Skip to main content

The Use of Cardiac Biomarkers to Detect Myocardial Damage Induced by Chemotherapeutic Agents

  • Chapter

Part of the book series: Pathology and Laboratory Medicine ((PLM))

Abstract

The treatment of neoplastic diseases with chemotherapeutic agents was initiated more than 50 yr ago. Since then, antineoplastic agents have been derived from diverse sources, such as synthetic chemicals, antibiotics, plant products, antibodies, and enzymes. These agents have contributed to prolongation of disease-free intervals and an increase in overall survival. It was thought that the toxicity associated with chemotherapeutic agents would most likely occur in rapidly proliferating tissues, such as the bone marrow and gastrointestinal tract. However, since the report by Tan et al. (1) of delayed heart failure in children treated with the anthracycline daunorubicin, there has been an increased awareness of the potential for cardiovascular side effects during the course of cancer chemotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer 1967; 20: 333–353.

    Article  PubMed  CAS  Google Scholar 

  2. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori 1982; 68: 505–510.

    PubMed  CAS  Google Scholar 

  3. Buja LM, Ferrans VJ, Graw RG Jr. Cardiac pathologic findings in patients treated with bone marrow transplantation. Hum Pathol 1976; 7: 17–45.

    Article  PubMed  CAS  Google Scholar 

  4. Braverman AC, Antin JH, Plappert MT, Cook EF, Lee RT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol 1991; 9: 1215–1223.

    PubMed  CAS  Google Scholar 

  5. Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 1998; 25: 72–85.

    PubMed  CAS  Google Scholar 

  6. Herman EH, Ferrans VJ. Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol 1998; 25: 15–21.

    PubMed  CAS  Google Scholar 

  7. Von Hoff DD, Rozencweig M, Piccart M. The cardiotoxicity of anticancer agents. Semin Oncol 1982; 9: 23–33.

    Google Scholar 

  8. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med 1996; 125: 47–58.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrans VJ. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep 1978; 62: 955–961.

    PubMed  CAS  Google Scholar 

  10. Billingham ME. Role of endomyocardial biopsy in diagnosis and treatment of heart disease. In: Cardiovascular Pathology. Silver MD, ed. New York: Churchill Livingstone, 1991, pp. 465–1486.

    Google Scholar 

  11. Herman EH, Zhang J, Rifai N, et al. The use of serum levels of cardiac troponin T to compare the protective activity of dexrazoxane against doxorubicin-and mitoxantrone-induced cardiotoxicity. Cancer Chemother Pharmacol 2001; 48: 297–304.

    Article  PubMed  CAS  Google Scholar 

  12. Millefiorini E, Gasperini C, Pozzilli C, et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol 1997; 244: 153–159.

    Article  PubMed  CAS  Google Scholar 

  13. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–2648.

    PubMed  CAS  Google Scholar 

  14. Sparano JA. Cardiac toxicity of trastuzumab (Herceptin): implications for the design of adjuvant trials. Semin Oncol 2001; 28: 20–27.

    Article  PubMed  CAS  Google Scholar 

  15. Stebbing J, Copson E, O’Reilly S. Herceptin (trastuzumab) in advanced breast cancer. Cancer Treat Rev 2000; 26: 287–290.

    Article  PubMed  CAS  Google Scholar 

  16. Carrio I, Estorch M, Lopez-Pousa A. Assessing anthracycline cardiotoxicity in the 1990s. Eur J Nucl Med 1996; 23: 359–364.

    Google Scholar 

  17. Ganz WI, Sridhar KS, Ganz SS, Gonzalez R, Chakko S, Serafini A. Review of tests for monitoring doxorubicin-induced cardiomyopathy. Oncology 1996; 53: 461–470.

    Article  PubMed  CAS  Google Scholar 

  18. Mair J. Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci 1997; 34: 1–66.

    Article  PubMed  CAS  Google Scholar 

  19. Vasudenvan G, Mercer DW, Varat MA. Lactic dehydrogenase isoenzyme determination in the diagnosis of acute myocardial infarction. Am J Cardiol 1978; 57: 1055–1057.

    Google Scholar 

  20. Robert R, Gowda KS, Ludbrook PA. Specificity of elevated serum MB creatine phosphokinase activity in the diagnosis of acute myocardial infarction. Am J Cardiol 1975; 36: 433–437.

    Article  Google Scholar 

  21. Apple FS, Presse LM. Creatine kinase-MB: detection of myocardial infarction and monitoring reperfusion. J Clin Immunoassay 1994; 17: 24–29.

    Google Scholar 

  22. Tsung JS, Tsung SS. Creatine kinase isoenzymes in extracts of various human skeletal muscles. Clin Chem 1986; 32: 1568–1570.

    PubMed  CAS  Google Scholar 

  23. Chesebro MJ. Using serum markers in the early diagnosis of myocardial infarction. Am Fam Physician 1997; 55: 2667–2674.

    PubMed  CAS  Google Scholar 

  24. Fichtner I, Arndt D, Elbe B, Reszka R. Cardiotoxicity of free and liposomally encapsulated rubomycin (daunorubicin) in mice. Oncology 1984; 41: 363–369.

    Article  PubMed  CAS  Google Scholar 

  25. Hrdina R, Bogusova TA, Kunova A, Kvetina J. Changes in the toxicity and therapeutic efficacy of daunorubicin linked with a biodegradable carrier. Neoplasma 1991; 38: 265–273.

    PubMed  CAS  Google Scholar 

  26. Bhanumathi P, Saleesh EB, Vasudevan DM. Creatine phosphokinase and cardiotoxicity in adriamycin chemotherapy and its modification by WR-1065. Biochem Arch 1992; 8: 335–338.

    CAS  Google Scholar 

  27. Pritsos CA, Sokoloff M, Gustafson DL. PZ-51 (Ebselen) in vivo protection against adriamycin-induced mouse cardiac and hepatic lipid peroxidation and toxicity. Biochem Pharmacol 1992; 44: 839–841.

    Article  PubMed  CAS  Google Scholar 

  28. Kojima S, Hayashi M, Kajiwara Y, Kitabatake K, Kubota K, Icho T. Inhibitory effect of 5,6,7,8-tetrahydroneopterin on adriamycin-induced cardiotoxicity. J Pharmacol Exp Ther 1993; 266: 1699–1704.

    PubMed  CAS  Google Scholar 

  29. Sadzuka Y, Sugiyama T, Shimoi K, Kinae N, Hirota S. Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicol Lett 1997; 92: 1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Al-Shabanah OA, Badary OA, Nagi MN, Al-Gharably NM, al-Rikabi AC, al-Bekairi AM. Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. J Exp Clin Cancer Res 1998; 17: 193–198.

    PubMed  CAS  Google Scholar 

  31. Mostafa MG, Mima T, Ohnishi ST, Mori K. S-Allylcysteine ameliorates doxorubicin toxicity in the heart and liver in mice. Planta Med 2000; 66: 148–151.

    Article  PubMed  CAS  Google Scholar 

  32. Kang YJ, Chen Y, Yu A, Voss-McCowan M, Epstein PN. Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J Clin Invest 1997; 100: 1501–1506.

    Article  PubMed  CAS  Google Scholar 

  33. Wu HY, Kang YJ. Inhibition of buthionine sulfoximine-enhanced doxorubicin toxicity in metallothionein overexpressing transgenic mouse heart. J Pharmacol Exp Ther 1998; 287: 515–520.

    PubMed  CAS  Google Scholar 

  34. Kimura T, Fujita I, Itoh N, et al. Metallothionein acts as a cytoprotectant against doxorubicin toxicity. J Pharmacol Exp Ther 2000; 291: 299–302.

    Google Scholar 

  35. Al-Shabanah OA, Badary OA, Al-Gharably NM, Al-Sawaf HA. Effects of L-histidinol on the antitumour activity and acute cardiotoxicity of doxorubicin in mice. Pharmacol Res 1998; 38: 225–230.

    Article  PubMed  CAS  Google Scholar 

  36. Olson HM, Capen CC. Subacute cardiotoxicity of adriamycin in the rat: biochemical and ultrastructural investigations. Lab Invest 1977; 37: 386–394.

    PubMed  CAS  Google Scholar 

  37. Vora J, Boroujerdi M. Pharmacokinetic-toxicodynamic relationships of adriamycin in rat: prediction of butylated hydroxyanisole-mediated reduction in anthracycline cardiotoxicity. J Pharm Pharmacol 1996; 48: 1264–1269.

    Article  PubMed  CAS  Google Scholar 

  38. Vora J, Khaw BA, Narula J, Boroujerdi M. Protective effect of butylated hydroxyanisole on adriamycin-induced cardiotoxicity. J Pharm Pharmacol 1996; 48: 940–944.

    Article  PubMed  CAS  Google Scholar 

  39. Tesoriere L, Ciaccio M, Valenza M, et al. Effect of vitamin A administration on resistance of rat heart against doxorubicin-induced cardiotoxicity and lethality. J Pharmacol Exp Ther 1994; 269: 430–436.

    PubMed  CAS  Google Scholar 

  40. Dobric S, Dragojevic-Simic V, Bokonjic D, Milovanovic S, Marincic D, Jovic P. The efficacy of selenium, WR-2721, and their combination in the prevention of adriamycininduced cardiotoxicity in rats. J Environ Pathol Toxicol Oncol 1998; 17: 291–299.

    PubMed  CAS  Google Scholar 

  41. Behnia K, Boroujerdi M Inhibition of aldo-keto reductases by phenobarbital alters metabolism, pharmacokinetics and toxicity of doxorubicin in rats. J Pharm Pharmacol 1999; 51: 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  42. Chopra S, Pillai KK, Husain SZ, Giri DK. Propolis protects against doxorubicin-induced myocardiopathy in rats. Exp Mol Pathol 1995; 62: 190–198.

    Article  PubMed  CAS  Google Scholar 

  43. Porta EA, Joun NS, Matsumura B, Sablan H. Acute adriamycin toxicity in rats. Res Common Chem Pathol Pharmacol 1993; 41: 125–137.

    Google Scholar 

  44. Al-Harni MM, al-Gharably NM, al-Shabanah OA, al-Bekairi AM, Osman AM, Tawfik HN. Prevention of doxorubicin-induced myocardial and hematological toxicities in rats by the iron chelates desferrioxamine. Cancer Chemother Pharmacol 1992; 31: 200–204.

    Article  Google Scholar 

  45. Al-Shabanah O, Mansour M, El-Kashef H, Al-Bekairi A. Captopril ameliorates myocardial and hematological toxicities induced by adriamycin. Biochem Mol Biol Int 1998; 45: 419–427.

    PubMed  CAS  Google Scholar 

  46. Nagi MN, Mansour MA. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 2000; 41: 283–289.

    Article  PubMed  CAS  Google Scholar 

  47. Al-Shabanah OA, El-Kashef HA, Badary OA, al-Bekairi AM, Elmazar MM. Effect of streptozotocin-induced hyperglycaemia on intravenous pharmacokinetics and acute cardiotoxicity of doxorubicin in rats. Pharmacol Res 2000; 41: 31–37.

    Article  PubMed  CAS  Google Scholar 

  48. Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 1998; 124: 425–427.

    Article  PubMed  CAS  Google Scholar 

  49. Mohamed HE, El-Swefy SE, Hagar HH. The protective effect of glutathione administration on adriamycin-induced acute cardiac toxicity in rats. Pharmacol Res 2000; 42: 115–121.

    Article  PubMed  CAS  Google Scholar 

  50. Saad SY, Najjar TA, al-Rikabi AC. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res 2001; 43: 211–218.

    Article  PubMed  CAS  Google Scholar 

  51. Pour A, Cady W, Modrak J. Effect of tetracycline on adriamycin cardiotoxicity. Toxicol Lett 1981; 7: 379–382.

    Article  PubMed  CAS  Google Scholar 

  52. Przybyszewski WM, Widel M. Activity of creatine kinase MB-isoenzyme in rat serum after heart irradiation and/or farmorubicin (4’-epidoxorubicin) treatment. Cancer Lett 1996; 100: 145–150.

    Article  PubMed  CAS  Google Scholar 

  53. Przybyszewski WM, Widel M, Koterbicka A. Early peroxidizing effects of myocardial damage in rats after gamma-irradiation and farmorubicin (4’-epidoxorubicin) treatment. Cancer Lett 1994; 81: 185–192.

    Article  PubMed  CAS  Google Scholar 

  54. Pispirigos K, Paradelis AG, Karakiulakis G. Evaluation of cardiac subacute toxicity of epirubicin, chlorambucil, cisplatin, methotrexate and a homo-aza-steroid ester with antitumor activity in rats using serum biochemical parameters. Arzneimittelforschung Drug Res 1997; 47: 92–96.

    CAS  Google Scholar 

  55. Olson HM, Young DM, Prieur DJ, LeRoy AF, Reagan RL. Electrolyte and morphologic alterations of myocardium in adriamycin-treated rabbits. Am J Pathol 1974; 77: 439–454.

    PubMed  CAS  Google Scholar 

  56. Wang YM, Madanat FF, Kimball JC, et al. Effect of vitamin E against adriamycin-induced toxicity in rabbits. Cancer Res 1980; 40: 1022–1027.

    CAS  Google Scholar 

  57. Henderson BM, Dougherty WJ, James VC, Tilley LP, Noble JF. Safety assessment of a new anticancer compound, mitoxantrone, in beagle dogs: comparison with doxorubicin. I. Clinical observations. Cancer Treat Rep 1982; 66: 1139–1143.

    PubMed  CAS  Google Scholar 

  58. Danesi R, Del Tacca M, Bernardini N, Cardini G, Bellini O. Evaluation of the JT and corrected JT intervals as a new ECG method for monitoring doxorubicin cardiotoxicity in the dog. J Pharmacol Methods 1989; 21: 317–327.

    Article  PubMed  CAS  Google Scholar 

  59. Neri B, Torcia MG, Comparini T, Guidi S, Miliari A, Ciapini A. Creatine kinase-MB: a noninvasive test monitoring acute adriamycin and daunomycin cardiotoxicity. J Exp Clin Cancer Res 1938; 2: 41–45.

    Google Scholar 

  60. Neri B, Cini-Neri G, Bandinelli M, Pacini P, Bartalucci S, Ciapini A. Doxorubicin and epirubicin cardiotoxicity: experimental and clinical aspects. Int J Clin Pharmacol Ther Toxicol 1989; 22: 217–221.

    Google Scholar 

  61. Clerico A, Marini A, Del Chicca MG, et al. Modifications in the concentrations of circulating myoglobin after treatment with low doses of adriamycin. Tumori 1985; 71: 463–468.

    PubMed  Google Scholar 

  62. Braumann D, Mainzer K, Gunzl C, Lewerenz B. [Myocardial infarcts within the scope of 5-fluorouracil therapy]. Onkologie 1990; 13: 465–467.

    Article  PubMed  CAS  Google Scholar 

  63. Pan L, Yang X, Song H. [Cardiotoxicity of 5-fluorouracil]. Chung Hua Fu Chan Ko Tsa Chih 1996; 31: 86–89.

    PubMed  CAS  Google Scholar 

  64. Cersosimo RS, Lee JM. Creatine kinase elevation associated with 5-fluorouracil and levamisole therapy for carcinoma of the colon. A case report. Cancer 1996; 77: 1250–1253.

    CAS  Google Scholar 

  65. Karminsky N, Merimsky O, Kovner F, Inbar M. Vinorelbine-related acute cardiopulmonary toxicity. Cancer Chemother Pharmacol 1999; 43: 180–182.

    Article  PubMed  CAS  Google Scholar 

  66. Wilkinson JM, Grand RJ. Comparison of amino acid sequence of troponin I from different striated muscles. Nature 1978; 271: 31–35.

    Article  PubMed  CAS  Google Scholar 

  67. Pearlstone JR, Carpenter MR, Smillie LB. Amino acid sequence of rabbit cardiac troponin T. J Biol Chem 1986; 261: 16795–16810.

    PubMed  CAS  Google Scholar 

  68. Apple FS. Tissue specificity of cardiac troponin I, cardiac troponin T and creatine kinase-MB. Clin Chim Acta 1999; 284: 151–159.

    Article  PubMed  CAS  Google Scholar 

  69. Anderson PAW, Maloue NN, Oakley AE. Troponin T isoform expression in humans: a comparison among normal and failing heart. Circ Res 1991; 69: 122–123.

    Google Scholar 

  70. Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PA, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem 1998; 44: 1919–1924.

    PubMed  CAS  Google Scholar 

  71. Kam PM, Raucher T, Mueller BM. Clinical evaluation of the cardiac markers troponin T and CK-MB on the elecsys 2010 system. Clin Chem 1997; 43: 5159.

    Google Scholar 

  72. O’Brien PJ, Dameron GW, Beck ML, Brandt M. Differential reactivity of cardiac and skeletal muscle from various species in two generations of cardiac troponin-T immunoassays. Res Vet Sci 1998; 65: 135–137.

    Article  PubMed  Google Scholar 

  73. Fredericks S, Merton GK, Lerena MJ, Heining P, Carter ND, Holt DW. Cardiac troponins and creatine kinase content of striated muscle in common laboratory animals. Clin Chim Acta 2001; 304: 65–74.

    Article  PubMed  CAS  Google Scholar 

  74. Voss EM, Sharkey SW, Gernert AE, et al. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium. Infarct sizing using serum profiles. Arch Pathol Lab Med 1995; 119: 799–806.

    PubMed  CAS  Google Scholar 

  75. O’Brien PJ, Dameron GW, Beck ML, et al. Cardiac troponin T is a sensitive, specific bio-marker of cardiac injury in laboratory animals. Lab Anim Sci 1997; 47: 486–495.

    PubMed  Google Scholar 

  76. Walpoth BH, Tschopp A, Peheim E, Schaffner T, Althaus U. Assessment of troponin-T for detection of cardiac rejection in a rat model. Transplant Proc 1995; 27: 2084–2087.

    PubMed  CAS  Google Scholar 

  77. Bachmaier K, Mair J, Offner F, Pummerer C, Neu N. Serum cardiac troponin T and creatine kinase-MB elevations in murine autoimmune myocarditis. Circulation 1995; 92: 1927–1932.

    Article  PubMed  CAS  Google Scholar 

  78. Smith SC, Ladenson JH, Mason JW, Jaffe AS. Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation 1997; 95: 163–168.

    Article  PubMed  CAS  Google Scholar 

  79. Bleuel H, Deschl U, Bertsch T, Bolz G, Rebel W. Diagnostic efficiency of troponin T measurements in rats with experimental myocardial cell damage. Exp Toxicol Pathol 1995; 47: 121–127.

    Article  PubMed  CAS  Google Scholar 

  80. Herman EH, Zhang J, Lipshultz SE, et al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol 1999; 17: 2237–2243.

    PubMed  CAS  Google Scholar 

  81. Adamcova M, Gersl V, Hrdina R, et al. Cardiac troponin T as a marker of myocardial damage caused by antineoplastic drugs in rabbits. J Cancer Res Clin Oncol 1999; 125: 268–274.

    Article  PubMed  CAS  Google Scholar 

  82. Ottinger ME, Sallan S, Rikzi N, Sacks DG, Lipshultz SE. Myocardial damage in doxorubicin-treated children: a study of serum cardiac troponin T (abstract). Proc Am Soc Clin Oncol 1995; 14: 345.

    Google Scholar 

  83. Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 1997; 96: 2641–2648.

    Article  PubMed  CAS  Google Scholar 

  84. Seino Y, Tornita Y, Nagai Y, et al. Cardioprotective effects of ACE-inhibitor (Cilazapril) on adriamycin cardiotoxicity in spontaneously hypertensive rats (abstract). Circulation 1993; 88: I - 633.

    Google Scholar 

  85. Herman EH, Lipshultz SE, Rifai N, et al. Use of cardiac troponin T levels as an indicator of doxorubicin-induced cardiotoxicity. Cancer Res 1998; 58: 195–197.

    PubMed  CAS  Google Scholar 

  86. Myers CE, Gianni L, Simone CB, Klecker R, Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry 1982; 21: 1707–1712.

    Article  PubMed  CAS  Google Scholar 

  87. Herman EH, Zhang J, Hasinoff BB, Clark JR Jr, Ferrans VJ. Comparison of the structural changes induced by doxorubicin and mitoxantrone in the heart, kidney and intestine and characterization of the Fe(III)-mitoxantrone complex. J Mol Cell Cardiol 1997; 29: 2415–2430.

    Article  PubMed  CAS  Google Scholar 

  88. Genser N, Fink FM, Mair J, Dengg K, Ellenmuter H, Puschendorf B. Plasma concentration of creatine kinase MB mass and troponin T in children receiving anthracycline chemotherapy (abstract). Clin Chem 1993; 39: 1170.

    Google Scholar 

  89. Fink FM, Genser N, Fink C, et al. Cardiac troponin T and creatine kinase MB mass concentrations in children receiving anthracycline chemotherapy. Med Pediatr Oncol 1995; 25: 185–189.

    Article  PubMed  CAS  Google Scholar 

  90. Raderer M, Kornek G, Weinlander G, Kastner J. Serum troponin T levels in adults undergoing anthracycline therapy. J Natl Cancer Inst 1997; 89: 171.

    Article  PubMed  CAS  Google Scholar 

  91. Missov E, Calzolari C, Davy JM, Leclercq F, Rossi M, Pau B. Cardiac troponin I in patients with hematologic malignancies. Cor Artery Dis 1997; 8: 537–541.

    CAS  Google Scholar 

  92. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 2000; 36: 517–522.

    Article  PubMed  CAS  Google Scholar 

  93. Lipshultz SE, Sallan S, Dalton V, et al. Elevated serum cardiac troponin-T as a marker for active cardiac injury during therapy for childhood acute lymphoblastic leukemia (ALL) (abstract). Proc ASCO 18: 568a.

    Google Scholar 

  94. Sagnella GA. Measurement and significance of circulating natriuretic peptides in cardiovascular disease. Clin Sci (Colch) 1998; 95: 519–529.

    Article  CAS  Google Scholar 

  95. Holmes SJ, Espiner EA, Richards AM, Yandle TG, Frampton C. Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man. J Clin Endocrinol Metab 1993; 76: 91–96.

    Article  PubMed  CAS  Google Scholar 

  96. Mukoyama M, Nakao K, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 1991; 87: 1402–1412.

    Article  PubMed  CAS  Google Scholar 

  97. Omland T, Aakvaag A, Vik-Mo H. Plasma cardiac natriuretic peptide determination as a screening test for the detection of patients with mild left ventricular impairment. Heart 1996; 76: 232–237.

    Article  PubMed  CAS  Google Scholar 

  98. Morita E, Yasue H, Yoshimura M, Okumura K, Ogawa H, Kagiyama K. Increased plasma level of BNP in patients with acute myocardial infarction. J Am Coll Cardiol 1993; 88: 82–91.

    CAS  Google Scholar 

  99. McDonagh TA, Robb SD, Murdoch DR, et al. Biochemical detection of left-ventricular systolic dysfunction. Lancet 1998; 351: 9–13.

    Article  PubMed  CAS  Google Scholar 

  100. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339: 321–328.

    Article  PubMed  CAS  Google Scholar 

  101. Yokota N, Yamamoto Y, Aburaya M, et al. Increased secretion of brain natriuretic peptide and atrial natriuretic peptide, but not sufficient to induce natriuresis in rats with nephrotic syndrome. Biochem Biophys Res Commun 1991; 174: 128–135.

    Article  PubMed  CAS  Google Scholar 

  102. Yokota N, Yamamoto Y, Iemura F, et al. Increased plasma levels and effects of brain natriuretic peptide in experimental nephrosis. Nephron 1993; 65: 454–459.

    Article  PubMed  Google Scholar 

  103. Bernardini N, Agen C, Favilla S, Danesi R, Del Tacca M. Doxorubicin cardiotoxicity is associated with alterations of plasma levels of atrial natriuretic factor. J Endocrinol Invest 1992; 15: 79–84.

    PubMed  CAS  Google Scholar 

  104. Bocherens-Gadient SA, Quast U, Nussberger J, Brunner HR, Hof RP. Chronic adriamycin treatment and its effect on the cardiac beta-adrenergic system in the rabbit. J Cardiovasc Pharmacol 1992; 9: 770–778.

    Google Scholar 

  105. Toyoda Y, Okada M, Kashem MA. A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J Thorac Cardiovasc Surg 1998; 115: 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  106. Neri B, De Scalzi M, De Leonardis V, Gemelli MT, Ghezzi P, Pacini P. Preliminary study on behaviour of atrial natriuretic factor in anthracycline-related cardiac toxicity. Int J Clin Pharmacol Res 1991; 11: 75–81.

    PubMed  CAS  Google Scholar 

  107. Bauch M, Ester A, Kimura B, Victorica BE, Kedar A, Phillips MI. Atrial natriuretic peptide as a marker for doxorubicin-induced cardiotoxic effects. Cancer 1992; 69: 1492–1497.

    Article  PubMed  CAS  Google Scholar 

  108. Yamashita J, Ogawa M, Shirakusa T. Plasma endothelin-1 as a marker for doxorubicin cardiotoxicity. Int J Cancer 1995; 62: 542–547.

    Article  PubMed  CAS  Google Scholar 

  109. Tikanoja T, Riikonen P, Perkkio M, Helenius T. Serum N-terminal atrial natriuretic peptide (NT-ANP) in the cardiac follow-up in children with cancer. Med Pediatr Oncol 1998; 31: 73–78.

    Article  PubMed  CAS  Google Scholar 

  110. Hayakawa H, Komada Y, Hirayama M, Hori H, Ito M, Sakurai M. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol 2001; 37: 4–9.

    Article  PubMed  CAS  Google Scholar 

  111. Nousiainen T, Jantunen E, Vanninen E, et al. Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment for non-Hodgkin’s lymphoma. Eur J Haematol 1999; 62: 135–141.

    Article  PubMed  CAS  Google Scholar 

  112. Nousiainen T, Jantunen E, Vanninen E, et al. Acute neurohumoral and cardiovascular effects of idarubicin in leukemia patients. Eur J Haematol 1998; 61: 347–353.

    Article  PubMed  CAS  Google Scholar 

  113. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet 1997; 350: 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  114. Suzuki T, Hayashi D, Yamazaki T, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J 1998; 136: 362–363.

    Article  PubMed  CAS  Google Scholar 

  115. Okumura H, Iuchi K, Yoshida T, Nakamura S, Takeshima M, Takamatsu H. Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol 2000; 104: 158–163.

    Article  PubMed  CAS  Google Scholar 

  116. Meinardi MT, van Veldhuisen DJ, Gietema JA, et al. Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 2001; 19: 2746–2753.

    PubMed  CAS  Google Scholar 

  117. Snowden JA, Hill GR, Hunt P, et al. Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide. Bone Marrow Transplant 2000; 26: 309–313.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Herman, E.H., Lipshultz, S.E., Ferrans, V.J. (2003). The Use of Cardiac Biomarkers to Detect Myocardial Damage Induced by Chemotherapeutic Agents. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-385-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-385-9_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-319-0

  • Online ISBN: 978-1-59259-385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics