

    PubMed  CAS  Google Scholar 

  100. Bible KC, Bible RHJ, Kottke TJ, Svingen PA, Xu K, Pang YP, et al. Flavopiridol binds to duplex DNA. Cancer Res 2000; 60: 2419–2428.

    PubMed  CAS  Google Scholar 

  101. Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH, et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 1998; 281: 533–538.

    Article  PubMed  CAS  Google Scholar 

  102. Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 1999; 104: 1645–1653.

    Article  PubMed  CAS  Google Scholar 

  103. Takahashi I, Koboyashi E, Asana K, et al. UCN-01, a selective inhibitor of protein kinase C from streptomices. J Antibiot 1987; 40: 1782–1784.

    Article  PubMed  CAS  Google Scholar 

  104. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 1994; 45: 1207–1214.

    PubMed  CAS  Google Scholar 

  105. Mizuno K, Noda K, Ueda Y, Hanaki H, Saido TC, Ikuta T, et al. UCN-01, an anti-tumor drug, is a selective inhibitor of the conventional PKC subfamily FEBS Lett 1995; 359: 259–261.

    Article  PubMed  CAS  Google Scholar 

  106. Courage C, BudworthJ, Gescher A. Comparison of ability of protein kinase C inhibitors to arrest cell growth and to alter cellular protein kinase C localisation. Br J Cancer 1995; 71: 697–704.

    Article  PubMed  CAS  Google Scholar 

  107. Wang Q, Worland PJ, Clark JL, Carlson BA, Sausville EA. Apoptosis in 7 hydroxystaurosporine-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2. Cell Growth Differ 1995; 6: 927–936.

    PubMed  CAS  Google Scholar 

  108. Courage C, Bradder SM, Jones T, Schultze-Mosgau MH, Gescher A. Characterisation of novel human lung carcinoma cell lines selected for resistance to anti-neoplastic analogous of staurosporine. Int J Cancer 1997; 73: 763–768.

    Article  PubMed  CAS  Google Scholar 

  109. Yu L, Orlandi L, Wang P, On MS, Senderowicz AM, Sausville EA, et al. UCN-01 abrogates G2 arrest through a Cdc2 dependent pathway that is associated with inactivation of the Wee1Hu kinase and activation of the Cdc25C phosphatase. J Biol Chem 1998; 273: 33455–33464.

    Article  PubMed  CAS  Google Scholar 

  110. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor P, Piwnica-Worms H. The Chkl protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000; 275: 5600–5605.

    Article  PubMed  CAS  Google Scholar 

  111. Wang Q, Fan S, Eastman A, Worland PR, Sausville EA, O’Connor PM. UCN-01, a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 1996; 88: 956–965.

    Article  PubMed  CAS  Google Scholar 

  112. Akiyama T, Yoshida T, Tsujita T, Shimizu M, Mizukami T, Okabe M, Akinaga S. G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21 /Cip l/WAF 1 /Sdi l in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 1997; 57: 1495–1501.

    PubMed  CAS  Google Scholar 

  113. Mack PC, Gandara DR, Bowen C, Edelman MJ, Paglieroni T, Schnier JB, et al. RB status as a determinant of response to UCN-01 in non-small cell lung carcinoma. Clin Cancer Res 1999; 5: 2596–2604.

    PubMed  CAS  Google Scholar 

  114. Gong J, Traganos F, Darzynkiewicz Z. Staurosporine blocks cell progression through G1 between the cyclin D and cyclin E restriction points. Cancer Res 1994; 54: 3136–3139.

    CAS  Google Scholar 

  115. Chen X, Lowe M, Keyomarsi K. UCN-01-mediated G1 arrest in normal but not tumor breast cells is pRb-dependent and p53-independent. Oncogene 1999; 18: 5691–5702.

    Article  CAS  Google Scholar 

  116. Sausville EA, Lush RD, Headlee D, Smith AC, Figg WD, Arbuck SG, et al. Clinical pharmacology of UCN-01: initial observations and comparison to preclinical models. Cancer Chemother Pharmacol 1998; 42: S54 - S59.

    Article  PubMed  CAS  Google Scholar 

  117. Kruger EA, Blagosklonny MV, Dixon SC, Figg WD. UCN-01, an inhibitor of protein kinase C, selectively inhibits endothelial proliferation and angiogenic hypoxic response. Invas Metast 1998–1999; 18: 209–218.

    Google Scholar 

  118. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999; 18: 2221–2230.

    Article  PubMed  CAS  Google Scholar 

  119. Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A. An indolocarbazole inhibitors of human checkpoint kinase (Chkl) abrogates cell cycle arrest caused by DNA damage. Cancer Res 2000; 60: 566–572.

    PubMed  CAS  Google Scholar 

  120. Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChkl. Cancer Res 2000; 60: 2108–2112.

    PubMed  CAS  Google Scholar 

  121. Monks A, Harris ED, Vaigro-Wolff A, Hose CD, Connelly JW, Sausville EA. UCN-01 enhances the in vitro toxicity of clinical agents in human tumor cell lines. Invest New Drugs 2000; 18: 95–107.

    Article  PubMed  CAS  Google Scholar 

  122. Blagosklonny MV. A node between proliferation, apoptosis, and growth arrest. BioEssays 1999; 21: 704–709.

    Article  PubMed  CAS  Google Scholar 

  123. Steinman RA, Hoffman B, Iro A, Guillouf C, Liebermann DA, El-Houseini ME. Induction of p21 (WAF-1/CIP1) during differentiation. Onco gene 1994; 9: 3389–3396.

    CAS  Google Scholar 

  124. Zeng YX, El-Deiry WS. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 1996; 12: 1557–1565.

    PubMed  CAS  Google Scholar 

  125. Blagosklonny MV, Alvarez M, Fojo A, Neckers LM. Bc1–2 protein downregulation is not required for differentiation of multidrug resistant HL60 leukemia cells. Leukemia Res 1996; 20: 101–107.

    Article  CAS  Google Scholar 

  126. Powell CT, Brittis NJ, Stec D, Hug H, Heston WD, Fair WR. Persistent membrane translocation of protein kinase C alpha during 12-O-tetradecanoylphorbol-13-acetate-induced apoptosis of LNCaP human prostate cancer cells. Cell Growth Differ 1996; 7: 419–428.

    PubMed  CAS  Google Scholar 

  127. Blagosklonny MV. The mitogen-activated protein kinase pathway mediates growth arrest or El A-dependent apoptosis in SKBr3 human breast cancer cells. Int J Cancer 1998; 78: 511–517.

    Article  PubMed  CAS  Google Scholar 

  128. Blagosklonny MV, Prabhu NS, El-Deiry WS. Defects in p21WAF1/CIP1, Rb, c-myc signaling in phorbol ester-resistant cancer cells. Cancer Res 1997; 57: 320–325.

    PubMed  CAS  Google Scholar 

  129. Mitchell KO, El-Deiry WS. Overexpression of c-myc inhibits p21WAF1/CIP1 expression and induces S-phase entry in 12-O-tetradecanoylphorbol-13-acetate (TPA)-sensitive human cancer cells. Cell Growth Differ 1999; 10: 223–230.

    PubMed  CAS  Google Scholar 

  130. Zhao X, Gschwend JE, Powell CT, Foster RG, Day KC, Day ML. Retinoblastoma protein-dependent growth signal conflict and caspase activity are required for protein kinase c signalled apoptosis of prostate epithelial cells. J Biol Chem 1997; 272: 22751–22757.

    Article  PubMed  CAS  Google Scholar 

  131. Huberman E, Callaham MF. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci USA 1979; 76: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  132. Rovera G, O’Brien TG, Diamond L. Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science 1979; 204: 868–870.

    Article  PubMed  CAS  Google Scholar 

  133. Han ZT, Tong YK, He LM, Zhang Y, Sun JZ, Wang TY, et al. 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced increase in depressed white blood cell counts in patients treated with cytotoxic cancer chemotherapeutic drugs. Proc Natl Acad Sci USA 1998; 95: 5362–5365.

    Article  PubMed  CAS  Google Scholar 

  134. Han ZT, Zhu XX, Yang RY, Sun JZ, Tian GF, Liu XJ, et al. Effect of intravenous infusions of 12-O-tetradecanoylphorbol-13-acetate (TPA) in patients with myelocytic leukemia: Preliminary studies on therapeutic efficacy and toxicity. Proc Natl Acad Sci USA 1998; 95: 5357–5361.

    Article  PubMed  CAS  Google Scholar 

  135. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  136. Nelson WG, Kastan MB. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 1994; 14: 1815–1823.

    PubMed  CAS  Google Scholar 

  137. Linke SP, Clarkin KC, Di Leonardo A, Tsou A, Wahl GM. A reversible, p53-dependent GO/ G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 1996; 10: 934–947.

    Article  PubMed  CAS  Google Scholar 

  138. Pritchard DM, Watson AJ, Potten CS, Jackman AL, Hickman JA. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci USA 1997; 94: 1795–1799.

    Article  PubMed  CAS  Google Scholar 

  139. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999; 104: 263–269.

    Article  PubMed  CAS  Google Scholar 

  140. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del-Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269: 682–685.

    Article  PubMed  CAS  Google Scholar 

  141. Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res 1996; 56: 2649–2654.

    PubMed  CAS  Google Scholar 

  142. Blagosklonny MV, Wu GS, Omura S, El-Deiry WS. Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Comm 1996; 227: 564–569.

    Article  PubMed  CAS  Google Scholar 

  143. Shinohara K, Tomioka M, Nakano H, Tone S, Ito H, Kawashima S. Apoptosis induction resulting from proteasome inhibition. Biochem J 1996; 317: 385–388.

    PubMed  CAS  Google Scholar 

  144. Lopes UG, Erhardt P, Yao R, Cooper GM. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem 1997; 272: 12893–12896.

    Article  PubMed  CAS  Google Scholar 

  145. Drexler HC. Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 1997; 94: 855–860.

    Article  PubMed  CAS  Google Scholar 

  146. Chandra J, Niemer I, Gilbreath J, Kliche KO, Andreeff M, Freireich EJ, et al. Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood 1998; 92: 4220–4229.

    PubMed  CAS  Google Scholar 

  147. Fenteany G, Schreiber SL. Lactacystin, proteasome function, and cell fate. J Biol Chem 1998; 273: 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  148. Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Investig New Drugs 2000; 18: 109–121.

    Article  CAS  Google Scholar 

  149. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59: 2615–2622.

    PubMed  CAS  Google Scholar 

  150. Weidle UH, Grossmann A. Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res 2000; 20: 1471–1485.

    PubMed  CAS  Google Scholar 

  151. Candido EPM, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978; 14: 105–113.

    Article  PubMed  CAS  Google Scholar 

  152. Lin RI, Nagy L, Inoue S, Shao W, Miller WH, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 1998; 391: 811–814.

    Article  PubMed  CAS  Google Scholar 

  153. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukemia. Nature 1998; 391: 815–818.

    Article  PubMed  CAS  Google Scholar 

  154. Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, et al. Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999; 13: 1316–1324.

    Article  PubMed  CAS  Google Scholar 

  155. Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T. Histone deacetylase inhibitor activates the WAF1/Cipl gene promoter through the SP1 sites. Biocem Biophys Res Comm 1997; 241: 142–150.

    Article  CAS  Google Scholar 

  156. Rajgolikar G, Chan KK, Wang HC. Effects of a novel antitumor depsipeptide, FR901228, on human breast cancer cells. Breast Cancer Res Treat 1998; 51: 29–38.

    Article  PubMed  CAS  Google Scholar 

  157. Vaziri C, Stice L, Faller DV. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Diff 1998; 9: 465–474.

    PubMed  CAS  Google Scholar 

  158. Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 1998; 241: 126–133.

    Article  PubMed  CAS  Google Scholar 

  159. Ueda H, Manda T, Matsumoto S, Mukumoto S, Nishigaki F, Kawamura I, Shimomura K. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. Antitumor activities on experimental tumors in mice. J Antibiot 1994; 47: 315–323.

    Article  PubMed  CAS  Google Scholar 

  160. Wang R, Brunner T, Zhang L, Shi Y. Fungal metabolite FR901228 inhibits c-Myc and Fas ligand expression. Oncogene 1998; 17: 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  161. Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV, Bates SE. P21-dependent G1 arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 2000; 83: 817–825.

    CAS  Google Scholar 

  162. Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 1999; 18: 2461–2470.

    Article  PubMed  CAS  Google Scholar 

  163. Archer SY, Meng S, Shei A, Hodin RA. p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 1998; 95: 6791–6796.

    Article  PubMed  CAS  Google Scholar 

  164. Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998; 92: 463–473.

    Article  PubMed  CAS  Google Scholar 

  165. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391: 597–601.

    Article  PubMed  CAS  Google Scholar 

  166. Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, et al. Retinoblastoma protein repress transcription by recruiting a histone deacetylase. Nature 1998; 391: 601–605.

    Article  PubMed  CAS  Google Scholar 

  167. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141–196.

    Article  PubMed  CAS  Google Scholar 

  168. Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol 2000; 183: 145–154.

    Article  PubMed  CAS  Google Scholar 

  169. Bender CM, Pao MM, Jones PA. Inhibition of DNA methylation by 5-aza-2’ deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998; 58: 95–101.

    PubMed  CAS  Google Scholar 

  170. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blagosklonny, M.V. (2003). Cell Cycle Regulators as Targets of Anticancer Therapy. In: Giordano, A., Soprano, K.J. (eds) Cell Cycle Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-401-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-401-6_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-257-5

  • Online ISBN: 978-1-59259-401-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics