Skip to main content

Interferons

  • Chapter
  • 78 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

Interferons (IFNs) represent a family of pleiotropic proteins. They were first described as antiviral agents in 1957 by Issacs and Lindenmann (1). It was later shown that they play an important role not only in antiviral control but also in cellular proliferation control and in immune system modulation. According to the cellular origin, IFNs can be classified as leukocyte, fibroblast, or immune IFN (2). Leukocyte and fibroblast IFNs are also called type I IFNs, and immune IFN is often called type II IFN (2). IFNs were the first cytokines used in clinical trials of patients with cancer. Results of pivotal clinical studies using IFN-α for treatment of chronic myelogenous leukemia (CML) were already published in 1983 by Talpaz et al. (3). Further development of IFNs as antitumor agents developed rapidly, and today recombinant IFN-α is approved worldwide in more than 40 countries for treatment of various malignancies and viral diseases (4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Issacs A, Lindenmann J. The interferon. Proc Royal Soc London (Series B). J Virus Interference 1957; 259.

    Google Scholar 

  2. Pestka S, Langer JA, Zoon KC, Samuel, CE. Interones and their actions. Ann Rev Biochem 1987; 56: 727–777.

    Article  PubMed  CAS  Google Scholar 

  3. Talpaz M, McCredie KB, Mavligit GM, Gutterman JU. Leukocyte interferon-induced myeloid cytoreduction in CML. 1983; 62: 689–692.

    CAS  Google Scholar 

  4. Pfeffer LM, Dinarello CA, Herberman RB, et al. Biological properties of recombination ainterferons: 40th anniversary of the discovery of interferons. Cancer Res 1998; 58: 2489–2499.

    PubMed  CAS  Google Scholar 

  5. Sen GC, Lengyel P. The interferon system. A bird’s eye view of its biochemistry. J Biol Chem 1992; 267: 5017–5020.

    PubMed  CAS  Google Scholar 

  6. Pestka S. The interferon receptors. Semin Oncol 1997; 24: 9.

    Google Scholar 

  7. Uzé G, Lutfalla G, Gresser I. Genetic transfer of a functional human interferon a receptor into mouse cells; cloning and expression of its cDNA. Cell 1990; 60: 225–234.

    Article  PubMed  Google Scholar 

  8. Müller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994; 264: 1918–1921.

    Article  PubMed  Google Scholar 

  9. Hwang SY, Hertzog PI, Holland KA, et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferon a and ß and alters macrophage responses. Proc Natl Acad Sci USA. 1995; 92: 11284–11288.

    Article  PubMed  CAS  Google Scholar 

  10. Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD. How cells respond to interferons. Ann Rev Biochem 1998; 67: 227–264.

    Article  PubMed  CAS  Google Scholar 

  11. Platanias LC, Fish EN. Signaling pathways activated by interferons. Exp Hematol 1999; 27: 1583–1592.

    Article  PubMed  CAS  Google Scholar 

  12. Ransohoff RM. Cellular responses to interferons and other cytokines: the JAK-STAT paradigm. N Engl J Med 1998; 338: 616.

    Article  PubMed  CAS  Google Scholar 

  13. Ihle JN, witthuhn BA, Quelle FW, et al. Signaling by the cytokine receptor superfamily• JAKs and STATs. Trends Biochem Sci 1994; 19 (5): 222.

    Article  PubMed  CAS  Google Scholar 

  14. Darnell JE Jr., Kerr IM, Stark GR. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1993; 264: 1415.

    Article  Google Scholar 

  15. Williams BR. Transcriptional regulation of interferon-stimulated genes. Eur J Biochem 1991; 200 (1): 1–11.

    Article  PubMed  CAS  Google Scholar 

  16. Williams BRG. Signal transduction and transcriptional regulation of interferon-a-stimulated genes. J Interferon Res 1991; 11 (4): 207–13.

    Article  PubMed  CAS  Google Scholar 

  17. Sen GC, Ransohoff RM. Interferon-induced antiviral actions and their regulation. Adv Virus Res 1993; 42: 57–102.

    Article  PubMed  CAS  Google Scholar 

  18. Staeheli P. Interferon-induced proteins and the antiviral state. Adv Virus Res 1990; 38: 147–200.

    Article  PubMed  CAS  Google Scholar 

  19. Ben Dori R, Resnitzki D, Kimchi A. Reduction in p53 synthesis during differentiation of Friend-erythroleukemia cells. Correlation with the commitment to terminal cell division. FEBS Lett 1983; 162: 384–389.

    Article  Google Scholar 

  20. Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA 1992; 90: 5893–5895.

    Article  Google Scholar 

  21. Tiefenbrun N, Melamed D, Levy N, et al. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible GO-like arrest. Mol Cell Biol 1996; 16: 3934–3944.

    PubMed  CAS  Google Scholar 

  22. Yamada H, Ochi K, Nakada S, et al. Interferon modulates the messenger RNA of G1-controlling genes to suppress the Gl-to-S transition in Daudi cells. Mol Cell Biochem 1995; 152: 149–158.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang K, Kumar R. Interferon-alpha inhibits cyclin E- and cyclin D1-dependent CDK-2 kinase activity associated with RB protein and E2F in Daudi cells. Biochem Biophys Res Commun 1994; 200: 522–528.

    Article  PubMed  CAS  Google Scholar 

  24. Roth W, Wagenknecht B, Dichgans J, Weller M. Interferon-alpha enhances CD95L-induced apoptosis of human malignant glioma cells. J Neuroimmunol 1998; 87 (1–2): 121–129.

    Article  PubMed  Google Scholar 

  25. Thou Q, Zhao J, Al-Zoghaibi F, et al. Transcription control of the human plasma membrane phospholipid scramblase 1 gene is mediated by interferon-alpha. Blood 2000; 95 (8): 2593–9.

    Google Scholar 

  26. Verfaillie CM, McCarthy JB, McGlave PB. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV. J Clin Invest 1992; 90: 232.

    Article  Google Scholar 

  27. Simons PJ, Masinovsky B, Longenecker BM, et al. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 1992; 80: 388.

    Google Scholar 

  28. Bhatia R, McCarthy JB, Verfaillie CM. Interferon-a restores normal 131-integrin mediated negative regulation of chronic myelogenous leukemia progenitor proliferation. Blood 1996; 87: 3883.

    PubMed  CAS  Google Scholar 

  29. Aman J, Keller U, Derigs G, Mansour M, Huber C, Peschel C. Regulation of cytokine expression by Interferon-a in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of Interleukin-1 receptor antagonist. Blood 1994; 84: 4142–4150.

    PubMed  CAS  Google Scholar 

  30. Namen AE, Schmierer AE, March CJ, et al. B cell precusor growth-promoting activity. Purification and characterization of a growth factor active an lymphocyte precursors. J Exp Med 1988; 167: 988.

    Article  PubMed  CAS  Google Scholar 

  31. Paul SR, Bennett F, Calvette JA, et al. Molecular cloning or a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990; 87: 512.

    Article  Google Scholar 

  32. Heinrich MC, Dooley DC, Freed AC, et al. Constitutive expression of steel factor gene by human stromal cells. Blood 1993; 82: 771.

    PubMed  CAS  Google Scholar 

  33. Charbord P, Tamayo E, Sealand S, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) in human long-term bone marrow cultures: endogenous production in the adherent layer and effect of exogenous GM-CSF in granulomonopoiesis. Blood 1991; 78: 1230.

    PubMed  CAS  Google Scholar 

  34. Molldrem J, Lee P, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia Nature Med 2000; 6: 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  35. Doff RT. Interferon-alpha in malignant and viral diseases. A review. Drugs 1993; 45: 177–211.

    Google Scholar 

  36. Talpaz M, Kantarjian HM, McCredie K, Trujillo JM, Keating MJ, Gutterman JU. Hematologic remission and cytogenetic improvement by recombinant human interferon alpha A in CML. N Engl J Med 1986; 314: 1065–1069.

    Article  PubMed  CAS  Google Scholar 

  37. Silver RT, Woolf SH, Hehlmann R, et al. An evidence-based analysis of the effect of busulfan, hydroyurea, interferon, and allogneic bone marrow transplantation in treating the

    Google Scholar 

  38. chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 1999;94(5):1517–1536.

    Google Scholar 

  39. Kantarjian HM, O’Brien S, Anderlini P, Talpaz M. Treatment of chronic myelogenous leukemia: current status and investigational options. Blood 1996; 87 (8): 3069–3081.

    PubMed  CAS  Google Scholar 

  40. Hehlmann R, Heimpel H, Hasford J, and the German CML Study Group, et al. Randomized comparison of interferon-a with Busulfan and Hydroxyurea in chronic myelogenous leukemia. Blood 1994;84:4064–4077.

    Google Scholar 

  41. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon-a-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 1994; 330: 820–825.

    Article  Google Scholar 

  42. Allan NC, Richards SM, Shepherd PC. UK Medical Research Council randomized, multicenter trial of interferon-a nl for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response. The UK Medical Research Council’s Working Parties for Therapeutic Trials in Adult Leukaemia. Lancet 1995; 345: 1392–1397.

    Article  PubMed  CAS  Google Scholar 

  43. Ohnishi K, Ohno R, Tomonafa M, et al. A randomized trial comparing interferon-a with Busulfan for newly diagnosed chronic myelogenous leukemia in chronic phase. Blood 1995; 86: 906–916.

    PubMed  CAS  Google Scholar 

  44. Chronic Myeloid Leukemia Trialist’s Collaborative Group. Interferon-a versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J Nail Cancer Inst 1997; 89: 1616–1620.

    Article  Google Scholar 

  45. Bonifazi F, de Vivo A, Rosti G, European Study Group on Interferon in Chronic Myeloid Leukemia, et al. Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood 2001; 98 (10): 3074–3081.

    Article  PubMed  Google Scholar 

  46. Hehlmann R, Hochhaus A, Berger U, Reiter A. Current trends in the management of chronic myelogenous leukemia. Ann Hematol 2000; 79: 345–354.

    Article  PubMed  CAS  Google Scholar 

  47. Hasford J, Pfirrmann M, Hehlmann R, et al. A new prognostic score for the survival of patients with chronic myeloid leukemia treated with interferon-a. J Natl Cancer Inst 1998; 90: 850–858.

    Article  PubMed  CAS  Google Scholar 

  48. Hochaus A, Reiter A, Saubele S, Cross NCP for the German CML Study Group and the UK MRC CML Study Group, et al. Molecular heterogeneity in complete cytogenetic responders after interferon-a therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. Blood 2000;95(1):62–66.

    Google Scholar 

  49. Beelen DW, Graeven U, Elmaagacli AH, et al. Prolonged administration of interferon-a in patients with chronic-phase Philadelphia chromosome-positive chronic myelogenous leukemia before allogeineic bone marrow transplantation may adversely affect transplant outcome. Blood 1995; 85 (10): 2987–2990.

    Google Scholar 

  50. Giralt S, Szydlo R, Goldman JM, et al. Effect of short-term interferon therapy on the outcome of subsequent HLA-identical sibling bone marrow transplantation for chronic myelogenous leukemia: an analysis from the International Bone Marrow Transplant Registry. Blood 2000; 95 (2): 410–415.

    PubMed  CAS  Google Scholar 

  51. Pralle H, Dempke W. Kompendium Internistische Onkologie. In: Schmoll HJ, Höffken K, Possinger K, eds. Springer (Berlin, Heidelberg, New York ); 1999: 243–255.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fischer, T. (2003). Interferons. In: Kalaycio, M. (eds) Biologic Therapy of Leukemia. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-383-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-383-5_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9777-9

  • Online ISBN: 978-1-59259-383-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics