Skip to main content

Part of the book series: Contemporary Endocrinology ((COE))

  • 131 Accesses

Abstract

Separate mechanisms supply and eliminate water to maintain fluid homeostasis. A variety of sensors modulate thirst to drive water-seeking behavior and water intake. The elimination of water is achieved via hormonal control of the kidney. To ensure that a healthy fluid balance is maintained, the mechanisms that accrue water can compensate for defects in the mechanisms that eliminate water and vice versa. Clinical problems arise when the capacity for this compensation is exceeded or when such compensation becomes unduly demanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robertson GL. Physiology of ADH release. Kidney Int 1987; 31: S20.

    Google Scholar 

  2. McKinley MJ. Common aspects of the cerebral regulation of thirst and renal sodium excretion. Kidney Int 1992; 37: S102.

    CAS  Google Scholar 

  3. Denton DA, McKinley MJ, Weisinger RS. Hypothalmic integration of body fluid regulation. Proc Natl Acad Sci USA 1996; 93: 7397–7404.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson AK, Thunhorst RL. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol 1997; 18: 292–353.

    Article  PubMed  CAS  Google Scholar 

  5. Coggins CH, Leaf A. Diabetes insipidus. Am J Med 1967; 42: 807–813.

    Article  PubMed  CAS  Google Scholar 

  6. Salata RA, Verbalis JG, Robinson AG. Cold water stimulation of oropharyngeal receptors in man inhibit release of vasopressin J Clin Endocrinol Metab 1987; 65: 561.

    CAS  Google Scholar 

  7. Gopal Rao VVN, Loffler C, Battey J, Hansmann I. The human gene for oxytocin-neurophysin I OXT is physically mapped to chromosome 20p13 by in situ hybridization. Cell Genet 1992; 61: 271

    Article  Google Scholar 

  8. Riddell DC, Mallonnee R, Phillips JA. Chromosomal assignment of human sequences encoding arginine vasopressin-neurophysin II and growth hormone releasing factor. Somat Cell Mol Genet 1985; 11: 189.

    Article  PubMed  CAS  Google Scholar 

  9. Robertson GL, Shelton RL, Athar S. The osmoregulation of the vasopressin. Kidney Int 1976; 10: 25.

    Article  PubMed  CAS  Google Scholar 

  10. Zerbe, RL, Miller JZ, Robertson GL. Osmoregulation of thirst and vasopressin secretion in human subjects: effects of various solutes. Am J Physiol 1983; 224: E607.

    Google Scholar 

  11. Rittig S, Knudsen VB, Norgaard JP. Abnormal diurnal rhythm of plasma vasopressin and urinary output in patients with enuresis Am J Physiol 1989; 256: F664.

    CAS  Google Scholar 

  12. Robertson GL. Thirst and vasopressin function in normal and disordered states of water balance. J Lab Clin Med 1983; 101: 351.

    PubMed  CAS  Google Scholar 

  13. Wiggins RC, Basar I, Slater JD, et al. Vasovagal hypotension and vasopressin release. Clin Endocrinol 1977; 6: 387.

    Article  CAS  Google Scholar 

  14. Hirsch AT, Majzoub JA, Ren CJ, et al. Contribution of vasopressin to blood pressure regulation during hypovolemic hypotension in humans J Appl Physiol 1993; 95: 721.

    Google Scholar 

  15. Green HH, Harrington AR, Valtin H. On the role of antidiuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco-and mineralocorticoids in reversing the inhibition. J Clin Invest 1970; 49: 1724.

    Article  PubMed  CAS  Google Scholar 

  16. Burke ZD, Ho MY, Morgan H, et al. Repression of vasopressin gene expression by glucocorticoids in transgenic mice: evidence of a direct mechanism mediated by proximal 5’ flanking sequence. Neuroscience 1997; 78: 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  17. Deen PMT, Verdijk MM, van Oost BA, et al. Requirement of human renal water channel aquaporin2 for vasopressin-dependent concentration of urine. Science 1994; 264: 92.

    Article  PubMed  CAS  Google Scholar 

  18. Saito T, Ishikawa SE, Saito T, et al. Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab 1997; 82: 1823.

    Article  PubMed  CAS  Google Scholar 

  19. Ito M, Oiso Y, Murase T, et al. Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus. J Clin Invest 1993; 91: 2565.

    Google Scholar 

  20. Rittig S, Robertson GL, Siggard C. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 1996; 58: 107–117.

    PubMed  CAS  Google Scholar 

  21. Rauch F, Lenzner C, Nurnberg P, Frommel C, Vetter U. A novel mutation in the coding region for neurophysin-II is associated with autosomal dominant neurohypophyseal diabetes insipidus. Clin Endocrinol (Oxf.) 1996 Jan; 44 (1): 45–51.

    Article  CAS  Google Scholar 

  22. Inove H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998; 20: 143–148.

    Article  Google Scholar 

  23. Takeda K, Inove K, Tanizawa Y, et al. WFSI (Wolfram syndrome I) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 2001; 10: 477–484.

    Article  PubMed  CAS  Google Scholar 

  24. El-Shanti H, Lidral AC, Jarrah N, et al. Homozygosity mapping identifies an additional locus for Wolfram syndrome on chromosome 4q. Am J Hum Genet 2000; 66: 129–136.

    Article  Google Scholar 

  25. Bundey S, Poulton K, Whitwell H, et al. Mitochondrial abnormalities in DIDMOAD syndrome. J Inherit Metab Dis 1992; 15: 316–319

    Article  Google Scholar 

  26. Scherbaum WA, Wass IA, Besser GM, et al. Autoimmune cranial diabetes insipidus: its association with other endocrine diseases and with histiocytosis X. Clin Endocrinol 1986; 25: 411–420.

    Article  CAS  Google Scholar 

  27. Schwartz WB, Reiman, AS. Effects of electrolyte disorders on renal structure and function. N Engl J Med 1967; 276: 452–458.

    Article  PubMed  CAS  Google Scholar 

  28. Bennett CM. Urine concentration and dilution in hypokalemic and hypercalcemic dogs. J Clin Invest 1970; 49: 1447–1457.

    Article  PubMed  CAS  Google Scholar 

  29. Galla IH, Booker BB, Luke RG. Role of loop segment in the concentrating defect of hypercalcemia. Kidney Int 1986; 29: 977–982.

    Article  PubMed  CAS  Google Scholar 

  30. Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeo-stasis. J Exp Biol 1997; 200: 295–302.

    PubMed  CAS  Google Scholar 

  31. Berl T. The cAMP system in vasopressin-sensitive nephron segments of the vitamin D-treated rat. Kidney Int 1987; 31: 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  32. Beck N, Singh H Reed SW, et al. Pathogenic role of cyclic AMP in the impairment of urinary concentrating ability in acute hypercalcemia. J Clin Invest 1974; 54: 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  33. Bichet DG, Razi M, Lonergan M, et al. Hemodynanic and coagulation responses to 1-desamino (8-Darginine) vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 1988; 318: 881–887.

    Article  PubMed  CAS  Google Scholar 

  34. Moses AM, Miller IL, Levine MA. Two distinct pathophysiological mechanisms in congenital nephrogenic diabetes insipidus. J Clin Endocrinol Metab 1988; 66: 1259–1264.

    Article  PubMed  CAS  Google Scholar 

  35. Knoers N, van der Heyden H, van Oost BA, et al. Three-point linkage analysis using multiple DNA polymorphic markers in families with X-Iinked nephrogenic diabetes insipidus. Genomics 1989; 4: 434–437.

    Article  PubMed  CAS  Google Scholar 

  36. Oksche A, Schulein R, Rutz C, et al. Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: analysis of expression, processing, and function. Mol Pharmacol 1996; 50: 820–828.

    PubMed  CAS  Google Scholar 

  37. Kambouris M, Dlouhy SR, Trofatter IA, et al. Localization of the gene for X-Iinked nephrogenic diabetes insipidus to Xq28. Am K Med Genet 1988; 29: 239–246.

    Article  CAS  Google Scholar 

  38. Rosenthal W, Seibold A, Antaramian A, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992; 359: 233–235.

    Article  PubMed  CAS  Google Scholar 

  39. Merendino JJ Jr, Speigel AM, Crawford, Brief Report: A mutation in the vasopressin V2-receptor gene in a kindred with X-linked nephrogenic diabetes insipidus. N Engl J Med 1993: 328: 1538.

    Article  PubMed  CAS  Google Scholar 

  40. Holtzman EI, Harris HW Ir, Kolakowski LF, et al. Brief report: a molecular defect in the vasopressin V2-receptor gene causing nephrogenic diabetes insipidus. N Engl J Med 1993; 328: 1562, 1563.

    Google Scholar 

  41. Tsukaguchi H, Matsubara H, Taketani S, et al. Binding-, intracellular transport-, and biosynthesis-defective mutations of vasopressin type-2 receptor in patients with X-linked nephrogenic diabetes insipidus. J Clin Invest 1995; 96: 2043–2050.

    Article  PubMed  CAS  Google Scholar 

  42. Langley IM, Balfel W, Selander T, et al. Autosomal recessive inheritance ofvasopressin-resistant diabetes insipidus. Am J Med Genet 1991; 38: 90–94.

    Article  PubMed  CAS  Google Scholar 

  43. Deen PMT, Croes H, van Aubel RA, et al. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest 1995; 95: 2291–2296.

    Article  PubMed  CAS  Google Scholar 

  44. Hochberg Z, Van Lieburg A, Even L, et al. Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation. J Clin Endocrinol Metab 1997; 82: 686–689.

    Article  PubMed  CAS  Google Scholar 

  45. Muglia LI, Majzoub IA. Pediatric endocrinology. In: Sperling MA, ed. Disorders of the Posterior Pituitary. WB Saunders Co, Philadelphia, 1996, p. 206.

    Google Scholar 

  46. Abernethy LI, Qunibi MA, Smith CS. Nonnal MR appearances of the posterior pituitary in central diabetes insipidus associated with septo-optic dysplasia. Pediatr Radiol 997; 27: 45–47.

    Google Scholar 

  47. Colombo N, Berry I, KucharczykI, Posterior pituitary gland: appearance on MR images in nonnal and pathologic states. Radiology 1987; 165: 481–485.

    PubMed  CAS  Google Scholar 

  48. Weimann E, Molenkemp G, Bohles HJ. Diabetes insipidus due to hypophysis. Horm Res 1997; 47: 81–84.

    Article  PubMed  CAS  Google Scholar 

  49. Mootha SL, Barkovich AI, Grumbach MM, et al. Idio-pathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial genninoma in children and adolescents. J Clin Endocrinol Metab 1997; 82: 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  50. Saito T, Ishikawa S, Sasaki S, et al. Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab 1997; 82: 1823–1827.

    Article  PubMed  CAS  Google Scholar 

  51. Kimbrough RD, Cash WD, Branden LA, et al. Synthesis and biologic properties of 1-desamino-8lysine vasopressin. J Biol Chem 1963; 238: 1411.

    PubMed  CAS  Google Scholar 

  52. Sawyer WH, Grzonka Z, Manning M. Neurohypophysialpeptides: design of tissue specific agonists and antagonists. Mol Cell Endocrinol 1981; 22: 117–134.

    Article  PubMed  CAS  Google Scholar 

  53. Giacoia GP, Watson S, Karathanos A. Treatment of neonatal diabetes insipidus with desmopressin. Southern Med 1984; 77: 75–77.

    Article  CAS  Google Scholar 

  54. Rizzo V, Albanese A, Stanhope R. Morbidity and Mortality associated with vasopressin replacement therapy in children. J Pediat Endocrinol 2001; 14: 861–867.

    CAS  Google Scholar 

  55. Knoers N, Monnens LA. Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Pediatr 1990; 117: 499–502.

    Article  PubMed  CAS  Google Scholar 

  56. Fichman MP, Speckhart P, Zia P, Lee A. Antidiuretic response to prostaglandin inhibition by indomethacin in nephrogenic diabetes insipidus. Clin Res 1976; 24: 161A.

    Google Scholar 

  57. Chevalier RL, Rogol AD. Tolmetin sodium in the management of nephrogenic diabetes insipidus. J Pediatr 1982; 101: 787–789.

    Article  PubMed  CAS  Google Scholar 

  58. Monn E. Prostaglandin synthetase inhibitors in the treatment of nephrogenic diabetes insipidus. Acta Pediatr Scand 1981; 70: 39–42.

    Article  CAS  Google Scholar 

  59. Moses AM, Clayton B. Impairment of osmotically stimulated A VP release in patients with primary polydipsia. Am J Physiol 1993;265:RI247–RI252.

    Google Scholar 

  60. Moses AM, Clayton B, Hochhauser L. The use of Tl-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. Am J Neuroradiol 1992; 13: 1273–1277.

    PubMed  CAS  Google Scholar 

  61. Bryant WP, O’Marcaigh AS, Ledger GA, Zimmerman D. Aqueous vasopressin infusion during chemotherapy in patients with Dl. Cancer 1994; 74: 2589–2592.

    Article  PubMed  CAS  Google Scholar 

  62. McDonald IA, Martha PM, Kerrigan I, et al. Treatment of the young child with postoperative central diabetes insipidus. Am J Dis Child 1989; 143: 201–204.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimmerman, D., Uramoto, G. (2003). Diabetes Insipidus in Pediatrics. In: Meikle, A.W. (eds) Endocrine Replacement Therapy in Clinical Practice. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-375-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-375-0_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-416-6

  • Online ISBN: 978-1-59259-375-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics