Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 113 Accesses

Abstract

Platelets are born from megakaryocytes and are bred to adhere. As such, these anuclear particles represent one of the most highly specialized cells within the body. This functional dedication to adhesion is essential in order to prevent excessive bleeding from sites of vascular injury. The rapidity with which platelets seal an injured vessel is a remarkable testament to their adhesive specialization and is essential to the maintenance and/or restoration of vascular integrity. As with many physiologic systems, an overly exuberant cellular response can have major pathophysiologic consequences. In the case of platelet adhesion, the out-of-control response can be devastating, thrombosis, leading to life-threatening or debilitating pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus AJ, Safier LB, Broekman MJ, et al. Thrombosis and inflammation as multicellular processes. Significance of cell-cell interactions. Thromb Haemost 1995;74:213–217.

    PubMed  CAS  Google Scholar 

  2. Marcus AJ, Broekman MJ, Drosopoulos JHF, et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 1997;99:1351–1360.

    Article  PubMed  CAS  Google Scholar 

  3. Bombeli T, Mueller M, Haeberli A. Anticoagulant properties of the vascular endothelium. Thromb Haemost 1997;77:408–423.

    PubMed  CAS  Google Scholar 

  4. Ill CR, Engvall E, Ruoslahti E. Adhesion of platelets to laminin in the absence of activation. J Cell Biol 1985;99:2140–2145.

    Article  Google Scholar 

  5. Grinnell F, Hays DG. Cell adhesion and spreading factor. Similarity to cold insoluble globulin in human serum. Exp Cell Res 1978;115:221–229.

    Article  PubMed  CAS  Google Scholar 

  6. Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to the subendothelium. Nature 1979;279:636–638.

    Article  PubMed  CAS  Google Scholar 

  7. Leytin VL, Gorbunova NA, Misselwitz F, Novikov ID, Podrez EA, Plyusch OP. Step-by-step analysis of adhesion of human platelets to a collagen-coated surface. Defect in initial attachment and spreading of platelets in von Willebrand’s disease. Thromb Res 1984;34:51–63.

    Article  PubMed  CAS  Google Scholar 

  8. Brass LF, Bensusan HB. The role of collagen quaternary structure in the platelet: collagen interaction. J Clin Invest 1974;54:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  9. Stenberg PE, McEver R-P, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985;101: 880–886.

    Article  PubMed  CAS  Google Scholar 

  10. Niija K, Hodson E, Bader R, et al. Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood 1987;70:475–482.

    Google Scholar 

  11. Michelson AD, Adelman B, Barnard MR, Carroll E, Handin RI. Platelet storage results in a redistribution of glycoprotein lb molecules. Evidence for a large intraplatelet pool of glycoprotein Ib. J Clin Invest 1988;81:1734–1740.

    Article  PubMed  CAS  Google Scholar 

  12. Kehrel B. Platelet receptors for collagens. Platelets 1995;6:11–16.

    Article  PubMed  CAS  Google Scholar 

  13. Sixma JJ, van Zanten GH, Saelman EUM, et al. Platelet adhesion to collagen. Thromb Haemost 1995; 74:454–459.

    PubMed  CAS  Google Scholar 

  14. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), αvβ3 integrin, and GPIba. J Exp Med 1998;187:329–339.

    Article  PubMed  CAS  Google Scholar 

  15. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the β2 integrin CD1lb/CD18. Blood 1996;88:146–157.

    PubMed  CAS  Google Scholar 

  16. Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to αllbβ33 and stimulated by platelet-activating factor. J Clin Invest 1997;100:2085–2093.

    Article  PubMed  CAS  Google Scholar 

  17. Neri Serneri GG, Prisco D, Martini F, et al. Acute T-cell activation is detectable in unstable angina. Circulation 1997;95:1806–1812.

    Article  PubMed  CAS  Google Scholar 

  18. Kirchhofer D, Riederer MA, Baumgartner HR. Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model. Blood 1997;89: 1270–1278.

    PubMed  CAS  Google Scholar 

  19. Ott J, Neumann FJ, Gawaz M, Schmitt M, Schomig A. Increased neutrophil-platelet adhesion in natients with unstable angina. Circulation 1996;94:1239–1246.

    Article  PubMed  CAS  Google Scholar 

  20. Sixma JJ, de Groot PG. Platelet adhesion. Br J Haematol 1990;75:308–312.

    Article  PubMed  Google Scholar 

  21. Lopez-Fernandez M, Ginsberg MH, Ruggeri ZM, Batlle FJ, Zimmerman TS. Multimeric structure of platelet factor VIII/von Willebrand factor: the presence of larger multimers and their reassociation with thrombin-stimulated platelets. Blood 1982;60:1132–1138.

    CAS  Google Scholar 

  22. Paul JI, Schwarzbauer JE, Tamkun JW, Hynes RO. Cell-type-specific fibronectin subunits generated by alternative splicing. J Biol Chem 1986;261:12,258–12,265.

    CAS  Google Scholar 

  23. Santoro SA, Cowan JF. Adsorption of von Willebrand factor by fibrillar collagen. Implications concerning the adhesion of platelets to collagen. Coll Relat Res 1982;2:31–43.

    Article  PubMed  CAS  Google Scholar 

  24. Engvall E, Ruoslahti E, Miller EJ. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 1978;147:1584–1595.

    Article  PubMed  CAS  Google Scholar 

  25. Mumby SM, Raugi GJ, Bornstein P. Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol 1984;98:646–652.

    Article  PubMed  CAS  Google Scholar 

  26. Topol EJ, McCarthy J, Gabriel S, et al. Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 2001; 104:2641–2644.

    Article  PubMed  CAS  Google Scholar 

  27. Strony J, Beaudoin A, Brands D, Adelman B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol 1993;265:H1787–H1796.

    PubMed  CAS  Google Scholar 

  28. Girma J-P, Meyer D, Verweij CL, Pannekoek H, Sixma JJ. Structure-function relationship of human von Willebrand factor. Blood 1987;70:605–611.

    PubMed  CAS  Google Scholar 

  29. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88:1525–1541.

    PubMed  CAS  Google Scholar 

  30. Lopez JA. The platelet glycoprotein lb-IX complex. Blood Coagul Fibrinolysis 1994;5:97–119.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate-dependent decrease of adhesion in von Willebrand’s disease and the Bernard-Soulier syndrome. J Lab Clin Med 1978;92:750–764.

    PubMed  CAS  Google Scholar 

  32. Houdijk PM, Sixma JJ. Fibronectin in artery subendothelium is important for platelet adhesion. Blood 1985;65:698–604.

    Google Scholar 

  33. Denis C, Methia N, Frenette PS, et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998;95:9524–9529.

    Article  PubMed  CAS  Google Scholar 

  34. Ni H, Denis CV, Subbarao S, et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000;106:385–392.

    Article  PubMed  CAS  Google Scholar 

  35. Peterson DM, Stathopoulos NA, Giorgio TD, Hellums JD, Moake JL. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins lb and IIb-IIIa. Blood 1987; 69:625–628.

    PubMed  CAS  Google Scholar 

  36. Roth GJ. Developing relationships: arterial platelet adhesion, glycoprotein lb, and leucine-rich glycoproteins. Blood 1991;77:5–19.

    PubMed  CAS  Google Scholar 

  37. Ruggeri ZM. Structure and function of von Willebrand factor: relationship to von Willebrand’s disease. Mayo Clin Proc 1991;66:847–861.

    Article  PubMed  CAS  Google Scholar 

  38. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987;48:549–550.

    Article  PubMed  CAS  Google Scholar 

  39. Parise LV. The structure and function of platelet integrins. Curr Opin Cell Biol 1989;1:947–952.

    Article  PubMed  CAS  Google Scholar 

  40. Ruoslahti E. Integrins. J Clin Invest 1991;87:1–5.

    Article  PubMed  CAS  Google Scholar 

  41. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  42. Ginsberg MH, Du X, O’Toole TE, Loftus JC, Plow EF. Platelet integrins. Thromb Haemost 1993;70: 87–93.

    PubMed  CAS  Google Scholar 

  43. Shattil SJ, Ginsberg MH. Perspective series: cell adhesion in vascular biology. Integrin signaling in vascular biology. J Clin Invest 1997;100:S91–595.

    Article  PubMed  CAS  Google Scholar 

  44. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem 2000;275: 21,785–21,788.

    PubMed  CAS  Google Scholar 

  45. Bray PF, Rosa J-P, Lingappa VR, Kan YW, McEver R-P, Shuman MA. Biogenesis ot tue platelet receptor for fibrinogen: evidence for separate precursors for glycoproteins llb and lila. Proc Natl Acad Sci USA 1986;83:1480–1484.

    Article  PubMed  CAS  Google Scholar 

  46. Poncz M, Eisman R, Heidenreich R, et al. Structure of the platelet membrane glycoprotein lIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 1987; 262:8476–8482.

    PubMed  CAS  Google Scholar 

  47. Loftus JC, Plow EF, Frelinger AL, III, et al. Molecular cloning and chemical synthesis of a region of platelet glycoprotein IIb involved in adhesive function. Proc Natl Acad Sci USA 1987;84:7114–7118.

    Article  PubMed  CAS  Google Scholar 

  48. Loftus JC, Plow EF, Jennings LK, Ginsberg MH. Alternative proteolytic processing of platelet membrane GPIIb. J Biol Chem 1988;263:11,025–11,028.

    PubMed  CAS  Google Scholar 

  49. Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alphaV beta3. Science 2001;294:339–345.

    Article  PubMed  CAS  Google Scholar 

  50. Haas TA, Plow EF. The cytoplasmic domain of αIIbβ3: a ternary complex of the integrin α and β subunits and a divalent cation. J Biol Chem 1996;271:6017–6026.

    Article  PubMed  CAS  Google Scholar 

  51. Hughes PE, Diaz-Gonzalez F, Leong L, et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996;271:6571–6574.

    Article  PubMed  CAS  Google Scholar 

  52. Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 1994;6: 695–704.

    Article  PubMed  CAS  Google Scholar 

  53. Bennett JS, Chan C, Vilaire G, Mousa SA, DeGrado WF. Agonist-activated αvβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem 1997;272:8137–8140.

    Article  PubMed  CAS  Google Scholar 

  54. Byzova TV, Plow EF. Activation of α3β3 on vascular cells controls recognition of prothrombin. J Cell Biol 1998;143:2081–2092.

    Article  PubMed  CAS  Google Scholar 

  55. Hughes PE, Pfaff M. Integrin affinity modulation. Trends Cell Biol 1998;8:359–364.

    Article  PubMed  CAS  Google Scholar 

  56. Hogg N, Leitinger B. Shape and shift changes related to the function of leukocyte integrins LFA-1 and Mac-1. J Leukoc Biol 2001;69:893–898.

    PubMed  CAS  Google Scholar 

  57. Grossi IM, Hatfield JS, Fitzgerald LA, Newcombe M, Taylor JD, Honn KV. Role of tumor cell glycoproteins immunologically related to glycoproteins lb and llb/IIIa in tumor cell-platelet and tumor cellmatrix interactions. FASEB J 1988;2:2385–2395.

    PubMed  CAS  Google Scholar 

  58. Boukerche H, Berthier-Vergnes O, Tabone E, Dore J-F, Leung LLK, McGregor JL. Platelet-melanoma cell interaction is mediated by the glycoprotein IIb-IIIa complex. Blood 1989;74:658–663.

    PubMed  CAS  Google Scholar 

  59. Honn KV, Chen YQ, Timar J, Onoda JM, et al. αIIbβ3 integrin expression and function in subpopulations of murine tumors. Exp Cell Res 1992;201:23–32.

    Article  PubMed  CAS  Google Scholar 

  60. Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 1968;61:46–52.

    Article  PubMed  CAS  Google Scholar 

  61. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988;81:1012–1019.

    Article  PubMed  CAS  Google Scholar 

  62. Plow EF, Loftus JC, Levin EG, Fair DS, Dixon D, Forsyth J, Ginsberg MH. Immunologic relationship between platelet membrane glycoprotein relationship between platelet membrane glycoprotein GPIIb/IIIa and cell surface molecules expressed by a variety of cells. Proc Natl Acad Sci USA 1986;83: 6002–6006.

    Article  PubMed  CAS  Google Scholar 

  63. Fitzgerald LA, Steiner B, Rall SC Jr, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. J Biol Chem 1987;262:3936–3939.

    PubMed  CAS  Google Scholar 

  64. Byzova TV, Rabbani R, D’ Souza S, Plow EF. Role of integrin αvβ3in vascular biology. Thromb Haemost 1998;80:726–734.

    PubMed  CAS  Google Scholar 

  65. Phillips DR, Scarborough RM. Clinical pharmacology of eptifibatide. Am J Cardiol 1997;80:11B–20B.

    Article  PubMed  CAS  Google Scholar 

  66. Barrett JS, Murphy G, Peerlinck K, et al. Pharmacokinetics and pharmacodynamics of MK-383, a selective non-peptide platelet glycoprotein-IIb/IIIa receptor antagonist, in healthy men. Clin Pharmacol Ther 1994;56:377–388.

    Article  PubMed  CAS  Google Scholar 

  67. Lele M, Sajid M, Wajih N, Stouffer GA. Eptifibatide and 7E3, but not tirofiban, inhibit alpha(v)beta(3) integrin-mediated binding of smooth muscle cells to thrombospondin and prothrombin. Circulation 2001;104:582–587.

    Article  PubMed  CAS  Google Scholar 

  68. Tam SH, Sassoli PM, Jordan RE, Nakada MT. Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and αvβ3 integrins. Circulation 1998; 98:1085–1091.

    Article  PubMed  CAS  Google Scholar 

  69. Lam SC, Plow EF, D’ Souza SE, Cheresh DA, Frelinger AL III, Ginsberg MH. Isolation and characterization of a platelet membrane protein related to the vitronectin receptor. J Biol Chem 1989;264:3742–3749.

    PubMed  CAS  Google Scholar 

  70. Coller BS, Cheresh DA, Asch E, Seligsohn U. Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab patients with Glanzmann thrombasthenia in Israel. Blood 1991;77:75–83.

    PubMed  CAS  Google Scholar 

  71. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996;88:907–914.

    PubMed  CAS  Google Scholar 

  72. Lawler J, Hynes RO. An integrin receptor on normal and thrombasthenic platelets that bind thrombospondin. Blood 1989;74:2022–2027.

    PubMed  CAS  Google Scholar 

  73. Smyth SS, Joneckis CC, Parise LV. Regulation of vascular integrins. Blood 1993;81:2827–2843.

    PubMed  CAS  Google Scholar 

  74. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin αv13 for angiogenesis. Science 1994;264:569–571.

    Article  PubMed  CAS  Google Scholar 

  75. Liaw L, Skinner MP, Raines EW, et al. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins: role of αvβ3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest 1995;95:713–724.

    Article  PubMed  CAS  Google Scholar 

  76. Nurden AT, Didry D, Rosa JP. Molecular defects of platelets in Bernard-Soulier syndrome. Blood Cells 1983;9:333–258.

    PubMed  CAS  Google Scholar 

  77. George JN, Nurden AT, Phillips DR. Molecular defects in interactions of platelets within the vessel wall. N Engl J Med 1984;311:1084–1088.

    Article  PubMed  CAS  Google Scholar 

  78. Ruggeri ZM, Zimmerman TS. von Willebrand factor and von Willebrand disease. Blood 1987;70: 895–904.

    PubMed  CAS  Google Scholar 

  79. Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI. von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 1991;88:1568–1573.

    Article  PubMed  CAS  Google Scholar 

  80. Yuan Y, Dopheide SM, Ivanidis C, Salem HH, Jackson SP. Calpain regulation of cytoskeletal signaling complexes in von Willebrand factor-stimulated platelets. Distinct roles for glycoprotein Ib-V-IX and glycoprotein IIb-IIIa (integrin αIIbβ3) in von Willebrand factor-induced signal transduction. J Biol Chem 1997;272:21,847–21,854.

    CAS  Google Scholar 

  81. Savage B, Cattaneo M, Ruggeri ZM. Mechanisms of platelet aggregation. Curr Opin Hematol 2001;8: 270–276.

    Article  PubMed  CAS  Google Scholar 

  82. Miyata S, Goto S, Federici AB, Ware J, Ruggeri ZM. Conformational changes in the Al domain of von Willebrand factor modulating the interaction with platelet glycoprotein Ibα. J Biol Chem 1996;271: 9046–9053.

    Article  PubMed  CAS  Google Scholar 

  83. Cruz MA, Handin RI, Wise RJ. The interaction of the von Willebrand factor-Al domain with platelet glycoprotein Ib/IX. J Biol Chem 1993;268:21,238–21,245.

    CAS  Google Scholar 

  84. Roth GJ, Titani K, Hoyer LW, Hickey MJ. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry 1986;25:8357–8361.

    Article  PubMed  CAS  Google Scholar 

  85. Howard MA, Firkin BG. Ristocetin-a new tool in the investigation of platelet aggregation. Thromb Haemost 1971;26:362–369.

    CAS  Google Scholar 

  86. Read MS, Smith SV, Lamb MA, Brinkhous KM. Role of botrocetin in platelet agglutination: formation of an activated complex of botrocetin and von Willebrand factor. Blood 1989;74:1031–1035.

    PubMed  CAS  Google Scholar 

  87. Roth GJ. Platelets and blood vessels: the adhesion event. Immunol Today 1992;13:100–105.

    Article  PubMed  CAS  Google Scholar 

  88. Denis C, Williams JA, Lu X, Meyer D, Baruch D. Solid-phase von Willebrand factor contains a conformationally active RGD motif that mediates endothelial cell adhesion through the αβ3 receptor. Blood 1993;82:3622–3630.

    PubMed  CAS  Google Scholar 

  89. Kroll MH, Hellums JD, Guo Z, et al. Protein kinase C is activated in platelets subjected to pathological shear stress. J Biol Chem 1993;268:3520–3524.

    PubMed  CAS  Google Scholar 

  90. Okumura T, Jamieson GA. Platelet glycocalicin: a single receptor for platelet aggregation induced by thrombin or ristocetin. Thromb Res 1976;8:701–706.

    Article  PubMed  CAS  Google Scholar 

  91. Moroi M, Goetze A, Dubay E, Wu C, Hasitz M, Jamieson GA. Isolation of platelet glycocalicin by affinity chromatography on thrombin-sepharose. Thromb Res 1982;28:103–114.

    Article  PubMed  CAS  Google Scholar 

  92. Andrews RK, Shen Y, Gardiner EE, Dong JF, Lopez JA, Berndt MC. The glycoprotein lb-IX-V complex in platelet adhesion and signaling. Thromb Haemost 1999;82:357–364.

    PubMed  CAS  Google Scholar 

  93. Lopez JA, Chung DW, Fujikawa K, Hagen FS, Davie EW, Roth GJ. The alpha and beta chains of human platelet glycoprotein lb are both transmembrane proteins containing a leucine-rich amino acid sequence. Proc Natl Acad Sci USA 1988;85:2135–2139.

    Article  PubMed  CAS  Google Scholar 

  94. Hickey MJ, Williams SA, Roth GJ. Human platelet glycoprotein IX: an adhesive prototype of leucinerich glycoproteins with flank-center-flank structures. Proc Natl Acad Sci USA 1989;86:6773–6777.

    Article  PubMed  CAS  Google Scholar 

  95. Andrews RK, Fox JEB. Interaction of purified actin-binding protein with the platelet membrane glycoprotein lb-IX complex. J Biol Chem 1991;266:7144–7147.

    PubMed  CAS  Google Scholar 

  96. Cunningham JG, Meyer SC, Fox JEB. The cytoplasmic domain of the α-subunit of glycoprotein (GP) Ib mediates attachment of the entire GP lb-IX complex to the cytoskeleton and regulates von Willebrand factor-induced changes in cell morphology. J Biol Chem 1996;271:11,581–11,587.

    PubMed  CAS  Google Scholar 

  97. Steinberg MH, Kelton JG, Coller BS. Plasma glycocalicin: an aid in the classification of thrombocytopenic disorders. N Engl J Med 1987;317:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  98. Modderman PW, Admiraal LG, Sonnenberg A, von Dem Borne AE. Glycoproteins V and lb-IX form a noncovalent complex in the platelet membrane. J Biol Chem 1992;267:364–369.

    PubMed  CAS  Google Scholar 

  99. Ni H, Ramakrishnan V, Ruggeri ZM, Papalia JM, Phillips DR, Wagner DD. Increased thrombogenesis and embolus formation in mice lacking glycoprotein V. Blood 7-15-2001;98:368–373.

    PubMed  CAS  Google Scholar 

  100. DeMarco L, Girolami A, Russell S, Ruggeri ZM. Interaction of asialo von Willebrand factor with glycoprotein Tb induces fibrinogen binding to the glycoprotein IIb/IIIa complex and mediates platelet aggregation. J Clin Invest 1985;75:1198–1203.

    Article  CAS  Google Scholar 

  101. Du X, Fox JE, Pei S. Identification of a binding sequence for the 14–3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ibα. J Biol Chem 1996;271:7362–7367.

    Article  PubMed  CAS  Google Scholar 

  102. Wardell MR, Reynolds CC, Berndt MC, Wallace RW, Fox JEB. Platelet glycoprotein lb is phosphorylated on serine-166 by cyclic AMP-dependent protein kinase. J Biol Chem 1989;264:15,656–15,661.

    PubMed  CAS  Google Scholar 

  103. Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998;101:479–486.

    Article  PubMed  CAS  Google Scholar 

  104. Santoro SA. Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 1986;46:913–920.

    Article  PubMed  CAS  Google Scholar 

  105. Tandon NN, Kralisz U, Jamieson GA. Identification of GPIV (CD36) as a primary receptor for plateletcollagen adhesion. J Biol Chem 1989;264:7576–7583.

    PubMed  CAS  Google Scholar 

  106. Nakamura T, Jamieson GA, Okuma M, Kambayashi J, Tandon NN. Platelet adhesion to native type I collagen fibrils. Role of GPVI in divalent cation-dependent and -independent adhesion and thromboxane A2 generation. J Biol Chem 1998;273:4338–4344.

    Article  PubMed  CAS  Google Scholar 

  107. Moroi M, Jung SM, Shinmyozu K, Tomiyama Y, Ordinas A, Diaz-Ricart M. Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion. Blood 1996;88:2081–2092.

    PubMed  CAS  Google Scholar 

  108. Nieuwenhuis HK, Akkerman JWN, Houdijk WPM, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature 1985;318:470–472.

    Article  PubMed  CAS  Google Scholar 

  109. Diaz-Ricart M, Tandon NN, Carretero M, Ordinas A, Bastida E, Jamieson GA. Platelets lacking functional CD36 (glycoprotein IV) show reduced adhesion to collagen in flowing whole blood. Blood 1993;82:491–496.

    PubMed  CAS  Google Scholar 

  110. Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 1989;84:1440–1445.

    Article  PubMed  CAS  Google Scholar 

  111. Verkleij MW, Morton LF, Knight CG, de Groot P, Barnes MJ, Sixma JJ. Simple collagen-like peptides support platelet adhesion under static but not under flow conditions: interaction via α2β31 and von Willebrand factor with specific sequences in native collagen is a requirement to resist shear forces. Blood 1998;91:3308–3816.

    Google Scholar 

  112. Saelman EUM, Kehrel B, IIese KM, de Groot PG, Sixma JJ, Nieuwenhuis HK. Platelet adhesion to collagen and endothelial cell matrix under flow conditions is not dependent on platelet glycoprotein IV. Blood 1994;83:3240–3244.

    PubMed  CAS  Google Scholar 

  113. Watson SP. Collagen receptor signaling in platelets and megakaryocytes. Thromb Haemost 1999;82: 365–376.

    PubMed  CAS  Google Scholar 

  114. Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost 2001;86:189–197.

    PubMed  CAS  Google Scholar 

  115. Morton LF, Fitzsimmons CM, Rauterberg J, Barnes MJ. Platelet-reactive sites in collagen. Collagens I and III possess different aggregatory sites. Biochem J 1987;248:483–487.

    PubMed  CAS  Google Scholar 

  116. Santoro SA, Walsh JJ, Staatz WD, Baranski KJ. Distinct determinants on collagen support α2β1 integrin-mediated platelet adhesion and platelet activation. Cell Regul 1991;2:905–913.

    PubMed  CAS  Google Scholar 

  117. Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ. Integrin α2β1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for α2β1-independent platelet reactivity. Biochem J 1995;306: 337–344.

    PubMed  CAS  Google Scholar 

  118. Saelman EUM, Nieuwenhuis HK, Hese KM, et al. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (α2β1-integrin). Blood 1994;83: 1244–1250.

    PubMed  CAS  Google Scholar 

  119. Ginsberg MH, Forsyth J, Lightsey A, Chediak J, Plow EF. Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. J Clin Invest 1983;71:619–624.

    Article  PubMed  CAS  Google Scholar 

  120. Karczewski J, Knudsen KA, Smith L, Murphy A, Rothman VL, Tuszynski GP. The interaction of thrombospondin with platelet glycoprotein GPIIb-IIIa. J Biol Chem 1989;264:21,322–21,326.

    CAS  Google Scholar 

  121. Ruggeri ZM, Bader R, DeMarco L. Glanzmann thrombasthenia. Deficient binding of von Willebrand factor to thrombin-stimulated platelets. Proc Natl Acad Sci USA 1982;79:6038–6041.

    Article  PubMed  CAS  Google Scholar 

  122. Hantgan RR. Fibrin protofibril and fibrinogen binding to ADP-stimulated platelets: evidence for a common mechanism. Biochim Biophys Acta 1988;968:24–35.

    Article  PubMed  CAS  Google Scholar 

  123. Thiagarajan P, Kelley KL. Exposure of binding sites for vitronectin on platelets following stimulation. J Biol Chem 1988;263:3035–3038.

    PubMed  CAS  Google Scholar 

  124. Asch AS, Barnwell J, Silverstein RL, Nachman RL. Isolation of the thrombospondin membrane receptor. J Clin Invest 1987;79:1054–1061.

    Article  PubMed  CAS  Google Scholar 

  125. Asch AS, Silbiger S, Heimer E, Nachman RL. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun 1992;182:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  126. Catimel B, Leung L, El Ghissasi H, Mercier N, McGregor J. Human platelet glycoprotein IIIb binds to thrombospondin fragments bearing the C-terminal region, and/or the type I repeats (CSVTCG motif), hut not to the N-terminal heparin-binding region. Biochem J 1992;284:231–236.

    PubMed  CAS  Google Scholar 

  127. Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. Thrombospondin modulates αvα3 function through integrin-associated protein. J Cell Biol 1996;135:533–544.

    Article  PubMed  CAS  Google Scholar 

  128. Chung J, Gao AG, Frazier WA. Thrombospondin acts via integrin-associated protein to activate the platelet integrin αIIb,β3. J Biol Chem 1997;272:14,740–14,746.

    PubMed  CAS  Google Scholar 

  129. Plow EF, McEver R-P, Coller BS, Woods VL, Marguerie GA, Ginsberg MH. Related binding mechanisms for fibrinogen, fibronectin, von Willebrand factor and thrombospondin on thrombin-stimulated human platelets. Blood 1985;66:724–727.

    PubMed  CAS  Google Scholar 

  130. Plow EF, Srouji AH, Meyer D, Marguerie G, Ginsberg MH. Evidence that three adhesive proteins interact with common recognition site on activated platelets. J Biol Chem 1984;259:5388–5391.

    PubMed  CAS  Google Scholar 

  131. Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH. The effect of Arg-Gly-Aspcontaining peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci USA 1985;82:8057–8061.

    Article  PubMed  CAS  Google Scholar 

  132. Hantgan RR, Endenburg SC, Cavero I, et al. Inhibition of platelet adhesion to fibrin(ogen) in flowing whole blood by arg-gly-asp and fibrinogen gamma-chain carboxy terminal peptides. Thromb Haemost 1992;68:694–700.

    PubMed  CAS  Google Scholar 

  133. Cherny RC, Honan MA, Thiagarajan P. Site-directed mutagenesis of the arginine-glycine-aspartic acid in vitronectin abolishes cell adhesion. J Biol Chem 1993;268:9725–9729.

    PubMed  CAS  Google Scholar 

  134. Weiss HJ, Hawiger J, Ruggeri ZM, Turitto VT, Thiagarajan P, Hoffmann T. Fibrinogen-independent platelet adhesion and thrombus formation of subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J Clin Invest 1989;83:288–297.

    Article  PubMed  CAS  Google Scholar 

  135. Hantgan RR, Hindriks G, Taylor RG, Sixma JJ, de Groot PG. Glycoprotein lb, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 1990;76:345–353.

    PubMed  CAS  Google Scholar 

  136. Agbanyo FR, Sixma JJ, de Groot PG, Languino LR, Plow EF. Thrombospondin-platelet interactions. Role of divalent cations, wall shear rate, and platelet membrane glycoproteins. J Clin Invest 1993;92: 288–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plow, E.E. (2003). Platelet Adhesion. In: Lincoff, A.M. (eds) Platelet Glycoprotein IIb/IIIa Inhibitors in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-376-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-376-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-408-1

  • Online ISBN: 978-1-59259-376-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics