Skip to main content

Gene Expression Profiling in Lymphoid Malignancies

  • Chapter
Expression Profiling of Human Tumors
  • 78 Accesses

Abstract

An ideal tumor classification system should be accurate, reproducible, easy to use, and above all, biologically meaningful and clinically relevant. The traditional approach has relied heavily on the morphologic features of the tumor with modifications based on correlative clinicopathologic studies. The older lymphoma classification systems discussed in the Working Formulation (1) are based on this principle but despite this simple approach, they have made significant contributions to the diagnosis and treatment of lymphoma. In the past two decades, there has been emarkable advances in our understanding of the immune system, the process of oncogenesis, and in how some key genes and genetic pathways influence the behavior of tumor cells. The more recent classification systems (2,3) attempt to incorporate our current knowledge from multiple disciplines to divide lymphomas into distinct clinicopathologic entities. However, there is clearly marked biologic heterogeneity within each of these entities, as illustrated by the significant survival differences of individuals within each type of lymphoma, when cases are segregated according to the International Prognostic Index (IPI) (4) (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Non-Hodgkin’s lymphoma pathologic classification project: National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a Working Formulation for clinical usage. (1982) Cancer 49, 21122135.

    Google Scholar 

  2. Harris, N. L., Jaffe, E. S., Stein, H., et al. (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392.

    PubMed  CAS  Google Scholar 

  3. Jaffe, E. S., Harris, N. L., Stein, H., and Vardiman, J. W. (2001) WHO Classification of Tumours; Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IRCA Press, Lyon.

    Google Scholar 

  4. Armitage, J. O. and Weisenburger, D. D. (1998) New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J. Clin. Oncol. 16, 2780–2795.

    PubMed  CAS  Google Scholar 

  5. Pearson, P. L. and Van der Luijt, R. B. (1998) The genetic analysis of cancer. J. Intern. Med. 243, 413–417.

    Article  PubMed  CAS  Google Scholar 

  6. Ermolaeva, O., Rastogi, M., Pruitt, K. D., et al. (1998) Data management and analysis for gene expression arrays. Nat. Genet. 20, 19–23.

    Article  PubMed  CAS  Google Scholar 

  7. Sherlock, G. (2000) Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12, 201–205.

    Article  PubMed  CAS  Google Scholar 

  8. Drexler, H. D. (2001) The Leukemia and Lymphoma Cell Line-Facts Book. Academic Press, London.

    Google Scholar 

  9. Cross, N. C. (1995) Quantitative PCR techniques and applications. Br. J. Haematol. 89, 693–697.

    Article  PubMed  CAS  Google Scholar 

  10. Orlando, C., Pinzani, P., and Pazzagli, M. (1998) Developments in quantitative PCR. Clin. Chem. Lab. Med. 36, 255–269.

    Article  PubMed  CAS  Google Scholar 

  11. Gerard, C. J., Olsson, K., Ramanathan, R., Reading, C., and Hanania, E. G. (1998) Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards. Cancer Res. 58, 3957–3964.

    Google Scholar 

  12. Luthra, R., McBride, J. A., Cabanillas, F., and Sarris, A. (1998) Novel 5’ exonucleasebased real-time PCR assay for the detection of t(14;18)(g32;g21) in patients with follicular lymphoma. Am. J. Pathol. 153, 63–68.

    Article  PubMed  CAS  Google Scholar 

  13. Zaidi, A. U., Enomoto, H., Milbrandt, J., and Roth, K. A. (2000) Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J. Histochem. Cytochem. 48, 1369–1375.

    Google Scholar 

  14. Nuovo, G. J. (1998) In situ localization of PCR-amplified DNA and cDNA. Mol. Biotechnol. 10, 49–62.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, J. Z., Sanger, W. G., Greiner, T. C., et al. (2002) The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99, 2285–2290.

    Google Scholar 

  16. Shipp, M. A., Ross, K. N., Tamayo, P., et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74.

    Google Scholar 

  17. Emmert-Buck, M. R., Roth, M. J., Zhuang, Z., et al. (1994) Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am. J. Pathol. 145, 1285–1290.

    PubMed  CAS  Google Scholar 

  18. Siedow, J. N. (2001) Making sense of microarrays. Genome Biol. 2, 4003.1–4003.2.

    Google Scholar 

  19. Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.

    Google Scholar 

  20. Alizadeh, A., Eisen, M., Davis, R. E., et al. (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 64, 71–78.

    Article  PubMed  CAS  Google Scholar 

  21. Eisen, M. B., Spellman, P. T., Brown, P. 0., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14, 863–14, 868.

    Google Scholar 

  22. Lossos, I. S., Alizadeh, A. A., Eisen, M. B., et al. (2000) Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc. Natl. Acad. Sci. USA 97, 10,209–10, 213.

    Google Scholar 

  23. Horsman, D. E., Gascoyne, R. D., Coupland, R. W., Coldman, A. J., and Adomat, S. A. (1995) Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14; 18) in follicular lymphoma. Am. J. Clin. Pathol. 103, 472–478.

    PubMed  CAS  Google Scholar 

  24. Yunis, J. J., Frizzera, G., Oken, M. M., McKenna, J., Theologides, A., and Arnesen, M. (1987) Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N. Engl. J. Med. 316, 79–84.

    Google Scholar 

  25. Weiss, L. M., Warnke, R. A., Sklar, J., and Cleary, M. L. (1987) Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N. Engl. J. Med. 317, 1185 1189.

    Google Scholar 

  26. Cornillet, P., Rimokh, R., Berger, F., et al. (1991) Involvement of the BCL2 gene in 131 cases of non-Hodgkin’s B lymphomas: analysis of correlations with immunological findings and cell cycle. Leuk. Lymphoma 4, 355–362.

    Article  Google Scholar 

  27. Davis, R. E., Brown, K. D., Siebenlist, U., and Staudt, L. M. (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194, 1861–1874.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenwald, A., Wright, G., Chan, W. C., et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937–1947.

    Article  PubMed  Google Scholar 

  29. Damle, R. N., Wasil, T., Fais, F., et al. (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 18401847.

    Google Scholar 

  30. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G., and Stevenson, F. K. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854.

    PubMed  CAS  Google Scholar 

  31. Rosenwald, A., Alizadeh, A. A., Widhopf, G., et al. (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194, 1639–1647.

    Article  PubMed  CAS  Google Scholar 

  32. Klein, U., Tu, Y., Stolovitzky, G. A., et al. (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638.

    Article  PubMed  CAS  Google Scholar 

  33. Frazer, J. K., Jackson, D. G., Gaillard, J. P., et al. (2000) Identification of centerin: a novel human germinal center B cell-restricted serpin. Eur. J. Immunol. 30, 3039–3048.

    Article  PubMed  CAS  Google Scholar 

  34. Ried, T., Liyanage, M., du Manoir, S., et al. (1997) Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J. Mol. Med. 75, 801–814.

    Article  PubMed  CAS  Google Scholar 

  35. Kallioniemi, A., Kallioniemi, O. P., Sudar, D., et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821.

    Google Scholar 

  36. Pollack, J. R., Perou, C. M., Alizadeh, A. A., et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46.

    Article  PubMed  CAS  Google Scholar 

  37. Lichter, P., Joos, S., Bentz, M., and Lampel, S. (2000) Comparative genomic hybridization: uses and limitations. Semin. Hematol. 37, 348–357.

    Google Scholar 

  38. Wessendorf, S., Fritz, B., Wrobel, G., et al. (2002) Automated screening for genomic imbalances using matrix-based comparative genomic hybridization. Lab. Invest. 82, 47–60.

    Article  PubMed  CAS  Google Scholar 

  39. Aoudjit, F., Masure, S., Opdenakker, G., Potworowski, E. F., and St-Pierre, Y. (1999) Gelatinase B (MMP-9), but not its inhibitor (TIMP-1), dictates the growth rate of experimental thymic lymphoma. Int. J. Cancer 82, 743–747.

    Article  PubMed  CAS  Google Scholar 

  40. Kossakowska, A. E., Huchcroft, S. A., Urbanski, S. J., and Edwards, D. R. (1996) Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, sporadic colorectal neoplasia, pulmonary carcinomas and malignant non-Hodgkin’s lymphomas in humans. Br. J. Cancer 73, 1401–1408.

    Google Scholar 

  41. Vacca, A., Moretti, S., Ribatti, D., et al. (1997) Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur. J. Cancer 33, 1685–1692.

    Google Scholar 

  42. Kossakowska, A. E., Hinek, A., Edwards, D. R., et al. (1998) Proteolytic activity of human non-Hodgkin’s lymphomas. Am. J. Pathol. 152, 565–576.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chan, W.C., Staudt, L.M. (2003). Gene Expression Profiling in Lymphoid Malignancies. In: Ladanyi, M., Gerald, W.L. (eds) Expression Profiling of Human Tumors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-386-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-386-6_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-375-6

  • Online ISBN: 978-1-59259-386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics