Skip to main content

Antibody Selection Strategies in Cardiac Troponin Assays

  • Chapter

Part of the book series: Pathology and Laboratory Medicine ((PLM))

Abstract

The history of troponin assays starts from the late 1980s. In 1987, B. Cummins reported a new analyte that could be used for diagnosis of acute myocardial infarction (MI) (1). The new method was based on the immunodetection of cardiac isoform of troponin I (cTnI). Two years later Katus and colleagues (2) suggested utilization of cardiac troponin T (cTnT) as a cardiac marker. Today dozens of commercial cTnI assays are available. Troponins are the most “popular” cardiac markers. According to Apple et al. (3), in 1999 about 85% of clinical laboratories in the United States were using this analyte in their practice. But our knowledge about the nature of cTnI circulating in the blood is still only the tip of an iceberg. Limited knowledge of the antigen limits the possibilities of developing a theory of cTnI assays, and as a consequence results in huge between-method variations for existing cTnI assays (4,5). Obviously the lack of an international standard (6) complicates assay standardization, but in the case of cTnI, the antibody standardization can be even more important (4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J 1987; 113: 1333–1344.

    Article  PubMed  CAS  Google Scholar 

  2. Katus HA, Remppis A, Looser S, Hallermeier K, Scheffold T, Kubler W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol 1989; 21: 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  3. Apple FS, Murakami M, Panteghini M, et al. International survey on the use of cardiac markers. Clin Chem 2001; 47: 587–588.

    PubMed  CAS  Google Scholar 

  4. Katrukha A, Bereznikova A, Filatov V, Esakova T. Biochemical factors influencing measurement of cardiac troponin I in serum. Clin Chem Lab Med 1999; 37: 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  5. Wu AH, Feng YJ, Moore R, et al. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clin Chem 1998; 44: 1198–1208.

    PubMed  CAS  Google Scholar 

  6. Christenson RH, Duh SH, Apple FS, et al. Standardization of cardiac troponin I assays: round Robin of ten candidate reference materials. Clin Chem 2001; 47: 431–437.

    PubMed  CAS  Google Scholar 

  7. Bodor GS, Porterfield D, Voss EM, Smith S, Apple FS. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem 1995; 41: 1710–1715.

    PubMed  CAS  Google Scholar 

  8. Hammerer-Lercher A, Erlacher P, Bittner R, et al. Clinical and experimental results on cardiac troponin expression in Duchenne muscular dystrophy. Clin Chem 2001; 47: 451–458.

    PubMed  CAS  Google Scholar 

  9. Adams JE 3rd, Sicard GA, Allen BT, et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med 1994, 10; 330: 670–674.

    Article  Google Scholar 

  10. Mair J. Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci 1997; 34: 1–66.

    Article  PubMed  CAS  Google Scholar 

  11. Vallins WJ, Brand NJ, Dabhade N, Butler-Browne G, Yacoub MH, Barton PJR. Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett 1990; 270: 57–61.

    Article  PubMed  CAS  Google Scholar 

  12. Wade R, Eddy R, Shows TB, Kedes L. cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle isoform of troponin I. Genomics 1990; 7: 346–357.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu L, Perez-Alvarado G, Wade R. Sequencing of a cDNA encoding the human fast-twitch skeletal muscle isoform of troponin I. Biochim Biophys Acta 1994; 1217: 338–340.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi M, Lee L, Shi Q, Gawad Y, Jackowski G. Use of enzyme immunoassay for measurement of skeletal troponin-I utilizing isoform-specific monoclonal antibodies. Clin Biochem 1996; 29: 301–308.

    Article  PubMed  CAS  Google Scholar 

  15. Leavis P, Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 1984; 16: 235–305.

    Article  PubMed  CAS  Google Scholar 

  16. Filatov VL, Katrukha AG, Bulargina TV, Gusev NB. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc) 1999; 64: 969–985.

    CAS  Google Scholar 

  17. Wattanapermpool J, Guo X, Solaro RJ. The unique amino-terminal peptide of cardiac troponin I regulates myofibrillar activity only when it is phosphorylated. J Mol Cell Cardiol 1995; 27 (7): 1383–1391.

    Article  PubMed  CAS  Google Scholar 

  18. Venema RC, Kuo JF. Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is assosiated with inhibition of myofibrillar actomysoin MgATPase. J Biol Chem 1993; 268: 2705–2711.

    PubMed  CAS  Google Scholar 

  19. Noland TA, Kuo JF. Protein kinase C phosphorylation of cardiac troponin I and troponin T inhibits Ca2+ stimulated MgATPase activity in reconstituted actomyosin and isolated myofibrils and decreases actin-myosin interaction. J Mol Cell Cardiol 1993; 25: 53–65.

    Article  PubMed  CAS  Google Scholar 

  20. Ebashi S, Wakabayashi T, Ebashi F. Troponin and its components. J Biochem (Tokyo) 1971; 69: 441–445.

    CAS  Google Scholar 

  21. Leavis P, Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 1984; 16: 235–305.

    Article  PubMed  CAS  Google Scholar 

  22. Zot AS, Potter JD. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem 1987; 16: 535–559.

    Article  PubMed  CAS  Google Scholar 

  23. Robertson SP, Johnson JD, Potter JD. The time-course of the Cat+ exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increase in Cat+. Biophys J 1981; 34: 559–568.

    Article  PubMed  CAS  Google Scholar 

  24. Ingraham RH, Swenson CA. Binary interactions of troponin subunits. J Biol Chem 1984; 259: 9544–9548.

    PubMed  CAS  Google Scholar 

  25. Farah CS, Miyamoto CA, Ramos CHI, et al. Structural and regulatory functions of the NH2and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 1994; 269: 5230–5240.

    PubMed  CAS  Google Scholar 

  26. Olah GA, Trewhella J. A model structure of the muscle protein complex 4Ca2+-troponin Ctroponin I derived from small-angle scattering data: implication for regulation. Biochemistry 1994; 33: 12800–12806.

    Article  PubMed  CAS  Google Scholar 

  27. Bodor GS, Porter S, Landt Y, Ladenson JH. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin Chem 1992; 38: 2203–2214.

    PubMed  CAS  Google Scholar 

  28. Katrukha AG, Bereznikova AV, Pulkki K, et al. Kinetics of liberation of free and total troponin I in sera of patients with acute myocardial infarction. Clin Chem 1997; 43 (56): S106.

    Google Scholar 

  29. Katrukha AG, Bereznikova AV, Esakova TV, et al. Troponin I is released in the blood stream of patients with acute myocardial infarction not in the free form, but as a complex. Clin Chem 1997; 43: 1379–1385.

    PubMed  CAS  Google Scholar 

  30. Katrukha A, Bereznikova A, Pettersson K. New approach to standardisation of human cardiac troponin I (cTnI). Scand J Clin Lab Invest 1999; 230 (Suppl): 124–127.

    CAS  Google Scholar 

  31. Datta P, Foster K, Dasgupta A. Comparison of immunoreactivity of five human cardiac troponin I assays toward free and complexed forms of the antigen: implications for assay discordance. Clin Chem 1999; 45: 2266–2269.

    PubMed  CAS  Google Scholar 

  32. Venge P, Lindahl B, Wallentin L. New generation cardiac troponin I assay for the ACCESS immunoassay system. Clin Chem 2001; 47: 959–961.

    PubMed  CAS  Google Scholar 

  33. Katrukha A, Bereznikova A, Filatov V, et al. Binary cTnI -cTnT complex in AMI serum. CIin Chem Lab Med 1999;S449, H 092.

    Google Scholar 

  34. Giuliani I, Bertinchant JP, Granier C, et al. Determination of cardiac troponin I forms in the blood of patients with acute myocardial infarction and patients receiving crystalloid or cold blood cardioplegia. Clin Chem 1999; 45: 213–222.

    PubMed  CAS  Google Scholar 

  35. Katrukha AG, Bereznikova AV, Esakova TV, Severina ME, Petterson K, Lovgren T. Troponin complex for the preparation of troponin I calibrators and standards. Clin Chem 1997; 43 (S6):S 106.

    Google Scholar 

  36. Katrukha AG, Bereznikova AV, Filatov VL, et al. Cardiac troponin I degradation: application for reliable immunodetection. Clin Chem 1998; 44: 2433–2440.

    PubMed  CAS  Google Scholar 

  37. McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 1999; 84: 122–124.

    Article  Google Scholar 

  38. Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RI. Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res 1998; 82: 261–271.

    Article  PubMed  Google Scholar 

  39. Di Lisa F, De Tullio R, Salamino F, et al. Specific degradation of troponin T and I by mucalpain and its modulation by substrate phosphorylation. Biochem J 1995; 308: 57–61.

    PubMed  Google Scholar 

  40. Morjana NA. Degradation of human cardiac troponin I after myocardial infarction. Biotechnol Appl Biochem 1998; 28: 105–111.

    PubMed  CAS  Google Scholar 

  41. Ward DG, Ashton PR, Trayer HR, Trayer IP. Additional PKA phosphorylation sites in human cardiac troponin I. Eur J Biochem 2001; 268: 179–185.

    Article  PubMed  CAS  Google Scholar 

  42. Labugger R, Organ L, Neverova I, Van Eyk J. Ischemia-reperfusion induced novel phosphorylation of TnI: implications for serum diagnostics. Clin Chem 2001; 47 (S6): A213.

    Google Scholar 

  43. Katrukha A, Bereznikova A, Filatov V, Kolosova O, Pettersson K, Bulargina T. Monoclonal antibodies affected by cTnI phosphorylation. Part of cTnI in the blood of AMI patients is phosphorylated? Clin Chem Lab Med 1999;S 448, H 091.

    Google Scholar 

  44. Cummins B, Russell GJ, Cummins P. A monoclonal antibody that distinguishes phosphoand dephosphorylated forms of cardiac troponin-I. Biochem Soc Trans 1991; 19: 161S.

    Google Scholar 

  45. Gerhardt W, Nordin G, Herbert AK, et al. Troponin T and I assays show decreased concentrations in heparin plasma compared with serum: lower recoveries in early than in late phases of myocardial injury. Clin Chem 2000; 46: 817–821.

    PubMed  CAS  Google Scholar 

  46. Stiegler H, Fischer Y, Vazquez-Jimenez JF, et al. Lower cardiac troponin T and I results in heparin-plasma than in serum. Clin Chem 2000; 46: 1338–1344.

    PubMed  CAS  Google Scholar 

  47. Wagner TL, Schessler HM, Liotta LA, Day AR. On the interaction of cardiac troponin I (cTNI) and heparin. A possible solution. Clin Chem 2001; 47 (S6): A213.

    Google Scholar 

  48. Dangas G, Konstadoulakis MM, Epstein SE, et al. Prevalence of autoantibodies against contractile proteins in coronary artery disease and their clinical implications. Am J Cardiol 2000;85:870–872, A6, A9.

    Google Scholar 

  49. Sakamaki S, Takayanagi N, Yoshizaki N, et al. Autoantibodies against the specific epitope of human tropomyosin(s) detected by a peptide based enzyme immunoassay in sera of patients with ulcerative colitis show antibody dependent cell mediated cytotoxicity against HLA-DPw9 transfected L cells. Gut 2000; 47: 236–241.

    Article  PubMed  CAS  Google Scholar 

  50. Leon JS, Godsel LM, Wang K, Engman DM. Cardiac myosin autoimmunity in acute Chagas’ heart disease. Infect Immun 2001; 69: 5643–5649.

    Article  PubMed  CAS  Google Scholar 

  51. Bohner J, von Pape KW, Hannes W, Stegmann T. False-negative immunoassay results for cardiac troponin I probably due to circulating troponin I autoantibodies. Clin Chem 1996; 42: 2046.

    Google Scholar 

  52. Tanasijevic MJ, Cannon CP, Antman EM. The role of cardiac troponin-I (cTnI) in risk stratification of patients with unstable coronary artery disease. Clin Cardiol 1999; 22: 13–16.

    Article  PubMed  CAS  Google Scholar 

  53. Morrow DA, Antman EM, Tanasijevic M, et al. Cardiac troponin I for stratification of early outcomes and the efficacy of enoxaparin in unstable angina: a TIMI-1lB substudy. J Am Coll Cardiol 2000; 36: 1812–1817.

    Article  PubMed  CAS  Google Scholar 

  54. Teles R, Ferreira J, Aguiar C, et al. Prognostic value of cardiac troponin I release kinetics in unstable angina. Rev Port Cardiol 2000; 19: 407–422.

    PubMed  CAS  Google Scholar 

  55. Ottani F, Galvani M, Ferrini D, et al. Direct comparison of early elevations of cardiac troponin T and I in patients with clinical unstable angina. Am Heart J 1999; 137: 284–291.

    Article  PubMed  CAS  Google Scholar 

  56. Hamm CW. Progress in the diagnosis of unstable angina and perspectives for treatment. Eur Heart J 1998; 19 (Suppl N): N48 - N50.

    PubMed  Google Scholar 

  57. Ottani F, Galvani M, Nicolini FA, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J 2000; 140: 917–927.

    Article  PubMed  CAS  Google Scholar 

  58. Heeschen C, Goldmann BU, Moeller RH, Hamm CW. Analytical performance and clinical application of a new rapid bedside assay for the detection of serum cardiac troponin I. Clin Chem 1998; 44: 1925–1930.

    PubMed  CAS  Google Scholar 

  59. Apple FS, Anderson FP, Collinson P, et al. Clinical evaluation of the first medical whole blood, point-of-care testing device for detection of myocardial infarction. Clin Chem 2000; 46: 1604–1609.

    PubMed  CAS  Google Scholar 

  60. Ash J, Baxevanakis G, Bilandzic L, Shin H, Kadijevic L. Development of an automated quantitative latex immunoassay for cardiac troponin I in serum. Clin Chem 2000; 46: 1521–1522.

    PubMed  CAS  Google Scholar 

  61. Uettwiller-Geiger D, Wu AHB, Apple FS, et al. Analytical performance of Beckman Coulter’s Access® AccuTnITM (Troponin I) in a multicenter evaluation. Clin Chem 2002; 48: 869–876.

    PubMed  CAS  Google Scholar 

  62. Jevans AV, Apple FS, Wu AH, et al. Clinical performance of Beckmam Coulter’s Access® AccuTnITM (troponin I) in a multicenter clinical trial. Clin Chem 2000; 47 (S6): A205.

    Google Scholar 

  63. Lame C, Calzolari C, Bertinchant JP, Leclercq F, Grolleau R, Pau B. Cardiac-specific immunoenzymometric assay of troponin I in the early phase of acute myocardial infarction. Clin Chem 1993; 39: 972–979.

    Google Scholar 

  64. Suetomi K, Takahama K. A sandwich enzyme immunoassay for cardiac troponin I. Nippon Hoigaku Zasshi 1995; 49: 26–32.

    PubMed  CAS  Google Scholar 

  65. Filatov VL, Katrukha AG, Bereznikova AV, et al. Epitope mapping of anti-TnI monoclonal antibodies. Biochem Mol Biol Intern 1998; 45: 1179–1187.

    CAS  Google Scholar 

  66. Lame C, Defacque-Lacquement H, Calzolari C, Le Nguyen D, Pau B. New monoclonal antibodies as probes for human cardiac troponin I: epitopic analysis with synthetic peptides. Mol Immunol 1992; 29: 271–278.

    Article  Google Scholar 

  67. Rama D, Calzolari C, Granier C, Pau B. Epitope localization of monoclonal antibodies used in human troponin I immunoenzymometric assay. Hybridoma 1997; 16: 153–157.

    Article  PubMed  CAS  Google Scholar 

  68. Lame C, Ferrieres G, Laprade M, Calzolari C, Granier C. Antigenic definition of cardiac troponin I. Clin Chem Lab Med 1998; 36: 361–365.

    Google Scholar 

  69. Ferrieres G, Calzolari C, Mani JC, et al. Human cardiac troponin I: precise identification of antigenic epitopes and prediction of secondary structure. Clin Chem 1998; 44: 487–493.

    PubMed  CAS  Google Scholar 

  70. Hansen A, Kemp K, Kemp E, et al. High-dose stabilized chlorite matrix WF10 prolongs cardiac xenograft survival in the hamster-to-rat model without inducing ultrastructural or biochemical signs of cardiotoxicity. Pharmacol Toxicol 2001; 89: 92–95.

    Article  PubMed  CAS  Google Scholar 

  71. Ricchiuti V, Sharkey SW, Murakami MM, Voss EM, Apple FS. Cardiac troponin I and T alterations in dog hearts with myocardial infarction: correlation with infarct size. Am J Clin Pathol 1998; 110: 241–247.

    PubMed  CAS  Google Scholar 

  72. Ricchiuti V, Zhang J, Apple FS. Cardiac troponin I and T alterations in hearts with severe left ventricular remodeling. Clin Chem 1997; 43: 990–995.

    PubMed  CAS  Google Scholar 

  73. Muller-Bardorff M, Hallermayer K, Schroder A, et al. Improved troponin T ELISA specific for cardiac troponin T isoform: assay development and analytical and clinical validation. Clin Chem 43: 458–466.

    Google Scholar 

  74. Katrukha A, Bereznikova A, Filatov V, Kolosova O, Pettersson K, Bulargina T. Troponin T degradation in necrotic human cardiac tissue. Clin Chem Lab Med 1999;5 449, H 093.

    Google Scholar 

  75. Baum H, Braun S, Gerhardt W, et al. Multicenter evaluation of a second-generation assay for cardiac troponin T. Clin Chem 1997; 43: 1877–1884.

    PubMed  CAS  Google Scholar 

  76. Noland TA Jr, Raynor RL, Kuo JF. Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem 1989; 264: 20778–20785.

    PubMed  CAS  Google Scholar 

  77. Jideama NM, Noland TA Jr, Raynor RL, et al. Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem 1996; 271: 23277–23283.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katrukha, A. (2003). Antibody Selection Strategies in Cardiac Troponin Assays. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-385-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-385-9_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-319-0

  • Online ISBN: 978-1-59259-385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics