Skip to main content

Assessing Reperfusion and Prognostic Infarct Sizing with Biochemical Markers

Practice and Promise

  • Chapter
  • 177 Accesses

Part of the book series: Pathology and Laboratory Medicine ((PLM))

Abstract

Pioneering work in the early 1970s initiated the “thrombolytic era” (1). During this era the therapeutic approach to acute myocardial infarction (AMI) focused on treatments aimed at limiting infarct size by improving myocardial oxygen supply, lowering myocardial oxygen demand, and minimizing autolytic damage to myocytes (2,3). The thrombus became the primary therapeutic target for reperfusion therapy and monitoring because it is a keystone pathophysiological feature of the “acute coronary syndromes” (ACS), a continuum of ischemic disease ranging from unstable angina, associated with reversible myocardial cell injury, to frank MI with large areas of necrosis. This approach was validated in large randomized clinical trials during the 1980s and 1990s that unequivocally demonstrated the benefit of thrombolytic therapy (4, 5). Thrombolytic therapy has become critically important for AMI patients having characteristic electrocardiographic (ECG) features for resolving the thrombotic occlusion, reestablishing patency to the infarct-related artery (IRA), and improving “downstream” tissue reperfusion (6). This chapter focuses on the utilization of cardiac markers for noninvasively assessing the success of reperfusion therapies and use of biochemical marker release to determine “infarct size” and, more important, prognosis. Prognostic infarct sizing is based on the notion that as myocytes die, cardiac function is compromised proportionately, resulting in a worse clinical outcome. The bridge uniting reperfusion assessment and prognostic infarct sizing is that both utilize serial monitoring of biochemical marker release. The contrast is that the focus of reperfusion assessment is the early 90-min time frame after thrombolytic therapy, whereas prognostic infarct sizing involves examining the entire cardiac marker release curve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E, Maroko PR. The reduction of infarct size—an idea whose time (for testing) has come. Circulation 1974; 50: 206–209.

    Article  PubMed  CAS  Google Scholar 

  2. Maroko PR, Kjekshus JK, Sobel BE, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 1971; 43: 67–82.

    Article  PubMed  CAS  Google Scholar 

  3. Maroko PR, Braunwald E. Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion. Circulation 1976;53:I-162–168.

    Google Scholar 

  4. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 1986; 1: 397–402.

    Google Scholar 

  5. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. (Erratum published N Engl J Med 1994;330:516). N Engl J Med 1993; 329: 1615–1622.

    Article  Google Scholar 

  6. Roe MT, Ohman EM, Maas AC, et al. Shifting the open-artery hypothesis downstream: the quest for optimal reperfusion. J Am Coll Cardiol 2001; 37: 9–18.

    Article  PubMed  CAS  Google Scholar 

  7. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wave-front phenomenon of ischemic cell death: myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786–794.

    Article  PubMed  CAS  Google Scholar 

  8. Baughman KL, Maroko PR, Vatner SF. Effects of coronary artery reperfusion on myocardial infarct size and survival in conscious dogs. Circulation 1981; 63: 317–323.

    Article  PubMed  CAS  Google Scholar 

  9. Weissberg PL. Arteriosclerosis involves more than just lipids: plaque dynamics E Heart J 1999;(Suppl):T13–T18.

    Google Scholar 

  10. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 1980; 62: 945–952.

    Article  PubMed  CAS  Google Scholar 

  11. Collaborative Organization for RheothRx Evaluation (CORE). Effects of RheothRx on mortality, morbidity, left ventricular function, and infarct size in patients with acute myocardial infarction. Circulation 1997; 96: 192–201.

    Google Scholar 

  12. Kim CB, Braunwald E. Potential benefits of late reperfusion of infarcted myocardium. The open artery hypotesis. Circulation 1993; 88: 2426–2436.

    CAS  Google Scholar 

  13. Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival: should the paradigm be expanded? Circulation 1989; 78: 441–444.

    Article  Google Scholar 

  14. Braunwald E. The open-artery theory is alive and well—again. N Engl J Med 1993; 329: 1650–1652.

    Article  PubMed  CAS  Google Scholar 

  15. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis: a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992; 85: 1699–1705.

    Article  PubMed  CAS  Google Scholar 

  16. Ito H, Okamura A, Iwakura K, et al. Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 1996; 93: 1993–1999.

    Article  PubMed  CAS  Google Scholar 

  17. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 1980; 62: 945–952.

    Article  PubMed  CAS  Google Scholar 

  18. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 1974; 54: 1496–1508.

    Article  PubMed  CAS  Google Scholar 

  19. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest 1985; 76: 1713–1719.

    Article  PubMed  CAS  Google Scholar 

  20. Kloner RA. Does reperfusion injury exist in humans? J Am Coll Cardiol 1993; 21: 537–545.

    Article  PubMed  CAS  Google Scholar 

  21. Ito H, Maruyama A, Iwakura K, et al. Clinical implications of the `no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996; 93: 223–228.

    Article  PubMed  CAS  Google Scholar 

  22. Sakuma T, Hayashi Y, Sumii K, Imazu M, Yamakido M. Prediction of short-and intermediate-term prognoses of patients with acute myocardial infarction using myocardial contrast echocardiography one day after recanalization. J Am Coll Cardiol 1998; 32: 890–897.

    Article  PubMed  CAS  Google Scholar 

  23. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97: 765–772.

    Article  PubMed  CAS  Google Scholar 

  24. Gersh BJ, Anderson JL. Thrombolysis and myocardial salvage: results of clinical trials and the animal paradigm-paradoxic or predictable. Circulation 1993; 88: 296–306.

    Article  PubMed  CAS  Google Scholar 

  25. DeWood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980; 303: 897–902.

    Article  PubMed  CAS  Google Scholar 

  26. The TIMI Study Group. Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med 1985; 312: 932–936.

    Google Scholar 

  27. Ross AM, Coyne KS, Moreyra E, et al. Extended mortality benefit of early postinfarction reperfusion. Circulation 1998; 97: 1549–1556.

    Article  PubMed  CAS  Google Scholar 

  28. Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 1996; 93: 879–888.

    Article  PubMed  CAS  Google Scholar 

  29. Gibson CM, Ryan KA, Kelley M, et al. Methodologic drift in the assessment of TIMI grade 3 flow and its implications with respect to the reporting of angiographic trial results. Am Heart J 1999; 137: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  30. Gibson CM, Murphy SA, Rizzo MJ, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis in Myocardial Infarction (TIMI) Study Group. Circulation 1999; 99: 1945–1950.

    Article  PubMed  CAS  Google Scholar 

  31. Davies CH, Ormerod OJM. Failed coronary thrombolysis. Lancet 1998; 351: 1191–1196.

    Article  PubMed  CAS  Google Scholar 

  32. Fesmire FM, Percy RF, Bardoner JB, Wharton DR, Calhoun FB. Usefulness of automated serial 12-lead ECG monitoring during the initial emergency department evaluation of patients with chest pain. Ann Emerg Med 1998; 31: 3–11.

    Article  PubMed  CAS  Google Scholar 

  33. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined-a consensus doc-ument of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959–969.

    Article  PubMed  CAS  Google Scholar 

  34. Ryan TJ, Antman EM, Brooks NH, et al. 1999 Update: ACC/AHA guidelines for the management of patients with acute myocardial infarction: executive summary and recommendations. J Am Coll Cardiol 1999; 34: 890–911.

    Article  Google Scholar 

  35. Mizuno K, Satomura K, Miyamoto A, et al. Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N Engl J Med 1992; 326: 287–291.

    Article  PubMed  CAS  Google Scholar 

  36. Keeley EC, Weaver WD. Infarct size: thrombolysis vs. PTCA. Am Heart J 1999; 137: 1007–1009.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson JL, Karagounis LA, Becker LC, Sorensen SG, Menlove RL. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction: ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-2 study. Circulation 1993; 87: 1829–1839.

    Article  PubMed  CAS  Google Scholar 

  38. Califf RM, O’Neil W, Stack RS, et al. Failure of simple clinical measurements to predict perfusion status after intravenous thrombolysis. Ann Intern Med 1988; 108: 658–662.

    Article  PubMed  CAS  Google Scholar 

  39. Doevendans PA, Gorgels AP, van der Zee R, Partouns J, Bar FW, Wellens HJ. Electrocardiographic diagnosis of reperfusion during thrombolytic therapy in acute myocardial infarction. Am J Cardiol 1995; 75: 1206–1210.

    Article  PubMed  CAS  Google Scholar 

  40. Shah PK, Cercek B, Lew AS, Ganz W. Angiographic validation of bedside markers of reperfusion. J Am Coll Cardiol 1993; 21: 55–61.

    Article  PubMed  CAS  Google Scholar 

  41. Ohman EM, Christenson RH, Califf RM, et al. Noninvasive detection of reperfusion after thrombolysis based on serum creatine kinase MB changes and clinical variables. TAMI 7 Study Group. Thrombolysis and Angioplasty in Myocardial Infarction. Am Heart J 1993; 126: 819–826.

    Article  PubMed  CAS  Google Scholar 

  42. Stewart RE, Miller DD, Bowers TR, et al. PET perfusion and vasodilator function after angioplasty for acute myocardial infarction. J Nucl Med 1997; 38: 770–777.

    PubMed  CAS  Google Scholar 

  43. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97: 765–772.

    Article  PubMed  CAS  Google Scholar 

  44. Bremerich J, Wendland MF, Arheden H, et al. Microvascular injury in reperfused infarcted myocardium: noninvasive assessment with contrast-enhanced echoplanar magnetic resonance imaging. J Am Coll Cardiol 1998; 32: 787–793.

    Article  PubMed  CAS  Google Scholar 

  45. Matetzky S, Novikov M, Gruberg L, et al. The significance of persistent ST elevation vs. early resolution of ST segment elevation after primary PTCA. J Am Coll Cardiol 1999; 34: 1932–1938.

    Article  PubMed  CAS  Google Scholar 

  46. Santoro GM, Valenti R, Buonamici P, et al. Relation between ST-segment changes and myocardial perfusion evaluated by myocardial contrast echocardiography in patients with acute myocardial infarction treated with direct angioplasty. Am J Cardiol 1998; 82: 932–937.

    Article  PubMed  CAS  Google Scholar 

  47. Langer A, Krucoff MW, Klootwijk P, et al. Prognostic significance of ST segment shift early after resolution of ST elevation in patients with myocardial infarction treated with thrombolytic therapy: the GUSTO-I ST Segment Monitoring Substudy. J Am Coll Cardiol 1998; 31: 783–789.

    Article  PubMed  CAS  Google Scholar 

  48. Neuhaus KL, Zeymer U, Tebbe U, Schroeder R. Resolution of ST segment elevation is an early predictor of mortality in patients with acute myocardial infarction. Meta analysis of three thrombolysis trials (Abstract). Circulation 1998; 98: 1–632.

    Article  Google Scholar 

  49. Veldkamp RF, Green CL, Wilkins ML, et al. Comparison of continuous ST-segment recovery analysis with methods using static electrocardiograms for noninvasive patency assessment during acute myocardial infarction. Am J Cardiol 1994; 73: 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  50. Moons KGM, Klootwijk P, Meij SH, et al. Continuous ST-segment monitoring associated with infarct size and left ventricular function in the GUSTO-I trial. Am Heart J 1999; 138: 525–532.

    Article  PubMed  CAS  Google Scholar 

  51. De Groot MJ, Muijtjens AM, Simoons ML, Hermens WT, Glatz JF. Assessment of coronary reperfusion in patients with myocardial infarction using fatty acid binding protein concentrations in plasma. Heart 2001; 85: 278–285.

    Article  PubMed  Google Scholar 

  52. de Lemos JA, Antman EM, Morrow DA, et al. Heart-type fatty acid binding protein as a marker of reperfusion after thrombolytic therapy. Clin Chim Acta 2000; 298: 85–97.

    Article  PubMed  Google Scholar 

  53. Ishii J, Nagamura Y, Nomura M, et al. Early detection of successful coronary reperfusion based on serum concentration of human heart-type cytoplasmic fatty acid-binding protein. Clin Chim Acta 1997; 262: 13–27.

    Article  PubMed  CAS  Google Scholar 

  54. Wall TC, Califf RM, George BS, et al. Accelerated plasminogen activator dose regimens for coronary thrombolysis. The TAMI-7 Study Group. J Am Coll Cardiol 1992; 19: 482–489.

    Article  PubMed  CAS  Google Scholar 

  55. Apple FS, Henry TD, Berger CR, Landt YA. Early monitoring of serum cardiac troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Pathol 1996; 105: 6–10.

    PubMed  CAS  Google Scholar 

  56. Tanasijevic M, Cannon CP, Wybenga DR, et al. Myoglobin, creatine kinase MB, and cardiac troponin-I to assess reperfusion after thrombolysis for acute myocardial infarction: results from TIMI 10A. Am Heart J 1997; 134: 622–630.

    Article  PubMed  CAS  Google Scholar 

  57. Abe J, Yamaguchi T, Isshiki T, et al. Myocardial reperfusion can be predicted by myoglobin/creatine kinase ratio of a single blood sample obtained at the time of admission. Am Heart J 1993; 126: 279–285.

    Article  PubMed  CAS  Google Scholar 

  58. Jurlander B, Clemmenson, Ohman EM, Christenson R, Wagner GS, Grande P. Serum myoglobin for the early non-invasive detection of coronary reperfusion in patients with acute myocardial infarction. Eur Heart J 1996; 17: 399–406.

    Article  PubMed  CAS  Google Scholar 

  59. Tanasijevic M, Cannon CP, Antman EM, et al. Myoglobin, creatine-kinase-MB and cardiac troponin-I 60-minute ratios predict infarct-related artery patency after thrombolysis for acute myocardial infarction: results from the Thrombolysis in Myocardial Infarction study (TIMI) 10B. J Am Coll Cardiol 1999; 343: 739–747.

    Article  Google Scholar 

  60. Zabel M, Hohnloser SH, Koster W, Prinz M, Kasper W, Just H. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation 1993; 87: 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  61. Christenson RH, Ohman EM, Topol EJ, et al. Assessment of coronary reperfusion after thrombolysis with a model combining myoglobin, creatine kinase-MB, and clinical variables. Circulation 1997; 96: 1776–1782.

    Article  PubMed  CAS  Google Scholar 

  62. Stewart JT, French JK, Theroux P, et al. Early noninvasive identification of failed reperfusion after intravenous thrombolytic therapy in acute myocardial infarction. J Am Coll Cardiol 1998; 31: 1499–1505.

    Article  PubMed  CAS  Google Scholar 

  63. Laperche T, Steg PG, Dehoux M, et al. A study of biochemical markers of reperfusion early after thrombolysis for acute myocardial infarction. The PERM Study Group. Prospective Evaluation of Reperfusion Markers. Circulation 1995; 92: 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  64. Laperche T, Golmar JL, Steg PG. Early behavior of biochemical markers in patients with thrombolysis in myocardial infarction grade 2 flow in the infarct artery as opposed to other flow grades after intravenous thrombolysis for acute myocardial infarction. Am Heart J 1997; 134: 1044–1051.

    Article  PubMed  CAS  Google Scholar 

  65. de Lemos JA, Morrow DA, Gibson CM, et al. Early noninvasive detection of failed epicardial reperfusion after fibrinolytic therapy. Am J Cardiol 2001; 88: 353–358.

    Article  PubMed  Google Scholar 

  66. de Lemos JA, Antman EM, Giugliano RP, et al. Very early risk stratification after thrombolytic therapy with a bedside myoglobin assay and the 12-lead electrocardiogram. Am Heart J 2000; 140: 373–378.

    Article  PubMed  Google Scholar 

  67. Giannitsis E, Muller-Bardorff M, Lehrke S, et al. Admission troponin T level predicts clinical outcomes, TIMI flow, and myocardial tissue perfusion after primary percutaneous intervention for acute ST-segment elevation myocardial infarction. Circulation 2001; 104: 630–635.

    Article  PubMed  CAS  Google Scholar 

  68. Ottani F, Galvani M, Nicolini FA, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J 2000; 140: 917–927.

    Article  PubMed  CAS  Google Scholar 

  69. Hindman N, Grande P, Harrell FE Jr, et al. Relation between electrocardiographic and enzymatic methods of estimating acute myocardial infarct size. Am J Cardiol 1986; 58: 31–35.

    Article  PubMed  CAS  Google Scholar 

  70. Sobel BE, Roberts R, Larson KB. Estimation of infarct size from serum MB creatine phosphokinase activity: applications and limitations. Am J Cardiol 1976: 37: 474–485.

    Article  PubMed  CAS  Google Scholar 

  71. Witteveen SAGJ, Hermens WT, Hemker HC, Hollaar L. Quantitation of enzyme release from infarcted heart muscle. In: Ischemic Heart Disease. Haas JH, Hemker HC, Snellen HA, eds. Baltimore: Williams & Wilkins, 1970, pp. 36–42.

    Chapter  Google Scholar 

  72. Shell WE, Kjekshus JK, Sobel BE. Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity. J Clin Invest 1971; 50: 2614–2625.

    Article  PubMed  CAS  Google Scholar 

  73. Roberts R, Henry PD, Sobel BE. An improved basis for enzymatic estimation of infarct size. Circulation 1975; 52: 743–754.

    Article  PubMed  CAS  Google Scholar 

  74. Norris RM, Whitlock RML, Barratt-Boyes C, Small CW. Clinical measurement of myocardial infarct size: modification of a method for the estimation of total creatine phosphokinase release after myocardial infarction. Circulation 1975; 51: 614–620.

    Article  PubMed  CAS  Google Scholar 

  75. Ryan W, Karliner JS, Gilpin E, Covell JW, DeLuca M, Ross J. The creatine kinase curve area and peak of creatine kinase after acute myocardial infarction: usefulness and limitations. Am Heart J 1981; 101: 162–166.

    Article  PubMed  CAS  Google Scholar 

  76. Grande P, Hansen BF, Christiansen C, Naestoft J. Estimation of acute myocardial infarct size in man by serum CK-MB measurements. Circulation 1982; 65: 756–764.

    Article  PubMed  CAS  Google Scholar 

  77. Hermens WT, van der Veen FH, Willems GM. Complete recovery in plasma of enzymes lost from the heart after permanent coronary artery occlusion in the dog. Circulation 1990; 81: 649–659.

    Article  PubMed  CAS  Google Scholar 

  78. Poliner LR, Buja LM, Parkey RW, et al. Comparison of different noninvasive methods of infarct sizing during experimental myocardial infarction. J Nucl Med 1977; 18: 517–523.

    PubMed  CAS  Google Scholar 

  79. Ishikawa Y, Saffitz JE, Mealman RL, Grace AM, Roberts R. Reversible myocardial ischemic injury is not associated with increased creatine kinase activity in plasma. Clin Chem 1997; 43: 467–475.

    PubMed  CAS  Google Scholar 

  80. Christenson RH, Azzazy HME. Biochemical markers of the acute coronary syndromes. Clin Chem 1999; 43: 2301–2311.

    Google Scholar 

  81. Haider AW, Andreotti F, Hackett DR, Tousoulis D, Kluft C, Maseri A, Davies GJ. Early spontaneous intermittent myocardial reperfusion during acute myocardial infarction is associated with augmented thrombogenic activity and less myocardial damage. J Am Coll Cardiol 1995; 26: 662–667.

    Article  PubMed  CAS  Google Scholar 

  82. Andreotti F, Pasceri V, Hackett DR, Davies GJ, Haider AW, Maseri A. Preinfarction angina as a predictor of more rapid coronary thrombolysis in patients with acute myocardial infarction. N Engl J Med 1996; 334: 7–12.

    Article  PubMed  CAS  Google Scholar 

  83. Whitlow PL, Bass TA, Kipperman RM, et al. Results of the study to determine rotablator and transluminal strategy (STRATAS). Am J Cardiol 2001; 87: 699–670.

    Article  PubMed  CAS  Google Scholar 

  84. Tardiff BE, Califf RM, Tcheng JE, et al. Clinical outcomes after detection of elevated cardiac enzymes in patients undergoing percutaneous intervention. IMPACT-II Investigators. Integrilin (eptifibatide) to Minimize Platelet Aggregation and Coronary Thrombosis-II. J Am Coll Cardiol 1999; 33: 88–96.

    Article  PubMed  CAS  Google Scholar 

  85. Willems GM, Muijtjens AM, Lambi FH, Hermens WT. Estimation of circulatory parameters in patients with acute myocardial infarction. Significance for calculation of enzymatic infarct size. Cardiovasc Res 1979; 13: 578–587.

    Article  PubMed  CAS  Google Scholar 

  86. Willems GM, Visser MP, Krill MT, Hermens WT. Quantitative analysis of plasma enzyme levels based upon simultaneous determination of different enzymes. Cardiovasc Res 1982; 16: 120–131.

    Article  PubMed  CAS  Google Scholar 

  87. Witteveen SAGJ, Hermens WT, Hemker HC, Hollaar L. Quantitation of enzyme release from infarcted heart muscle. In: Ischemic Heart Disease. Haas JH, Hemker HC, Snellen HA, eds. Baltimore: Williams & Wilkins, 1970, pp. 36–42.

    Chapter  Google Scholar 

  88. Shell WE, Kjekshus JK, Sobel BE. Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity. J Clin Invest 1971; 50: 2614–2625.

    Article  PubMed  CAS  Google Scholar 

  89. Schwerdt H, Ozbek C, Frohlig G, Schieffer H, Bette L. Optimised function for determining time to peak creatine kinase and creatine kinase-MB as non-invasive reperfusion indicators after thrombolytic therapy in acute myocardial infarction. Cardiovasc Res 1990; 24: 328–334.

    Article  PubMed  CAS  Google Scholar 

  90. Shell WE, Lavelle JF, Covell JW, Sobel BE. Early estimation of myocardial damage in conscious dogs and patients with evolving acute myocardial infarction. J Clin Invest 1973; 52: 2579–2590.

    Article  PubMed  CAS  Google Scholar 

  91. Vollmer RT, Christenson RH, Reimer K, Ohman EM. Temporal creatine kinase curves in acute myocardial infarction: implications of a good empiric fit with the log-normal function. Am J Clin Pathol 1993; 100: 293–298.

    PubMed  CAS  Google Scholar 

  92. Christenson RH, Duh SH, Roe MT, Ohman EM. Determination of the falloff constant (kf) from modeling biochemical marker release: a new variable for discriminating therapies. Cardiovasc Toxicol 2001; 1: 171–176.

    Article  PubMed  CAS  Google Scholar 

  93. Puleo PR, Perryman MB, Bresser MA, Rokey R, Pratt CM, Roberts R. Creatine kinase isoform analysis in the detection and assessment of thrombolytis in man. Circulation 1987; 75: 1162–1169.

    Article  PubMed  CAS  Google Scholar 

  94. Roe CR Validity of estimating myocardial infarct size from serial measurements of enzyme activity in the serum. Clin Chem 1977; 23: 1807–1812.

    PubMed  CAS  Google Scholar 

  95. Horder M, Petersen PH, Thygesen K, Nielsen BL. Plasma enzymes in myocardial infarction. An appraisal of quantitative, clinical and pathophysiological information. Scand J Clin Lab Invest 1981; 41: 41–47.

    Article  PubMed  CAS  Google Scholar 

  96. Marmor A, Sobel BE, Roberts R. Factors presaging early recurrent myocardial infarction (“extension”). Am J Cardiol 1981; 48: 603–610.

    Article  PubMed  CAS  Google Scholar 

  97. Shiraki H, Yoshikawa T, Anzai T, et al. Association between preinfarction angina and a lower risk of right ventricular infarction. N Engl J Med 1998; 338: 941–947.

    Article  PubMed  CAS  Google Scholar 

  98. Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F. Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 1995; 91: 291–297.

    Article  PubMed  CAS  Google Scholar 

  99. Kloner RA, Shook T, Przyklenk K, et al. Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation 1995; 91: 37–45.

    Article  PubMed  CAS  Google Scholar 

  100. Anzai T, Yoshikawa T, Asakura Y, et al. Preinfarction angina as a major predictor of left ventricular function and long-term prognosis after a first Q wave myocardial infarction. J Am Coll Cardiol 1995; 26: 319–327.

    Article  PubMed  CAS  Google Scholar 

  101. Bahr RD, Leino EV, Christenson RH. Prodromal unstable angina in acute myocardial infarction: prognostic value of short-and long-term outcome and predictor of infarct size. Am Heart J 2000; 140: 126–133.

    Article  PubMed  CAS  Google Scholar 

  102. De Sutter J, Van de Wiele C, Gheeraert P, et al. The Selvester 32-point QRS score for evaluation of myocardial infarct sizeafter primary coronary angioplasty. Am J Cardiol 1999; 83: 255–257.

    Article  PubMed  Google Scholar 

  103. Sobel BE, Bresnahan GF, Shell WE, Yoder RD. Estimation of infarct size in man and its relation to prognosis. Circulation 1972; 46: 640–648.

    Article  PubMed  CAS  Google Scholar 

  104. Moroko PR. Assessing myocardial damage in acute infarcts. N Engl J Med 1974; 290: 158–159.

    Article  Google Scholar 

  105. Baardman T, Hermens WT, Lenderink T, et al. Differential effects of tissue plasminogen activator and streptokinase on infarct size and on rate of enzyme release: influence of early infarct related artery patency. The GUSTO Enzyme Substudy. Eur Heart J 1996; 17: 237–246.

    Article  PubMed  CAS  Google Scholar 

  106. de Boer MJ, Suryapranata H, Hoorntje JC, et al. Limitation of infarct size and preservation of left ventricular function afterprimary coronary angioplasty compared with intravenous streptokinase in acute myocardial infarction. Circulation 1994; 90: 753–761.

    Article  PubMed  Google Scholar 

  107. Ottervanger JP, Liem A, de Boer MJ, et al. Limitation of myocardial infarct size after primary angioplasty: is a higher patency the only mechanism? Am Heart J 1999; 137: 1169–1172.

    Article  PubMed  CAS  Google Scholar 

  108. Christenson RH, Vollmer RT, Ohman EM, et al. Relation of temporal creatine kinase-MB release and outcome after thrombolytic therapy for acute myocardial infarction. TAMI Study Group. Am J Cardiol 2000; 85: 543–547.

    Article  PubMed  CAS  Google Scholar 

  109. Mahaffey KW, Bastros EM, Christenson RH, Every NR, Ohman EM. Peak creatine kinase and creatine kinase MB after myocardial infarction strongly correlate with ejection fraction and infarct size by nuclear imaging. Circulation 2000; 102: 796 (abstract 3844).

    Google Scholar 

  110. De Winter RJ, Koster RW, Sturk A, Sanders GT. Value of myoglobin, troponin T, and CKMBmass in ruling out an acute myocardial infarction in the emergency room. Circulation 1995; 92: 3401–3407.

    Article  PubMed  Google Scholar 

  111. Suryapranata H, Zijlstra F, MacLeod DC, van den Brand M, De Feyter PJ, Serruys PW. Predictive value of reactive hyperemic response on reperfusion on recovery of regional myocardial function after coronary angioplasty in acute myocardial infarction. Circulation 1994; 89: 1109–1117.

    Article  PubMed  CAS  Google Scholar 

  112. Gibbons RJ, Miller TD, Christian TF. Infarct size measurement by single photon emission computed tomographic imaging with 99mTm-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 2000; 101: 101–108.

    Article  PubMed  CAS  Google Scholar 

  113. Garabedian HD, Gold HK, Yasuda T, et al. Detection of coronary artery reperfusion with creatine kinase-MB determinations during thrombolytic therapy: correlation with acute angiography. J Am Coll Cardiol 1988; 11: 729–734.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christenson, R.H., Azzazy, H.M.E. (2003). Assessing Reperfusion and Prognostic Infarct Sizing with Biochemical Markers. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-385-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-385-9_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-319-0

  • Online ISBN: 978-1-59259-385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics