Skip to main content

Electrical and Structural Remodeling of the Ventricular Myocardium in Disease

  • Chapter
Book cover Cardiac Repolarization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 109 Accesses

Abstract

Abnormalities of ventricular repolarization are a reoccurring feature of structural heart disease and likely contributors to the increased incidence of sudden death in patients with cardiac hypertrophy and heart failure (HF). Several clinical observations support this contention. Over two million Americans suffer from heart failure and more than 200,000 die annually. The incidence is estimated to be 400,000 per year with a prevalence of over 4.5 million, numbers that will increase with the aging of the US population (1). The majority of patients with heart failure have coronary artery disease as the cause of heart failure or concomitant with myocardial failure. Despite remarkable improvements in medical therapy the prognosis of patients with myocardial failure remains poor with over 15% of patients dying within one year of initial diagnosis and up to an 80% six-year mortality (2). Of the deaths in patients with heart failure, 50% are sudden and unexpected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Changes in mortality from heart failure-United States, 1980–1995. MMWR Morb Mortal Wkly Rep 1998;47:633–637.

    Google Scholar 

  2. Konstam MA, Remme WJ. Treatment guidelines in heart failure. Prog Cardiovasc Dis 1998;48:65–72.

    Google Scholar 

  3. Kjekshus J. Arrhythmias and mortality in congestive heart failure. Am J Cardiol 1990;65:421–481.

    Google Scholar 

  4. Chakko CS, Gheorghiade M. Ventricular arrhythmias in severe heart failure: incidence, significance, and effectiveness of antiarrhythmic therapy. Am Heart J 1985;109:497–504.

    PubMed  CAS  Google Scholar 

  5. Wilson JR, Schwartz JS, Sutton MS, et al. Prognosis in severe heart failure: relation to hemodynamic measurements and ventricular ectopic activity. J Am Coll Cardiol 1983;2:403–410.

    PubMed  CAS  Google Scholar 

  6. von Olshausen K, Schafer A, Mehmel HC, Schwarz F, Senges J, Kubler W. Ventricular arrhythmias in idiopathic dilated cardiomyopathy. Br Heart J 1984;51:195–201.

    Google Scholar 

  7. Califf RM, McKinnis RA, Burks J, et al. Prognostic implications of ventricular arrhythmias during 24 hour ambulatory monitoring in patients undergoing cardiac catheterization for coronary artery disease. Am J Cardiol 1982;50:23–31.

    PubMed  CAS  Google Scholar 

  8. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 1986;314:1547–1552.

    PubMed  CAS  Google Scholar 

  9. Ahmmed GU, Dong PH, Song G, et al. Changes in Ca(2+) cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure. Circ Res 2000;86:558–570.

    PubMed  CAS  Google Scholar 

  10. Bassett AL, Gelband H. Chronic partial occlusion of the pulmonary artery in cats. Change in ventricular action potential configuration during early hypertrophy. Circ Res 1973;32:15–26.

    PubMed  CAS  Google Scholar 

  11. Benitah JP, Gomez AM, Bailly P, et al. Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol (Lond) 1993;469:111–138.

    CAS  Google Scholar 

  12. Brooksby P, Levi AJ, Jones JV. The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hyperten 1993;11:611–622.

    CAS  Google Scholar 

  13. Bryant SM, Shipsey SJ, Hart G. Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. Cardiovasc Res 1997;35: 315–323.

    PubMed  CAS  Google Scholar 

  14. Cerbai E, Barbieri M, Li Q, Mugelli A. Ionic basis of action potential prolongation of hypertrophied cardiac myocytes isolated from hypertensive rats of different ages. Cardiovasc Res 1994; 28:1180–1187.

    PubMed  CAS  Google Scholar 

  15. Coulombe A, Momtaz A, Richer P, Swynghedauw B, Coraboeuf E. Reduction of calcium-independent transient outward potassium current density in DOCA salt hypertrophied rat ventricular myocytes. Pflugers Archiv European J Physiol 1994;427:47–55.

    CAS  Google Scholar 

  16. Keung EC, Aronson RS. Non-uniform electrophysiological properties and electrotonic interaction in hypertrophied rat myocardium. Circ Res 1981;49:150–158.

    PubMed  CAS  Google Scholar 

  17. Kleiman RB, Houser SR. Outward currents in normal and hypertrophied feline ventricular myocytes. Am J Physiol 1989;256:H1450-H1461.

    PubMed  CAS  Google Scholar 

  18. Li Q, Keung EC. Effects of myocardial hypertrophy on transient outward current. Am J Physiol 1994;266:H1738-H1745.

    PubMed  CAS  Google Scholar 

  19. Gulch RW. Alterations in excitation of mammalian myocardium as a function of chronic loading and their implications in the mechanical events. Basic Res Cardiol 1980;75:73–80.

    PubMed  CAS  Google Scholar 

  20. Nordin C, Sin F, Aronson RS. Electrophysiologic characteristics of single myocytes isolated from hypertrophied guinea-pig hearts. J Molec & Cell Cardiol 1989;21:729–739.

    CAS  Google Scholar 

  21. Ryder KO, Bryant SM, Hart G. Membrane current changes in left ventricular myocytes isolated from guinea pigs after abdominal aortic coarctation. Cardiovasc Res 1993;27:1278–1287.

    PubMed  CAS  Google Scholar 

  22. Tomita F, Bassett AL, Myerburg RJ, Kimura S. Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circ Res 1994;75:296–303.

    PubMed  CAS  Google Scholar 

  23. Potreau D, Gomez JP, Fares N. Depressed transient outward current in single hypertrophied cardiomyocytes isolated from the right ventricle of ferret heart. Cardiovasc Res 1995;30:440–448.

    PubMed  CAS  Google Scholar 

  24. Takimoto K, Li D, Hershman KM, Li P, Jackson EK, Levitan ES. Decreased expression of Kv4.2 and novel Kv4.3 K+ channel subunit mRNAs in ventricles of renovascular hypertensive rats. Circ Res 1997;81:533–539.

    PubMed  CAS  Google Scholar 

  25. Li GR, Ferrier GR, Howlett SE. Calcium currents in ventricular myocytes of prehypertrophic cardiomyopathic hamsters. Am J Physiol 1995;268:H999-H1005.

    PubMed  CAS  Google Scholar 

  26. Thuringer D, Coulombe A, Deroubaix E, Coraboeuf E, Mercadier JJ. Depressed transient outward current density in ventricular myocytes from cardiomyopathic Syrian hamsters of different ages. J Mol Cell Cardiol 1996;28:387–401.

    PubMed  CAS  Google Scholar 

  27. Thuringer D, Deroubaix E, Coulombe A, Coraboeuf E, Mercadier JJ. Ionic basis of the action potential prolongation in ventricular myocytes from Syrian hamsters with dilated cardiomyopathy. Cardiovasc Res 1996;31:747–757.

    PubMed  CAS  Google Scholar 

  28. Xu XP, Best PM. Decreased transient outward K+ current in ventricular myocytes from acromegalic rats. Am J Physiol 1991;260:H935-H942.

    PubMed  CAS  Google Scholar 

  29. Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 1992;85:1175–1188.

    PubMed  CAS  Google Scholar 

  30. Qin D, Zhang ZH, Caref EB, Boutjdir M, Jain P, el-Sherif N. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res 1996;79:461–473.

    PubMed  CAS  Google Scholar 

  31. Bril A, Forest MC, Gout B. Ischemia and reperfusion-induced arrhythmias in rabbits with chronic heart failure. Am J Physiol 1991;261:H301-H307.

    PubMed  CAS  Google Scholar 

  32. Gidh-Jain M, Huang B, Jain P, el-Sherif N. Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction. Circ Res 1996;79:669–675.

    PubMed  CAS  Google Scholar 

  33. Kääb S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 1996;78:262–273.

    PubMed  Google Scholar 

  34. Rozanski GJ, Xu Z, Whitney RT, Murakami H, Zucker IH. Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. J Mol Cell Cardiol 1997;29:721–732.

    PubMed  CAS  Google Scholar 

  35. Tsuji Y, Opthof T, Kamiya K, et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 2000;48:300–309.

    PubMed  CAS  Google Scholar 

  36. Coltart DJ, Meldrum SJ. Intracellular action potential in hypertrophic obstructive cardiomyopathy. British Heart Journal 1972;34:7112–7497.

    Google Scholar 

  37. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987;61:70–76.

    PubMed  CAS  Google Scholar 

  38. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res 1994;28:1547–1554.

    PubMed  CAS  Google Scholar 

  39. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992;85:1046–1055.

    PubMed  CAS  Google Scholar 

  40. Beuckelmann DJ, Nabauer M, Erdmann E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 1993;73:379–385.

    PubMed  CAS  Google Scholar 

  41. Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 1999;84:435–444.

    PubMed  CAS  Google Scholar 

  42. O’Rourke B, Kass DA, Tomaselli GF, Kääb S, Tunin R, Marbán E. Mechanisms of altered excitationcontraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 1999;84:562–570.

    PubMed  Google Scholar 

  43. Pak PH, Nuss HB, Tunin RS, et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol 1997;30:576–584.

    PubMed  CAS  Google Scholar 

  44. Akar FG, Rosenbaum DS. Transmural heterogeneities of cellular repolarization underlie polymorphic ventricular tachycardia in failing myocardium. Circulation 2001;104:25.

    Google Scholar 

  45. Pye MP, Cobbe SM. Arrhythmogenesis in experimental models of heart failure: the role of increased load. Cardiovasc Res 1996;32:248–257.

    PubMed  CAS  Google Scholar 

  46. Kamkin A, Kiseleva I, Isenberg G. Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 2000;48:409–420.

    PubMed  CAS  Google Scholar 

  47. Litovsky SH, Antzelevitch C. Rate dependence of action potential duration and refractoriness in canine ventricular endocardium differs from that of epicardium: role of the transient outward current. J Am Coll Cardiol 1989;14:1053–1066.

    PubMed  CAS  Google Scholar 

  48. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 1991;442:191–209.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Lukas A, Antzelevitch C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 1993;88:2903–2915.

    PubMed  CAS  Google Scholar 

  50. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells [see comments]. J Am Coll Cardiol 1995;26:185–192.

    PubMed  CAS  Google Scholar 

  51. Di Diego JM, Sun ZQ, Antzelevitch C. I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 1996;271:H548-H561.

    PubMed  Google Scholar 

  52. McIntosh MA, Cobbe SM, Smith GL. Heterogeneous changes in action potential and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. Cardiovasc Res 2000;45:397–409.

    PubMed  CAS  Google Scholar 

  53. Barr CS, Naas A, Freeman M, Lang CC, Struthers AD. QT dispersion and sudden unexpected death in chronic heart failure. Lancet 1994;343:327–329.

    PubMed  CAS  Google Scholar 

  54. Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF. Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 1997;96:1557–1565.

    PubMed  CAS  Google Scholar 

  55. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 1993;72:463–469.

    PubMed  CAS  Google Scholar 

  56. Morgan JP, Erny RE, Allen PD, Grossman W, Gwathmey JK. Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 1990;81.

    Google Scholar 

  57. Calderone A, Takahashi N, Izzo NJ, Thaik CM, Colucci WS. Pressure- and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Circulation 1995;92:2385–2390.

    PubMed  CAS  Google Scholar 

  58. Hart G. Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res 1994;28: 933–946.

    PubMed  CAS  Google Scholar 

  59. Furukawa T, Myerburg RJ, Furukawa N, Kimura S, Bassett AL. Metabolic inhibition of ICa,L and IK differs in feline left ventricular hypertrophy. Am J Physiol 1994;266:H1121-H1131.

    PubMed  CAS  Google Scholar 

  60. Gomez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C. Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 1997;272.

    Google Scholar 

  61. Xiao YF, McArdle JJ. Elevated density and altered pharmacologic properties of myocardial calcium current of the spontaneously hypertensive rat. J Hypertens 1994;12:783–790.

    PubMed  CAS  Google Scholar 

  62. Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG. Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 1998;37:432–444.

    PubMed  CAS  Google Scholar 

  63. Gidh-Jain M, Huang B, Jain P, Battula V, el-Sherif N. Reemergence of the fetal pattern of L-type calcium channel gene expression in non infarcted myocardium during left ventricular remodeling. Biochemical & Biophysical Research Communications 1995;216:892–897.

    CAS  Google Scholar 

  64. Creazzo TL. Reduced L-type calcium current in the embryonic chick heart with persistent truncus arteriosus. Circ Res 1990;66:1491–1498.

    PubMed  CAS  Google Scholar 

  65. Mayoux E, Callens F, Swynghedauw B, Charlemagne D. Adaptational process of the cardiac Ca2+ channels to pressure overload: biochemical and physiological properties of the dihydropyridine receptors in normal and hypertrophied rat hearts. J Cardiovasc Pharmacol 1988;12:390–396.

    PubMed  CAS  Google Scholar 

  66. Wagner JA, Weisman HF, Snowman AM, Reynolds IJ, Weisfeldt ML, Snyder SH. Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues. Circ Res 1989;65:205–214.

    PubMed  CAS  Google Scholar 

  67. Dixon IM, Lee SL, Dhalla NS. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 1990;66:782–788.

    PubMed  CAS  Google Scholar 

  68. Vatner DE, Sato N, Kiuchi K, Shannon RP, Vatner SF. Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation 1994;90:1423–1430.

    PubMed  CAS  Google Scholar 

  69. Gengo PJ, Sabbah HN, Steffen RP, et al. Myocardial beta adrenoceptor and voltage sensitive calcium channel changes in a canine model of chronic heart failure. J Mol Cell Cardiol 1992;24:1361–1369.

    PubMed  CAS  Google Scholar 

  70. Rasmussen RP, Minobe W, Bristow MR. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol 1990;39:691–696.

    PubMed  CAS  Google Scholar 

  71. Beuckelmann DJ, Erdmann E. Ca(2+)-currents and intracellular [Ca2+]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Res Cardiol 1992;87: 235–243.

    PubMed  Google Scholar 

  72. Mewes T, Ravens U. L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J Mol Cell Cardiol 1994;26:1307–1320.

    PubMed  CAS  Google Scholar 

  73. Ouadid H, Albat B, Nargeot J. Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 1995;25:282–291.

    PubMed  CAS  Google Scholar 

  74. Takahashi T, Allen PD, Lacro RV, et al. Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 1992;90:927–935.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Gruver EJ, Morgan JP, Stambler BS, Gwathmey JK. Uniformity of calcium channel number and isometric contraction in human right and left ventricular myocardium. Basic Research in Cardiology 1994;89:139–148.

    PubMed  CAS  Google Scholar 

  76. Sipido KR, Stankovicova T, Flameng W, Vanhaecke J, Verdonck F. Frequency dependence of Ca2+ release from the sarcoplasmic reticulum in human ventricular myocytes from end-stage heart failure. Cardiovasc Res 1998;37:478–488.

    PubMed  CAS  Google Scholar 

  77. Ryder KO, Bryant SM, Hart G. Changes in cell length consequent on depolarization in single left ventricular myocytes from guinea-pigs with pressure-overload left ventricular hypertrophy. Proceedings of the Royal Society of London Series B: Biological Sciences 1993;253:35–42.

    PubMed  CAS  Google Scholar 

  78. Keung EC. Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 1989;64:753–763.

    PubMed  CAS  Google Scholar 

  79. Kleiman RB, Houser SR. Calcium currents in normal and hypertrophied isolated feline ventricular myocytes. Am J Physiol 1988;255:H1434-H1442.

    PubMed  CAS  Google Scholar 

  80. Winslow RL, Rice J, Jafri S, Marbán E, O’Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 1999;84:571–586.

    PubMed  CAS  Google Scholar 

  81. Finkel MS, Marks ES, Patterson RE, Speir EH, Steadman KA, Keiser HR. Correlation of changes in cardiac calcium channels with hemodynamics in Syrian hamster cardiomyopathy and heart failure. Life Sci 1987;41:153–159.

    PubMed  CAS  Google Scholar 

  82. Colston JT, Kumar P, Chambers JP, Freeman GL. Altered sarcolemmal calcium channel density and Ca(2+)-pump ATPase activity in tachycardia heart failure. Cell Calcium 1994;16:349–356.

    PubMed  CAS  Google Scholar 

  83. Schroeder F, Handrock R, Beuckelmann DJ, et al. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 1998;98:969–976.

    Google Scholar 

  84. Kääb S, Dixon J, Duc J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 1998;98:1383–1393.

    PubMed  Google Scholar 

  85. Hullin RA, Asmus F, Berger HJ, Boekstegers P. Differential expression of the subunits of the cardiac L-type calcium channel in diastolic failure of the transplanted heart. Circulation 1997;96:1–55.

    Google Scholar 

  86. Siri FM, Krueger J, Nordin C, Ming Z, Aronson RS. Depressed intracellular calcium transients and contraction in myocytes from hypertrophied and failing guinea pig hearts. Am J Physiol 1991; 261:H514-H530.

    PubMed  CAS  Google Scholar 

  87. Bailey BA, Houser SR. Calcium transients in feline left ventricular myocytes with hypertrophy induced by slow progressive pressure overload. J Mol Cell Cardiol 1992;24:365–373.

    PubMed  CAS  Google Scholar 

  88. Bailey BA, Dipla K, Li S, Houser SR. Cellular basis of contractile derangements of hypertrophied feline ventricular myocytes. J Mol Cell Cardiol 1997;29:1823–1835.

    PubMed  CAS  Google Scholar 

  89. Wang J, Flemal K, Qiu Z, Ablin L, Grossman W, Morgan JP. Ca2+ handling and myofibrillar Ca2+ sensitivity in ferret cardiac myocytes with pressure-overload hypertrophy. Am J Physiol 1994;267.

    Google Scholar 

  90. Gomez AM, Valdivia HH, Cheng H, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 1997;276:800–806.

    PubMed  CAS  Google Scholar 

  91. Beuckelmann DJ, Nabauer M, Kruger C, Erdmann E. Altered diastolic [Ca2+]i handling in human ventricular myocytes from patients with terminal heart failure. Am Heart J 1995;129:684–689.

    PubMed  CAS  Google Scholar 

  92. Mercadier JJ, Lompre AM, Duc P, et al. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Investig 1990;85:305–309.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Studer R, Reinecke H, Bilger J, et al. Gene expression of the cardiac Na(+)-Ca2+ exchanger in endstage human heart failure. Circ Res 1994;75:443–453.

    PubMed  CAS  Google Scholar 

  94. Schwinger RH, Bohm M, Schmidt U, et al. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995;92: 3220–3228.

    PubMed  CAS  Google Scholar 

  95. Flesch M, Schwinger RH, Schnabel P, et al. Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Molec Med 1996;74:321–332.

    PubMed  CAS  Google Scholar 

  96. Linck B, Boknik P, Eschenhagen T, et al. Messenger RNA expression and immunological quantification of phospholamban and SR-Ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovasc Res 1996;31:625–632.

    PubMed  CAS  Google Scholar 

  97. Kuo TH, Tsang W, Wang KK, Carlock L. Simultaneous reduction of the sarcolemmal and SR calcium ATPase activities and gene expression in cardiomyopathic hamster. Biochim Biophys Acta 1992;1138:343–349.

    PubMed  CAS  Google Scholar 

  98. Feldman AM, Weinberg EO, Ray PE, Lorell BH. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 1993;73:184–192.

    PubMed  CAS  Google Scholar 

  99. Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS. Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Molecular & Cellular Biochemistry 1996;164:285–290.

    Google Scholar 

  100. Gupta RC, Mishra S, Mishima T, Goldstein S, Sabbah HN. Reduced sarcoplasmic reticulum Ca(2+)-uptake and expression of phospholamban in left ventricular myocardium of dogs with heart failure. J Mol Cell Cardiol 1999;31:1381–1389.

    PubMed  CAS  Google Scholar 

  101. Kiss E, Ball NA, Kranias EG, Walsh RA. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 1995;77:759–764.

    PubMed  CAS  Google Scholar 

  102. Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 1994;75:434–442.

    PubMed  CAS  Google Scholar 

  103. Currie S, Smith GL. Enhanced phosphorylation of phospholamban and downregulation of sarco/ endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 1999;41:135–146.

    PubMed  CAS  Google Scholar 

  104. Pieske B, Kretschmann B, Meyer M, et al. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 1995;92: 1169–1178.

    PubMed  CAS  Google Scholar 

  105. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 1992;70: 1225–1232.

    PubMed  CAS  Google Scholar 

  106. Meyer M, Schillinger W, Pieske B, et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995;92:778–784.

    PubMed  CAS  Google Scholar 

  107. Movsesian MA, Bristow MR, Krall J. Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 1989;65:1141–1144.

    PubMed  CAS  Google Scholar 

  108. Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 1999;31:479–491.

    PubMed  Google Scholar 

  109. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 1991;83:1866–1872.

    PubMed  CAS  Google Scholar 

  110. Movsesian MA, Karimi M, Green K, Jones LR. Ca(2+)-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 1994;90:653–657.

    PubMed  CAS  Google Scholar 

  111. Bohm M, Reiger B, Schwinger RH, Erdmann E. cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc Res 1994;28:1713–1719.

    PubMed  CAS  Google Scholar 

  112. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK. Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 1999;277:H474-H480.

    PubMed  CAS  Google Scholar 

  113. Hajjar RJ, Schmidt U, Kang JX, Matsui T, Rosenzweig A. Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circ Res 1997;81:145–153.

    PubMed  CAS  Google Scholar 

  114. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A. Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 1997;95:423–429.

    PubMed  CAS  Google Scholar 

  115. Meyer M, Bluhm WF, He H, et al. Phospholamban-to-SERCA2 ratio controls the force-frequency relationship. Am J Physiol 1999;276:H779-H785.

    PubMed  CAS  Google Scholar 

  116. Ito K, Yan X, Tajima M, Su Z, Barry WH, Lorell BH. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts. Circ Res 2000;87: 588–595.

    PubMed  CAS  Google Scholar 

  117. Brillantes AM, Allen P, Takahashi T, Izumo S, Marks AR. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy [published erratum appears in Circ Res 1992; 71(6):1538]. Circ Res 1992;71:18–26.

    PubMed  CAS  Google Scholar 

  118. Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995;95:888–894.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000;101:365–376.

    PubMed  CAS  Google Scholar 

  120. Ono K, Yano M, Ohkusa T, et al. Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal Ca(2+) release in heart failure. Cardiovasc Res 2000;48:323–331.

    PubMed  CAS  Google Scholar 

  121. Yano M, Ono K, Ohkusa T, et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation 2000;102: 2131–2136.

    PubMed  CAS  Google Scholar 

  122. Hobai IA, O’Rourke B. Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation 2001;103:1577–1584.

    PubMed  CAS  Google Scholar 

  123. Li S, Margulies KB, Cheng H, Houser SR. Calcium current and calcium transients are depressed in failing human ventricular myocytes and recover in patients supported with left ventricular assist devices. (Abstract). Circulation 1999;100:I60.

    Google Scholar 

  124. Flesch M, Schwinger RH, Schiffer F, et al. Evidence for functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in failing human myocardium. Circulation 1996;94:992–1002.

    PubMed  CAS  Google Scholar 

  125. Studer R, Reinecke H, Vetter R, Holtz J, Drexler H. Expression and function of the cardiac Na+/Ca2+ exchanger in postnatal development of the rat, in experimental-induced cardiac hypertrophy and in the failing human heart. Basic Res Cardiol 1997;92:53–58.

    PubMed  CAS  Google Scholar 

  126. Yoshiyama M, Takeuchi K, Hanatani A, et al. Differences in expression of sarcoplasmic reticulum Ca2+-ATPase and Na+-Ca2+ exchanger genes between adjacent and remote noninfarcted myocardium after myocardial infarction. J Mol Cell Cardiol 1997;29:255–264.

    PubMed  CAS  Google Scholar 

  127. Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM. Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure [see comments]. Circ Res 1999;85:1009–1019.

    PubMed  CAS  Google Scholar 

  128. Reinecke H, Studer R, Vetter R, Holtz J, Drexler H. Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovasc Res 1996;31:48–54.

    PubMed  CAS  Google Scholar 

  129. Hobai IA, O’Rourke B. Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacinginduced heart failure. Circ Res 2000;87:690–698.

    PubMed  CAS  Google Scholar 

  130. O’Rourke B, Kääb S, Kass DA, Tomaselli GF, Marbán E. Role of Ca2+-activated Cl-current in shaping the action potential of canine ventricular myocytes from normal and failing hearts. Biophysical J 1996;70:A373.

    Google Scholar 

  131. Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP. Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 1990;85:1599–1613.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Hasenfuss G, Reinecke H, Studer R, et al. Calcium cycling proteins and force-frequency relationship in heart failure. Basic Res Cardiol 1996;91:17–22.

    PubMed  CAS  Google Scholar 

  133. Pieske B, Sutterlin M, Schmidt-Schweda S, et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 1996;98:764–776.

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. Contribution of reverse-mode sodiumcalcium exchange to contractions in failing human left ventricular myocytes. Cardiovasc Res 1998;37:424–431.

    PubMed  CAS  Google Scholar 

  135. Volders PG, Sipido KR, Vos MA, et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation 1999;100: 2455–2461.

    PubMed  CAS  Google Scholar 

  136. Ten Eick RE, Zhang K, Harvey RD, Bassett AL. Enhanced functional expression of transient outward current in hypertrophied feline myocytes. Cardiovascular Drugs & Therapy 1993;3:611–619.

    Google Scholar 

  137. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 1994;75:473–482.

    PubMed  CAS  Google Scholar 

  138. Nabauer M, Beuckelmann DJ, Öberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 1996;93:168–177.

    PubMed  CAS  Google Scholar 

  139. Rosati B, Pan Z, Lypen S, et al. Regulation of KChIP2 potassium channel. J Physiol 2001;533: 119–125.

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Xu H, Dixon JE, Barry DM, et al. Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes. J Gen Physiol 1996;108:405–419.

    PubMed  CAS  Google Scholar 

  141. Wickenden AD, Kaprielian R, Parker TG, Jones OT, Backx PH. Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle. J Physiol (Lond) 1997;504:271–286.

    CAS  Google Scholar 

  142. Jeck C, Pinto J, Boyden P. Transient outward currents in subendocardial Purkinje myocytes surviving in the infarcted heart. Circulation 1995;92:465–473.

    PubMed  CAS  Google Scholar 

  143. Rozanski GJ, Xu Z, Zhang K, Patel KP. Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol 1998;274:H259-H265.

    PubMed  CAS  Google Scholar 

  144. Aimond F, Alvarez JL, Rauzier JM, Lorente P, Vassort G. Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction. Cardiovasc Res 1999;42:402–415.

    PubMed  CAS  Google Scholar 

  145. Nabauer M, Barth A, Kääb S. A second calcium-independent transient outward current present in human left ventricular myocardium. Circulation 1998;98:1–231.

    Google Scholar 

  146. Blair TA, Roberds SL, Tamkun MM, Hartshorne RP. Functional characterization of RK5, a voltagegated K+ channel cloned from the rat cardiovascular system. FEBS Lett 1991;295:211–213.

    PubMed  CAS  Google Scholar 

  147. Po S, Snyders DJ, Baker R, Tamkun MM, Bennett PB. Functional expression of an inactivating potassium channel cloned from human heart. Circ Res 1992;71:732–736.

    PubMed  CAS  Google Scholar 

  148. Dixon JE, Shi W, Wang HS, et al. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current [published erratum appears in Circ Res 1997;80(1):147]. Circ Res 1996;79:659–668.

    PubMed  CAS  Google Scholar 

  149. Kong W, Po S, Yamagishi T, Ashen MD, Stetten G, Tomaselli GF. Isolation and characterization of the human gene encoding the transient outward potassium current: further diversity by alternative mRNA splicing. Am J Physiol 1998;275:H1963-H1970.

    PubMed  CAS  Google Scholar 

  150. Apkon M, Nerbonne JM. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K+ current in rat ventricular myocytes. Proc Natl Acad Sci USA 1988;85:8756–8760.

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Fedida D, Shimoni Y, Giles WR. A novel effect of norepinephrine on cardiac cells is mediated by alpha 1-adrenoceptors. Am J Physiol 1989;256:H1500-H1504.

    PubMed  CAS  Google Scholar 

  152. Braun AP, Fedida D, Clark RB, Giles WR. Intracellular mechanisms for alpha 1-adrenergic regulation of the transient outward current in rabbit atrial myocytes. J Physiol (Lond) 1990;431:689–712.

    CAS  Google Scholar 

  153. Shimoni Y, Fiset C, Clark RB, Dixon JE, McKinnon D, Giles WR. Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol (Lond) 1997;500:65–73.

    CAS  Google Scholar 

  154. Hoppe UC, Johns DC, Marban E, O’Rourke B. Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential. Circ Res 1999;84:964–972.

    PubMed  CAS  Google Scholar 

  155. Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL. Role of the calcium-independent transient outward current i(tol) in shaping action potential morphology and duration [In Process Citation] . Circ Res 2000;87:1026–1033.

    PubMed  CAS  Google Scholar 

  156. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 2001;88:1159–1167.

    PubMed  CAS  Google Scholar 

  157. Koumi S, Backer CL, Arentzen CE. Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation 1995;92:164–174.

    PubMed  CAS  Google Scholar 

  158. Furukawa T, Bassett AL, Furukawa N, Kimura S, Myerburg RJ. The ionic mechanism of reperfusioninduced early afterdepolarizations in feline left ventricular hypertrophy. J Clin Invest 1993;91: 1521–1531.

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Vos MA, Verduyn SC, Gorgels AP, Lipcsei GC, Wellens HJ. Reproducible induction of early afterdepolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation 1995;91:864–872.

    PubMed  CAS  Google Scholar 

  160. Vos MA, de Groot SH, Verduyn SC, et al. Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation 1998;98:1125–1135.

    PubMed  CAS  Google Scholar 

  161. Jiang M, Cabo C, Yao J, Boyden PA, Tseng G. Delayed rectifier K currents have reduced amplitudes and altered kinetics in myocytes from infarcted canine ventricle. Cardiovasc Res 2000;48:34–43.

    PubMed  CAS  Google Scholar 

  162. Yuan F, Pinto JM, Li Q, et al. Characteristics of I(K) and its response to quinidine in experimental healed myocardial infarction. J Cardiovasc Electrophysiol 1999;10:844–854.

    PubMed  CAS  Google Scholar 

  163. Choy A-M, Kuperschmidt S, Lang CC, Pierson RN, Roden DM. Regional expression of HERG and KvLQT1 in heart failure. Circulation 1996;94:164.

    Google Scholar 

  164. Koumi SI, Martin RL, Sato R. Alterations in ATP-sensitive potassium channel sensitivity to ATP in failing human hearts. Am J Physiol 1997;272:H1656-H1665.

    PubMed  CAS  Google Scholar 

  165. Dhalla NS, Dixon IM, Rupp H, Barwinsky J. Experimental congestive heart failure due to myocardial infarction: sarcolemmal receptors and cation transporters. Basic Res Cardiol 1991;86:13–23.

    PubMed  Google Scholar 

  166. Houser SR, Freeman AR, Jaeger JM, et al. Resting potential changes associated with Na-K pump in failing heart muscle. Am J Physiol 1981;240:H168-H176.

    PubMed  CAS  Google Scholar 

  167. Kjeldsen K, Bjerregaard P, Richter EA, Thomsen PE, Norgaard A. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle: apparent relation to muscle performance. Cardiovasc Res 1988;22:95–100.

    PubMed  CAS  Google Scholar 

  168. Spinale FG, Clayton C, Tanaka R, et al. Myocardial Na+,K(+)-ATPase in tachycardia induced cardiomyopathy. J Mol Cell Cardiol 1992;24:277–294.

    PubMed  CAS  Google Scholar 

  169. Zahler R, Gilmore-Hebert M, Sun W, Benz EJ. Na, K-ATPase isoform gene expression in normal and hypertrophied dog heart. Basic Res Cardiol 1996;91:256–266.

    PubMed  CAS  Google Scholar 

  170. Schwinger RH, Bohm M, Erdmann E. Effectiveness of cardiac glycosides in human myocardium with and without “downregulated” beta-adrenoceptors. J Cardiovasc Pharmacol 1990;15:692–697.

    PubMed  CAS  Google Scholar 

  171. Ranjan R, Chiamvimonvat N, Thakor NV, Tomaselli GF, Marban E. Mechanism of anode break stimulation in the heart. Biophys J 1998;74:1850–1863.

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Baker K, Warren KS, Yellen G, Fishman MC. Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc Natl Acad Sci USA 1997;94:4554–4559.

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Cerbai E, Barbieri M, Mugelli A. Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 1996;94:1674–1681.

    PubMed  CAS  Google Scholar 

  174. Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 1998;97:55–65.

    PubMed  CAS  Google Scholar 

  175. Smith JH, Green CR, Peters NS, Rothery S, Severs NJ. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol 1991;139:801–821.

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Peters NS, Green CR, Poole-Wilson PA, Severs NJ. Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 1993;88: 864–875.

    PubMed  CAS  Google Scholar 

  177. Dupont E, Matsushita T, Kaba RA, et al. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 2001;33:359–371.

    PubMed  CAS  Google Scholar 

  178. Lerner DL, Chapman Q, Green KG, Saffitz JE. Reversible down-regulation of connexin43 expression in acute cardiac allograft rejection. J Heart Lung Transplant 2001;20:93–97.

    PubMed  CAS  Google Scholar 

  179. Jongsma HJ, Wilders R. Gap junctions in cardiovascular disease. Circ Res 2000;86:1193–1197.

    PubMed  CAS  Google Scholar 

  180. Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin-43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 1997;95:988–996.

    PubMed  CAS  Google Scholar 

  181. Saffitz JE, Laing JG, Yamada KA. Connexin expression and turnover: implications for cardiac excitability. Circ Res 2000;86:723–728.

    PubMed  CAS  Google Scholar 

  182. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 2000;87:656–662.

    PubMed  CAS  Google Scholar 

  183. Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Tada M, Hori M. Functional role of c-Src in gap junctions of the cardiomyopathic heart. Circ Res 1999;85:672–681.

    PubMed  CAS  Google Scholar 

  184. De Mello WC. Renin-angiotensin system and cell communication in the failing heart. Hypertension 1996;27:1267–1272.

    PubMed  Google Scholar 

  185. De Mello WC. Impaired regulation of cell communication by beta-adrenergic receptor activation in the failing heart. Hypertension 1996;27:265–268.

    PubMed  Google Scholar 

  186. Dodge SM, Beardslee MA, Darrow BJ, Green KG, Beyer EC, Saffitz JE. Effects of angiotensin II on expression of the gap junction channel protein connexin43 in neonatal rat ventricular myocytes. J Am Coll Cardiol 1998;32:800–807.

    PubMed  CAS  Google Scholar 

  187. Gutstein DE, Morley GE, Tamaddon H, et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 2001;88:333–339.

    PubMed  CAS  PubMed Central  Google Scholar 

  188. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergicreceptor density in failing human hearts. N Engl J Med 1982;307:205–211.

    PubMed  CAS  Google Scholar 

  189. Bristow MR. Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 1993;22:61A-71A.

    PubMed  CAS  Google Scholar 

  190. Bohm M, Flesch M, Schnabel P. Beta-adrenergic signal transduction in the failing and hypertrophied myocardium. J Mol Med 1997;75:842–848.

    PubMed  CAS  Google Scholar 

  191. Dash R, Kadambi VJ, Schmidt AG, et al. Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 2001;103:889–896.

    PubMed  CAS  Google Scholar 

  192. Zhou YY, Cheng H, Bogdanov KY, et al. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. Am J Physiol 1997;273: H1611-H1618.

    PubMed  CAS  Google Scholar 

  193. Bristow MR, Ginsburg R, Umans V, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 1986;59:297–309.

    PubMed  CAS  Google Scholar 

  194. Bristow MR, Hershberger RE, Port JD, et al. Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 1990;82:112–125.

    Google Scholar 

  195. Kiuchi K, Shannon RP, Komamura K, et al. Myocardial beta-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 1993;91:907–914.

    PubMed  CAS  PubMed Central  Google Scholar 

  196. Brodde OE. Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 1991;43:203–242.

    PubMed  CAS  Google Scholar 

  197. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 1989;35:295–303.

    PubMed  CAS  Google Scholar 

  198. Bristow MR, Anderson FL, Port JD, et al. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991;84:1024–1039.

    PubMed  CAS  Google Scholar 

  199. Xiao RP, Avdonin P, Zhou YY, et al. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84:43–52.

    PubMed  CAS  Google Scholar 

  200. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 1998;98:1329–1334.

    PubMed  CAS  Google Scholar 

  201. Chesley A, Lundberg MS, Asai T, et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 2000;87:1172–1179.

    PubMed  CAS  Google Scholar 

  202. Eschenhagen T, Mende U, Nose M, et al. Increased messenger RNA level of the inhibitory G-protein alpha subunit Gialpha-2 in human end-stage heart failure. Circ Res 1992;70:688–696.

    PubMed  CAS  Google Scholar 

  203. Bohm M, Eschenhagen T, Gierschik P, et al. Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 1994;26:133–149.

    PubMed  CAS  Google Scholar 

  204. Feldman AM, Cates AE, Veazey WB, et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 1988;82:189–197.

    PubMed  CAS  PubMed Central  Google Scholar 

  205. Mende U, Eschenhagen T, Geertz B, et al. Isoprenaline-induced increase in the 40/41 kDa pertussis toxin substrates and functional consequences on contractile response in rat heart. Naunyn Schmiedebergs Arch Pharmacol 1992;345:44–50.

    PubMed  CAS  Google Scholar 

  206. Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA. Troponin I phosphorylation in the normal and failing adult human heart. Circulation 1997;96:1495–1500.

    PubMed  CAS  Google Scholar 

  207. Zakhary DR, Moravec CS, Stewart RW, Bond M. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation 1999;99:505–510.

    PubMed  CAS  Google Scholar 

  208. Zakhary DR, Fink MA, Ruehr MA, Bond M. Selectivity and regulation of A-kinase anchoring proteins in the heart: the role of autophosphorylation of the Type-II regulatory subunit of cAMP-dependent protein kinase. J Biol Chem 2000;275:41389–41395.

    PubMed  CAS  Google Scholar 

  209. Dell’Acqua ML, Scott JD. Protein kinase A anchoring. J Biol Chem 1997;272:12881–12884.

    PubMed  Google Scholar 

  210. Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS. Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem 1997;272:8057–8064.

    PubMed  CAS  Google Scholar 

  211. Zakhary DR, Moravec CS, Bond M. Regulation of PKA binding to AKAPs in the heart: alterations in human heart failure. Circulation 2000;101:1459–1464.

    PubMed  CAS  Google Scholar 

  212. Hartzell HC, Duchatelle-Gourdon I. Regulation of the cardiac delayed rectifier K current by neurotransmitters and magnesium. Cardiovasc Drugs Ther 1993;7 Suppl 3:547–554.

    PubMed  Google Scholar 

  213. Fedida D, Braun AP, Giles WR. Alpha 1-adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiol Rev 1993;73:469–487.

    PubMed  CAS  Google Scholar 

  214. Spinale FG, Holzgrefe HH, Mukherjee R, et al. Angiotensin-converting enzyme inhibition and the progression of congestive cardiomyopathy. Effects on left ventricular and myocyte structure and function. Circulation 1995;92:562–578.

    PubMed  CAS  Google Scholar 

  215. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 1998;82:482–495.

    PubMed  CAS  Google Scholar 

  216. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res 1995;77:863–868.

    PubMed  CAS  Google Scholar 

  217. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991;83:1849–1865.

    PubMed  CAS  Google Scholar 

  218. Volders PG, Willems IE, Cleutjens JP, Arends JW, Havenith MG, Daemen MJ. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 1993;25:1317–1323.

    PubMed  CAS  Google Scholar 

  219. van Krimpen C, Schoemaker RG, Cleutjens JP, et al. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 1991;86:149–155.

    PubMed  Google Scholar 

  220. Smits JF, van Krimpen C, Schoemaker RG, Cleutjens JP, Daemen MJ. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 1992;20:772–778.

    PubMed  CAS  Google Scholar 

  221. Beltrami CA, Finato N, Rocco M, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151–163.

    PubMed  CAS  Google Scholar 

  222. Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 1999; 85:364–376.

    PubMed  CAS  Google Scholar 

  223. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998;97:1708–1715.

    PubMed  CAS  Google Scholar 

  224. Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998;98:1728–1734.

    PubMed  CAS  Google Scholar 

  225. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 1997;96:4065–4082.

    PubMed  CAS  Google Scholar 

  226. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension 1994;23:587–592.

    PubMed  CAS  Google Scholar 

  227. Reiss K, Capasso JM, Huang HE, Meggs LG, Li P, Anversa P. ANG II receptors, c-myc, and c-jun in myocytes after myocardial infarction and ventricular failure. Am J Physiol 1993;264:H760-H769.

    PubMed  CAS  Google Scholar 

  228. Barlucchi L, Leri A, Dostal DE, et al. Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 2001;88:298–304.

    PubMed  CAS  Google Scholar 

  229. Aronson RS, Ming Z. Cellular mechanisms of arrhythmias in hypertrophied and failing myocardium. Circulation 1993;87:76–83.

    Google Scholar 

  230. Li HG, Jones DL, Yee R, Klein GJ. Electrophysiologic substrate associated with pacing-induced heart failure in dogs: potential value of programmed stimulation in predicting sudden death. J Am Coll Cardiol 1992;19:444–449.

    PubMed  CAS  Google Scholar 

  231. Li HG, Jones DL, Yee R, Klein GJ. Arrhythmogenic effects of catecholamines are decreased in heart failure induced by rapid pacing in dogs. Am J Physiol 1993;265:H1654-H1662.

    PubMed  CAS  Google Scholar 

  232. Wang Z, Taylor LK, Denney WD, Hansen DE. Initiation of ventricular extrasystoles by myocardial stretch in chronically dilated and failing canine left ventricle. Circulation 1994;90:2022–2031.

    PubMed  CAS  Google Scholar 

  233. Nuss HB, Kääb S, Kass DA, Tomaselli GF, Marbán E. Increased susceptibility to arrhythmogenic early after depolarization and oscillatory prepotentials in failing canine ventricular myocytes. Circulation 1995;92:434.

    Google Scholar 

  234. Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal hypertension. Circ Res 1981;48:720–727.

    PubMed  CAS  Google Scholar 

  235. Ben-David J, Zipes DP, Ayers GM, Pride HP. Canine left ventricular hypertrophy predisposes to ventricular tachycardia induction by phase 2 early afterdepolarizations after administration of BAY K 8644. Journal of the American College of Cardiology 1992;20:1576–1584.

    PubMed  CAS  Google Scholar 

  236. Koster OF, Szigeti GP, Beuckelmann DJ. Characterization of a [Ca2+]i-dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+. Cardiovasc Res 1999;41:175–187.

    PubMed  CAS  Google Scholar 

  237. Sipido KR, Volders PG, de Groot SH, et al. Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 2000;102:2137–2144.

    PubMed  CAS  Google Scholar 

  238. Shechter JA, O’Connor KM, Friehling TD, Mark R, Uboh C, Kowey PR. Electrophysiologic effects of left ventricular hypertrophy in the intact cat. Am J Hypertens 1989;2:81–85.

    PubMed  CAS  Google Scholar 

  239. Gelband H, Bassett AL. Depressed transmembrane potentials during experimentally induced ventricular failure in cats. Circ Res 1973;32:625–634.

    PubMed  CAS  Google Scholar 

  240. Noma A, Tsuboi N. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol (Lond) 1987;382:193–211.

    CAS  Google Scholar 

  241. Maurer P, Weingart R. Cell pairs isolated from adult guinea pig and rat hearts: effects of [Ca2+]i on nexal membrane resistance. Pflugers Arch 1987;409:394–402.

    PubMed  CAS  Google Scholar 

  242. Peters NS. New insights into myocardial arrhythmogenesis: distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin Sci (Colch) 1996;90:447–452.

    CAS  Google Scholar 

  243. Severs NJ. Gap junction alterations in the failing heart. Eur Heart J 1994;15 Suppl D:53–57.

    PubMed  Google Scholar 

  244. Spach MS, Heidlage JF, Dolber PC, Barr RC. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circ Res 2000;86:302–311.

    PubMed  CAS  Google Scholar 

  245. Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side- to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol 1997;20:397–413.

    PubMed  CAS  Google Scholar 

  246. Marbán E. Heart failure: the electrophysiologic connection. J Cardiovasc Electrophysiol 1999; 10:1425–1428.

    PubMed  Google Scholar 

  247. Tomaselli GF, Marbán E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovascular Research 1999: in press.

    Google Scholar 

  248. Porter TR, Eckberg DL, Fritsch JM, et al. Autonomic pathophysiology in heart failure patients. Sympathetic-cholinergic interrelations. J Clin Invest 1990;85:1362–1371.

    PubMed  CAS  PubMed Central  Google Scholar 

  249. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–823.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armoundas, A.A., Tomaselli, G.F. (2003). Electrical and Structural Remodeling of the Ventricular Myocardium in Disease. In: Gussak, I., Antzelevitch, C., Hammill, S.C., Shen, WK., Bjerregaard, P. (eds) Cardiac Repolarization. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-362-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-362-0_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-336-7

  • Online ISBN: 978-1-59259-362-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics