Skip to main content

Electrophysiology and Pharmacology of Ventricular Repolarization

  • Chapter
  • 109 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Repolarization of the ventricular action potential is responsible for the inscription of the T wave and definition of the QT interval in the electrocardiogram (ECG). Repolarization forces play a determining role in the normal function of the myocardium and when defective are often responsible for the development of life-threatening arrhythmias. Thus, our understanding of the electrocardiographic representation of the electrical activity of the heart and appreciation of the mechanisms of arrhythmogenesis requires a fundamental knowledge of the mechanisms of repolarization and the degree to which they differ among the various cell types present within the ventricle of the heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity within the ventricular wall: Electrophysi-ology and pharmacology of epicardial, endocardial and M cells. Circ Res 1991;69:1427–1449.

    PubMed  CAS  Google Scholar 

  2. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations: The role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 1994;23:259–277.

    PubMed  CAS  Google Scholar 

  3. Antzelevitch C, Sicouri S, Lukas A, et al. Clinical implications of electrical heterogeneity in the heart: The electrophysiology and pharmacology of epicardial, M and endocardial cells. In: Podrid PJ, Kowey PR, eds. Cardiac Arrhythmia: Mechanism, Diagnosis and Management. Baltimore, MD: William & Wilkins, 1995:88–107.

    Google Scholar 

  4. Antzelevitch C. The M cell. Invited Editorial Comment. Journal of Cardiovascular Pharmacology and Therapeutics 1997;2:73–76.

    PubMed  Google Scholar 

  5. Antzelevitch C, Yan GX, Shimizu W, Burashnikov A. Electrical heterogeneity, the ECG, and cardiac arrhythmias. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders Co., 1999:222–238.

    Google Scholar 

  6. Antzelevitch C, Shimizu W, Yan GX, et al. The M cell. Its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999;10:1124–1152.

    PubMed  CAS  Google Scholar 

  7. Anyukhovsky EP, Sosunov EA, Gainullin RZ, Rosen MR. The controversial M cell. J Cardiovasc Electrophysiol 1999;10:244–260.

    PubMed  CAS  Google Scholar 

  8. Antzelevitch C, Dumaine R. Electrical heterogeneity in the heart: Physiological, pharmacological and clinical implications. In: Page E, Fozzard HA, Solaro RJ, eds. Handbook of Physiology. The Heart. New York: Oxford University Press, 2002:654–692.

    Google Scholar 

  9. Gilmour RF, Jr., Zipes DP. Different electrophysiological responses of canine endocardium and epicardium to combined hyperkalemia, hypoxia, and acidosis. Circ Res 1980;46:814–825.

    PubMed  Google Scholar 

  10. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1988;62:116–126.

    PubMed  CAS  Google Scholar 

  11. Krishnan SC, Antzelevitch C. Sodium channel blockade produces opposite electrophysiologic effects in canine ventricular epicardium and endocardium. Circ Res 1991;69:277–291.

    PubMed  CAS  Google Scholar 

  12. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol (Lond) 1991;442:191–209.

    CAS  Google Scholar 

  13. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium: Phase 2 Reentry? Circulation 1993;87:562–572.

    PubMed  CAS  Google Scholar 

  14. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues: Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation 1993;88:1177–1189.

    PubMed  Google Scholar 

  15. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 1993;72:671–687.

    PubMed  CAS  Google Scholar 

  16. Lukas A, Antzelevitch C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia: Role of the transient outward current. Circulation 1993; 88:2903–2915.

    PubMed  CAS  Google Scholar 

  17. Di Diego JM, Antzelevitch C. High [Ca2+]-induced electrical heterogeneity and extrasystolic activity in isolated canine ventricular epicardium: Phase 2 reentry. Circulation 1994;89:1839–1850.

    PubMed  Google Scholar 

  18. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation 1996;93: 372–379.

    PubMed  CAS  Google Scholar 

  19. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle: The M cell. Circ Res 1991;68:1729–1741.

    PubMed  CAS  Google Scholar 

  20. Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cell (M cells) in the canine heart: Quinidine and Digitalis. J Cardiovasc Electrophysiol 1993;4:48–58.

    PubMed  CAS  Google Scholar 

  21. Sicouri S, Fish J, Antzelevitch C. Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol 1994;5:824–837.

    PubMed  CAS  Google Scholar 

  22. Sicouri S, Antzelevitch C. Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J Cardiovasc Electrophysiol 1995;6:591–603.

    PubMed  CAS  Google Scholar 

  23. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H. Electrophysiological characteristics of cells spanning the left ventricular wall of human heart: Evidence for the presence of M cells. J Am Coll Cardiol 1995;26:185–192.

    PubMed  CAS  Google Scholar 

  24. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial and endocardial myocytes: A weaker IKs contributes to the longer action potential of the M cell. Circ Res 1995;76:351–365.

    PubMed  CAS  Google Scholar 

  25. Antzelevitch C, Nesterenko VV, Yan GX. The role of M cells in acquired long QT syndrome, U waves and torsade de pointes. J Electrocardiol 1996;28(suppl.): 131–138.

    Google Scholar 

  26. Weissenburger J, Nesterenko VV, Antzelevitch C. Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo. Torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 2000; 11:290–304.

    PubMed  CAS  Google Scholar 

  27. Sicouri S, Quist M, Antzelevitch C. Evidence for the presence of M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol 1996;7:503–511.

    PubMed  CAS  Google Scholar 

  28. Li GR, Feng J, Yue L, Carrier M. Transmural heterogeneity of action potentials and Itol in myocytes isolated from the human right ventricle. Am J Physiol 1998;275:H369-H377.

    PubMed  CAS  Google Scholar 

  29. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium: In vitro and in vivo correlations. Circulation 1996;94:1981–1988.

    PubMed  CAS  Google Scholar 

  30. Rodriguez-Sinovas A, Cinca J, Tapias A, Armadans L, Tresanchez M, Soler-Soler J. Lack of evidence of M-cells in porcine left ventricular myocardium. Cardiovasc Res 1997;33:307–313.

    PubMed  CAS  Google Scholar 

  31. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 1997;96:2038–2047.

    PubMed  CAS  Google Scholar 

  32. El-Sherif N, Caref EB, Yin H, Restivo M. The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome: Tridimensional mapping of activation and recovery patterns. Circ Res 1996;79:474–492.

    PubMed  CAS  Google Scholar 

  33. Weirich J, Bernhardt R, Loewen N, Wenzel W, Antoni H. Regional- and species-dependent effects of K+ -channel blocking agents on subendocardium and mid-wall slices of human, rabbit, and guinea pig myocardium, [abstr]. Pflugers Arch 1996;431:R130.

    Google Scholar 

  34. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 1990;67:1287–1291.

    PubMed  CAS  Google Scholar 

  35. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 1993;27:1795–1799.

    PubMed  CAS  Google Scholar 

  36. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 1994;75:473–482.

    PubMed  CAS  Google Scholar 

  37. Nabauer M, Beuckelmann DJ, Öberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 1996;93:168–177.

    PubMed  CAS  Google Scholar 

  38. Zygmunt AC. Intracellular calcium activates chloride current in canine ventricular myocytes. Am J Physiol 1994;267:H1984-H1995.

    PubMed  CAS  Google Scholar 

  39. Takano M, Noma A. Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflugers Arch 1992;420:223–226.

    PubMed  CAS  Google Scholar 

  40. Di Diego JM, Sun ZQ, Antzelevitch C. Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 1996;271:H548-H561.

    PubMed  Google Scholar 

  41. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITOl and IKs are larger in right than left canine ventricular midmyocardium. Circulation 1999;99:206–210.

    PubMed  CAS  Google Scholar 

  42. Antzelevitch C, Sicouri S, Lukas A, Nesterenko VV, Liu DW, Di Diego JM. Regional differences in the electrophysiology of ventricular cells: Physiological and clinical implications. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders Co., 1995: 228–245.

    Google Scholar 

  43. Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. The antiarrhythmic effects of 4-aminopyridine. Cardiovasc Res 1996;32:593–603.

    PubMed  CAS  Google Scholar 

  44. Antzelevitch C, Di Diego JM, Sicouri S, Lukas A. Selective pharmacological modification of repolarizing currents. Antiarrhythmic and proarrhythmic actions of agents that influence repolarization in the heart. In: Breithardt J, ed. Antiarrhythmic Drugs: Mechanisms of Antiarrhythmic and Proarrhythmic Actions. Berlin: Springer-Verlag, 1995:57–80.

    Google Scholar 

  45. Lukas A, Antzelevitch C. The contribution of K+ currents to electrical heterogeneity across the canine ventricular wall under normal and ischemic conditions. In: Dhalla NS, Pierce GN, Panagia V, eds. Pathophysiology of Heart Failure. Boston: Academic Publishers, 1996:440–456.

    Google Scholar 

  46. Eddlestone GT, Zygmunt AC, Antzelevitch C. Larger Late Sodium Current Contributes to the Longer Action Potential of the M Cell in Canine Ventricular Myocardium, [abstr]. PACE 1996; 19:4 (Pt 2):569.

    Google Scholar 

  47. Zygmunt AC, Goodrow RJ, Antzelevitch C. INa-Ca contributes to electrical heterogeneity within the canine ventricle. Am J Physiol 2000;278:H1671-H1678.

    CAS  Google Scholar 

  48. Brahmajothi MV, Morales MJ, Reimer KA, Strauss HC. Regional localization of ERG, the channel protein responsible for the rapid component of the delayed rectifier, K+ current in the ferret heart. Circ Res 1997;81:128–135.

    PubMed  CAS  Google Scholar 

  49. Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially-perfused canine left ventricular wedge preparations. Circulation 1998;98:1921–1927.

    PubMed  CAS  Google Scholar 

  50. Solberg LE, Singer DH, Ten Eick RE, Duffin EG. Glass microelectrode studies on intramural papillary muscle cells. Circ Res 1974;34:783–797.

    PubMed  CAS  Google Scholar 

  51. Viswanathan PC, Shaw RM, Rudy Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate-dependence: A simulation study. Circulation 1999;99:2466–2474.

    CAS  Google Scholar 

  52. Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 1969;24:339–347.

    PubMed  Google Scholar 

  53. Streeter DD. Gross morphology and fiber geometry of the heart. In: Berne RM, ed. Handbook of Physiology. Section 2: The Cardiovascular System. Baltimore: Waverly Press, Inc., 1979:61–112.

    Google Scholar 

  54. Lunkenheimer PP, Redmann K, Scheld HH, et al. The heart muscle’s putative “secondary structure.” Functional implications of a band-like anisotropy. Technol Health Care 1997;5:53–64.

    PubMed  CAS  Google Scholar 

  55. Stankovicova T, Szilard M, De Scheerder I, Sipido KR. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 2000;45:952–960.

    PubMed  CAS  Google Scholar 

  56. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol 1998;9:934–948.

    PubMed  CAS  Google Scholar 

  57. Shimizu W, McMahon B, Antzelevitch C. Sodium pentobarbital reduces transmural dispersion of repolarization and prevents torsade de pointes in models of acquired and congenital long QT syndromes. J Cardiovasc Electrophysiol 1999;10:156–164.

    Google Scholar 

  58. Shimizu W, Antzelevitch C. Cellular basis for the electrocardiographic features of the LQT1 form of the long QT syndrome: Effects of b-adrenergic agonists, antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 1998;98:2314–2322.

    PubMed  CAS  Google Scholar 

  59. Shimizu W, Antzelevitch C. Cellular and ionic basis for T-wave alternans under Long QT-conditions. Circulation 1999;99:1499–1507.

    PubMed  CAS  Google Scholar 

  60. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation 1998;98:1928–1936.

    PubMed  CAS  Google Scholar 

  61. Balati B, Varro A, Papp JG. Comparison of the cellular electrophysiological characteristics of canine left ventricular epicardium, M cells, endocardium and Purkinje fibres. Acta Physiol Scand 1998;164:181–190.

    PubMed  CAS  Google Scholar 

  62. Bryant SM, Wan X, Shipsey SJ, Hart G. Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guineapig. Cardiovasc Res 1998;40:322–331.

    PubMed  CAS  Google Scholar 

  63. Shipsey SJ, Bryant SM, Hart G. Effects of hypertrophy on regional action potential characteristics in the rat left ventricle: a cellular basis for T-wave inversion? Circulation 1997;96:2061–2068.

    PubMed  CAS  Google Scholar 

  64. Taggart P, Sutton PM, Opthof T, Coronel R, Trimlett R, Pugsley W, Kallis P. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J Mol Cell Cardiol 2000;32:621–630.

    PubMed  CAS  Google Scholar 

  65. Antzelevitch C. Transmural dispersion of repolarization and the T wave. Cardiovasc Res 2001;50: 426–431.

    PubMed  CAS  Google Scholar 

  66. Vos MA, Jungschleger JG. Transmural repolarization gradients in vivo: the flukes and falls of the endocardium. Cardiovasc Res 2001;50:423–425.

    PubMed  CAS  Google Scholar 

  67. El-Sherif N, Chinushi M, Caref EB, Restivo M. Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome. Detailed analysis of ventricular tridimensional activation patterns. Circulation 1997;96:4392–4399.

    PubMed  CAS  Google Scholar 

  68. Bauer A, Becker R, Freigang KD, et al. Rate- and site-dependent effects of propafenone, dofetilide, and the new I(Ks)-blocking agent chromanol 293b on individual muscle layers of the intact canine heart. Circulation 1999;100:2184–2190.

    PubMed  CAS  Google Scholar 

  69. Yamamoto K, Tamura T, Imai R, Yamamoto M. Acute canine model for drug-induced torsades de pointes in drug safety evaluation-influences of anesthesia and validation with quinidine and astemizole. Toxicol Sci 2001;60:165–176.

    PubMed  CAS  Google Scholar 

  70. Takei M, Sasaki Y, Yonezawa T, Lakhe M, Aruga M, Kiyosawa K. The autonomic control of the transmural dispersion of ventricular repolarization in anesthetized dogs. J Cardiovasc Electrophysiol 1999;10:981–989.

    PubMed  CAS  Google Scholar 

  71. Kenyon JL, Gibbons WR. 4-Aminopyridine and the early outward current of sheep Purkinje fibers. J Gen Physiol 1979;73:139–157.

    PubMed  CAS  Google Scholar 

  72. Kenyon JL, Gibbons WR. Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 1979;73:117–138.

    PubMed  CAS  Google Scholar 

  73. Kenyon JL, Sutko JL. Ryanodine and aminopyridine sensitive currents of cardiac Purkinje fibers, [abstr]. Biophys J 1985;47:498a.

    Google Scholar 

  74. Sipido KR, Callewaert G, Vereecke J, Carmeliet E. [Ca]i-Dependence of a transient outward current in isolated rabbit Purkinje cells [abstr]. Biophys J 1992;61:A509.

    Google Scholar 

  75. Sipido KR, Callewaert G, Carmeliet E. [Ca2+]i transients and [Ca2+]i-dependent chloride current in single Purkinje cells from rabbit heart. J Physiol (Lond) 1993;468:641–667.

    CAS  Google Scholar 

  76. Van Bogaert PP, Snyders DS. Effects of 4-aminopyridine on inward rectifing and pacemaker currents of cardiac purkinje fibers. Pflugers Arch 1982;394:230–238.

    PubMed  Google Scholar 

  77. Cordeiro JM, Spitzer KW, Giles WR. Repolarizing K+ currents in rabbit heart Purkinje cells. J Physiol 1998;508(Pt3):811–823.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Han W, Wang Z, Nattel S. Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. Am J Physiol Heart Circ Physiol 2001;280:H1075-H1080.

    PubMed  CAS  Google Scholar 

  79. Burashnikov A, Antzelevitch C. Block of IKs does not induce early afterdepolarization activity but promotes β-adrenergic agonist-induced delayed afterdepolarization activity in canine ventricular myocardium. J Cardiovasc Electrophysiol 2000;11:458–465.

    PubMed  CAS  Google Scholar 

  80. Patterson E, Scherlag B J, Lazzara R. Early afterdepolarizations produced by d,I-sotalol and clofilium. J Cardiovasc Electrophysiol 1997;8:667–678.

    PubMed  CAS  Google Scholar 

  81. Abrahamsson C, Carlsson L, Duker G. Lidocaine and nisoldipine attenuate almokalant-induced dispersion of repolarization and early afterdepolarizations in vitro. J Cardiovasc Electrophysiol 1996;7:1074–1081.

    PubMed  CAS  Google Scholar 

  82. Varro A, Nakaya Y, Elharrar V, Surawicz B. Effect of antiarrhythmic drugs on the cycle length-dependent action potential duration in dog Purkinje and ventricular muscle fibers. J Cardiovasc Pharmacol 1986;8:178–185.

    PubMed  CAS  Google Scholar 

  83. Gintant GA. Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization. Am J Physiol Heart Circ Physiol 2000;278:H806-H817.

    PubMed  CAS  Google Scholar 

  84. Attwell D, Cohen IS, Eisner DA, Ohba M, Ojeda C. The steady-state tetrodotoxin-sensitive (“window”) sodium current in cardiac Purkinje fibers. Pflugers Arch 1979;379:137–142.

    PubMed  CAS  Google Scholar 

  85. Gintant GA, Daytner NB, Cohen IS. Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibers. Biophys J 1984;45:509–512.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Patlak JB, Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol 1985;86:89–104.

    PubMed  CAS  Google Scholar 

  87. Wang DW, Yazawa K, George AL, Jr., Bennett PB. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci USA 1996;93:13200–13205.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Dumaine R, Hartmann HA. Two conformational states involved in the use-dependent TTX blockade of human cardiac Na+ channel. Am J Physiol 1996;270:H2029-H2037.

    PubMed  CAS  Google Scholar 

  89. Kiyosue T, Arita M. Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res 1989;64:389–397.

    PubMed  CAS  Google Scholar 

  90. Liu Y, DeFelice LJ, Mazzanti M. Na channels that remain open throughout the cardiac action potential plateau. Biophys J 1992;63:654–662.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol 2001;281:H689–H697.

    CAS  Google Scholar 

  92. Coraboeuf E, Deroubaix E, Coulombe A. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol 1979;236:H561-H567.

    PubMed  CAS  Google Scholar 

  93. Colatsky TJ. Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers: An effect on steady-state sodium current? Circ Res 1982;50:17–27.

    PubMed  CAS  Google Scholar 

  94. Aomine M. Tetrodotoxin-sensitive component in action potential plateau of guinea pig Purkinje fibers: comparison with the papillary muscle. Gen Pharmacol 1989;20:791–797.

    PubMed  CAS  Google Scholar 

  95. Jeck CD, Boy den PA. Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization. Circ Res 1992;71:1390–1403.

    PubMed  CAS  Google Scholar 

  96. Pacioretty LM, Gilmour RF, Jr. Developmental changes in the transient outward potassium current in canine epicardium. Am J Physiol 1995;268:H2513–H2521.

    PubMed  CAS  Google Scholar 

  97. Escande D, Loisance D, Planche C, Coraboeuf E. Age-related changes of action potential plateau shape in isolated human atrial fibers. Am J Physiol 1985;249:H843-H850.

    PubMed  CAS  Google Scholar 

  98. Reder RF, Miura DS, Danilo P, Rosen MR. The electrophysiological properties of normal neonatal and adult canine cardiac Purkinje fibers. Circ Res 1981;48:658–668.

    PubMed  CAS  Google Scholar 

  99. Kilborn MJ, Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol (Lond) 1990;430:37–60.

    CAS  Google Scholar 

  100. Antzelevitch C. Are M cells present in the ventricular myocardium of the pig? A question of maturity. Cardiovasc Res 1997;36:127–128.

    PubMed  CAS  Google Scholar 

  101. Schwartz PJ, Stramba-Badiale M, Segantini A, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med 1998;338:1709–1714.

    PubMed  CAS  Google Scholar 

  102. Priori SG, Napolitano C, Giordano U, Collisani G, Memml M. Brugada syndrome and sudden cardiac death in children. Lancet 2000;355:808–809.

    PubMed  CAS  Google Scholar 

  103. Kaplan WD, Trout WE, III. The behavior of four neurological mutants of Drosophila. Genetics 1969;61:399–409.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 1991;350:232–235.

    PubMed  CAS  Google Scholar 

  105. Butler A, Wei AG, Baker K, Salkoff L. A family of putative potassium channel genes in Drosophila. Science 1989;243:943–947.

    PubMed  CAS  Google Scholar 

  106. Chandy KG. Simplified gene nomenclature [letter]. Nature 1991;352:26.

    PubMed  CAS  Google Scholar 

  107. Roberds SL, Tamkun MM. Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in the heart. Proc Natl Acad Sci USA 1991;88:1798–1802.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Dixon EJ, McKinnon D. Quantitative analysis of potassium channel mRNA in atrial and ventricular muscle of rats. Circ Res 1994;75:252–260.

    PubMed  CAS  Google Scholar 

  109. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM. Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res 1995;77(2):361–369.

    PubMed  CAS  Google Scholar 

  110. Wang ZG, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes: Evidence for a novel delayed rectifier K+ current similar to Kvl.5 cloned channel currents. Circ Res 1993;73:1061–1076.

    PubMed  CAS  Google Scholar 

  111. Feng J, Wible BA, Li GR, Wang ZG, Nattel S. Antisence oligodeoxynucleotides directed against Kv 1.5 mRNA specifically inhibit ultrarepid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 1997;80:572–579.

    PubMed  CAS  Google Scholar 

  112. Brahmajothi MV, Morales MJ, Liu R, Rasmusson RL, Campbell DL, Strauss HC. In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res 1996;78:1083–1089.

    PubMed  CAS  Google Scholar 

  113. Barry DM, Nerbonne JM. Myocardial potassium channels: Electrophysiological and molecular diversity. Annu Rev Physiol 1996;58:363–394.

    PubMed  CAS  Google Scholar 

  114. Mays DJ, Tamkun MM, Boyden PA. Redistribution of the Kv 1.5 K+ channel protein on the surface of myocytes from the epicardial border zone of infarcted canine ventricle. Cardiovascular Pathobiology 2000;2 (2):79–87.

    Google Scholar 

  115. Mays DJ, Foose JM, Philipson LH, Tamkun MM. Localization of the Kvl.5 K+ channel protein in explanted cardiac tissue. J Clin Invest 1995;96:282–292.

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Gidh-Jain M, Huang B, Jain P, el Sherif N. Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction. Circ Res 1996;79:669–675.

    PubMed  CAS  Google Scholar 

  117. Kong W, Po S, Yamagishi T, Ashen MD, Stetten G, Tomaselli GF. Isolation and characterization of the human gene encoding Ito: further diversity by alternative mRNA splicing. Am J Physiol 1998;275:H1963-H1970.

    PubMed  CAS  Google Scholar 

  118. Dixon EJ, Shi W, Wang H-S, et al. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996;79:659–668.

    PubMed  CAS  Google Scholar 

  119. Brahmajothi MV, Campbell DL, Rasmusson RL, et al. Distinct transient outward potassium current (Ito) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferret left ventricular myocytes. J Gen Physiol 1999;113:581–600.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Brahmajothi MV, Morales MJ, Rasmusson RL, Campbell DL, Strauss HC. Heterogeneity in K+ channel transcript expression detected in isolated ferret cardiac myocytes. PACE 1997;20:388–396.

    PubMed  CAS  Google Scholar 

  121. Salata JJ, Jurkiewicz NK, Wang JJ, Orme HT. A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol 1998;54:220–230.

    PubMed  CAS  Google Scholar 

  122. Rosati B, Pan Z, Lypen S, et al. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol 2001;533:119–125.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Kuo HC, Cheng CF, Clark RB, et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 2001; 107: 801–813.

    PubMed  CAS  Google Scholar 

  124. An WF, Bowlby MR, Betty M, et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 2000;403:553–556.

    PubMed  CAS  Google Scholar 

  125. Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D. Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 2001;276:23888–23894.

    PubMed  CAS  Google Scholar 

  126. Ohya S, Morohashi Y, Muraki K, et al. Molecular cloning and expression of the novel splice variants of K(+) channel-interacting protein 2. Biochem Biophys Res Commun 2001;282:96–102.

    PubMed  CAS  Google Scholar 

  127. Antzelevitch C. Molecular basis for the transmural distribution of the transient outward current. J Physiol 2001;533:1.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Sanguinetti MC, Curran ME, Zou AR, et al. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac 7Ks potassium channel. Nature 1996;384:80–83.

    PubMed  CAS  Google Scholar 

  129. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. KvLQT1 and IsK (minK) proteins associate to form the 7Ks cardiac potassium current. Nature 1996;384:78–80.

    PubMed  CAS  Google Scholar 

  130. Ramakers C, Doevendans PA, Vos MA, Antzelevitch C, Dumaine R. KCNQ1 and KCNE1 expression is reduced in dogs with chronic AV block [abstr]. Biophys J 2000;78:220A.

    Google Scholar 

  131. Dumaine R, Wu YS, Antzelevitch C. Distribution of KvLQT1 but not mink parallels the distribution of IKs in the mid-myocardium of canine heart [abstr]. Biophys J 2000;76:A366.

    Google Scholar 

  132. Delombe S, Baro I, Pereon Y, et al. A dominant negative isoform of the long QT syndrome 1 gene product. J Biol Chem 1998;273 (12):6837–6843.

    Google Scholar 

  133. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 1995;269:92–95.

    PubMed  CAS  Google Scholar 

  134. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell 1995;81:299–307.

    PubMed  CAS  Google Scholar 

  135. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 1996;93:2208–2212.

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms Ikr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999;97:175–187.

    PubMed  CAS  Google Scholar 

  137. Fozzard HA, Hanck DA. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 1996;76:887–926.

    PubMed  CAS  Google Scholar 

  138. Fozzard HA, Lipkind G. The guanidinium toxin binding site on the sodium channel. Jpn Heart J 1996;37:683–692.

    PubMed  CAS  Google Scholar 

  139. Cohen SA. Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle. Presence in terminal intercalated disks. Circulation 1996;94:3083–3086.

    PubMed  CAS  Google Scholar 

  140. Dhar MJ, Chen C, Rivolta I, et al. Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 2001;103:1303–1310.

    Google Scholar 

  141. Verheule S, van Kempen MJ, te Welscher PH, Kwak BR, Jongsma HJ. Characterization of gap junction channels in adult rabbit atrial and ventricular myocardium. Circ Res 1997;80:673–681.

    PubMed  CAS  Google Scholar 

  142. Gros D, Jarry-Guichard T, ten V, et al. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res 1994;74:839–851.

    PubMed  CAS  Google Scholar 

  143. Kanter HL, Laing JG, Beau SL, Beyer EC, Saffitz JE. Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Circ Res 1993;72:1124–1131.

    PubMed  CAS  Google Scholar 

  144. Wong KR, Trezise AE, Bryant S, Hart G, Vandenberg JI. Molecular and functional distributions of chloride conductances in rabbit ventricle. Am J Physiol 1999;277:H1403-H1409.

    PubMed  CAS  Google Scholar 

  145. James AF, Tominaga T, Okada Y, Tominaga M. Distribution of cAMP-activated chloride current and CFTR mRNA in the guinea pig heart. Circ Res 1996;79:201–207.

    PubMed  CAS  Google Scholar 

  146. Hofmann F, Biel M, Flockerzi V. Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 1994;17:399–418.

    PubMed  CAS  Google Scholar 

  147. Catterall WA. Structure and function of voltage-gated ion channels. Trends Neurosci 1993;16:500–506.

    PubMed  CAS  Google Scholar 

  148. Hu H, Marban E. Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties. Mol Pharmacol 1998;53:902–907.

    PubMed  CAS  Google Scholar 

  149. Kamp TJ, Mitas M, Fields KL, et al. Transcriptional regulation of the neuronal L-type calcium channel alpha ID subunit gene. Cell Mol Neurobiol 1995;15:307–326.

    PubMed  CAS  Google Scholar 

  150. Mori Y, Mikala G, Varadi G, et al. Molecular pharmacology of voltage-dependent calcium channels. Jpn J Pharmacol 1996;72:83–109.

    PubMed  CAS  Google Scholar 

  151. Zhang JF, Randall AD, Ellinor PT, et al. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 1993;32:1075–1088.

    PubMed  CAS  Google Scholar 

  152. Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD, Hosey MM. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 1997;272:19401–19407.

    PubMed  CAS  Google Scholar 

  153. Takahashi Y, Rothery S, Issberner J, Levi AJ, Severs NJ. Spatial distribution of dihydropyridine receptors in the plasma membrane of guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy. J Electron Microsc (Tokyo) 2000;46(2): 165–170.

    Google Scholar 

  154. Carl SL, Felix K, Caswell AH, et al. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol 1995;129:672–682.

    Google Scholar 

  155. Takimoto K, Li D, Nerbonne JM, Levitan ES. Distribution, splicing and glucocorticoid-induced expression of cardiac alpha 1C and alpha ID voltage-gated Ca2+ channel mRNAs. J Mol Cell Cardiol 1997;29:3035–3042.

    PubMed  CAS  Google Scholar 

  156. Nicoll DA, Longoni S, Philipson KD. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+exchanger. Science 1990;250:562–565.

    PubMed  CAS  Google Scholar 

  157. Li Z, Matsuoka S, Hryshko LV, et al. Cloning of the NCX2 isoform of the plasma membrane Na(+)-Ca2+ exchanger. J Biol Chem 1994;269:17434–17439.

    PubMed  CAS  Google Scholar 

  158. Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem 1996;271:24914–24921.

    PubMed  CAS  Google Scholar 

  159. Chen F, Mottino G, Klitzner TS, Philipson KD, Frank JS. Distribution of the Na+/Ca2+ exchange protein in developing rabbit myocytes. Am J Physiol 1995;268:C1126-C1132.

    PubMed  CAS  Google Scholar 

  160. Kieval RS, Bloch RJ, Lindenmayer GE, Ambesi A, Lederer WJ. Immunofluorescence localization of the Na-Ca exchanger in heart cells. Am J Physiol 1992;263:C545-C550.

    PubMed  CAS  Google Scholar 

  161. Studer R, Reinecke H, Bilger J, et al. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 1994;75:443–453.

    PubMed  CAS  Google Scholar 

  162. Prestle J, Dieterich S, Preuss M, Bieligk U, Hasenfuss G. Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart. Cardiovasc Res 1999;43:323–331.

    PubMed  CAS  Google Scholar 

  163. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD. Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 1992;117:337–345.

    PubMed  CAS  Google Scholar 

  164. Porzig H, Li Z, Nicoll DA, Philipson KD. Mapping of the cardiac sodium-calcium exchanger with monoclonal antibodies. Am J Physiol 1993;265:C748-C756.

    PubMed  CAS  Google Scholar 

  165. Koban MU, Moorman AF, Holtz J, Yacoub MH, Boheler KR. Expressional analysis of the cardiac Na-Ca exchanger in rat development and senescence. Cardiovasc Res 1998;37:405–423.

    PubMed  CAS  Google Scholar 

  166. Toshe N, Haruaki N, Kanno M. al-adrenoceptor stimulation enhances the delayed rectifier K+ current of guinea pig ventricular cells through the activation of protein kinase C. Circ Res 1992;71:1441–1446.

    Google Scholar 

  167. Antzelevitch C, Di Diego JM. The role of K+ channel activators in cardiac electrophysiology and arrhythmias. Circulation 1992;85:1627–1629.

    PubMed  CAS  Google Scholar 

  168. Imaizumi Y, Giles WR. Quinidine-induced inhibition of transient outward current in cardiac muscle. Am J Physiol 1987;253:H704-H708.

    PubMed  CAS  Google Scholar 

  169. Yan GX, Antzelevitch C. Cellular basis for the Brugada Syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation 1999;100:1660–1666.

    PubMed  CAS  Google Scholar 

  170. Litovsky SH, Antzelevitch C. Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 1990;67:615–627.

    PubMed  CAS  Google Scholar 

  171. Blair RW, Shimizu T, Bishop VS. The role of vagal afferents in the reflex control of the left ventricular refractory period in the cat. Circ Res 1980;46:378–386.

    PubMed  CAS  Google Scholar 

  172. Prystowsky EN, Jackman WM, Rinkenberger RL, et al. Effect of autonomic blockade on ventricular refractoriness and atrioventricular nodal conduction in man. Evidence supporting a direct cholinergic action on ventricular muscle refractoriness. Circ Res 1981;49:511–518.

    PubMed  CAS  Google Scholar 

  173. Mubagwa K, Carmeliet E. Effects of acetylcholine on electrophysiological properties of rabbit cardiac Purkinje fibers. Circ Res 1983;53:740–751.

    PubMed  CAS  Google Scholar 

  174. Trautwein W, Kameyama M. Intracellular control of calcium and potassium currents in cardiac cells. Jpn Heart J 1986;27 Suppl 1:31–50.

    PubMed  Google Scholar 

  175. Nakayama T, Fozzard HA. Adrenergic modulation of the transient outward current in isolated canine Purkinje cells. Circ Res 1988;62:162–172.

    PubMed  CAS  Google Scholar 

  176. Harvey RD, Hume JR. Isoproterenol activates a chloride current, not the transient outward current, in rabbit ventricular myocytes. Am J Physiol 1989;257:C1177-C1181.

    PubMed  CAS  Google Scholar 

  177. Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 1991;68:424–437.

    PubMed  CAS  Google Scholar 

  178. Zygmunt AC, Gibbons WR. Properties of the calcium-activated chloride current in heart. J Gen Physiol 1992;99:391–414.

    PubMed  CAS  Google Scholar 

  179. Hume JR, Harvey RD. Chloride conductance pathways in heart. Am J Physiol 1991;261:C399-C412.

    PubMed  CAS  Google Scholar 

  180. Saeki Y, Kamiyama A. Possible mechanism of rate-dependent change of contraction in dog ventricular muscle: Relation to calcium movements. In: Kobayashi T, Sano R, Dhalla NS, eds. Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. II. Baltimore, MD: University Park Press, 1978:131–135.

    Google Scholar 

  181. Kimura S, Nakaya H, Kanno M. Electrophysiological effects of diltiazem, nifedipine and Ni2+ on the subepicardial muscle cells of canine heart under the condition of combined hypoxia, hyperkalemia and acidosis. Naunyn Schmiedebergs Arch Pharmacol 1983;324:228–232.

    PubMed  CAS  Google Scholar 

  182. Kamiyama A, Saeki Y. Myocardial action potentials of right- and left-subepicardial muscles in the canine ventricle and effects of manganese ions. Proc Jap Acad 1974;50:771–774.

    CAS  Google Scholar 

  183. Kimura S, Bassett AL, Kohya T, Kozlovskis PL, Myerburg RJ. Regional effects of verapamil on recovery of excitability and conduction time in experimental ischemia. Circulation 1987;76: 1146–1154.

    PubMed  CAS  Google Scholar 

  184. Sicouri S, Moro S, Litovsky SH, Elizari MV, Antzelevitch C. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol 1997;8:1269–1279.

    PubMed  CAS  Google Scholar 

  185. Sun ZQ, Eddlestone GT, Antzelevitch C. Ionic mechanisms underlying the effects of sodium pentobarbital to diminish transmural dispersion of repolarization, [abstr]. PACE 1997;20:11–1116.

    Google Scholar 

  186. Balser JR, Bennett PB, Hondeghem LM, Roden DM. Suppression of time-dependent outward current in guinea-pig ventricular myocytes. Actions of quinidine and amiodarone. Circ Res 1991;69:519–529.

    PubMed  CAS  Google Scholar 

  187. Antzelevitch C, Shimizu W, Yan GX, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999;10:1124–1152.

    PubMed  CAS  Google Scholar 

  188. Antzelevitch C, Davidenko JM, Sicouri S, et al. Electrophysiologic effects of quinidine in canine Purkinje fibers and ventricular myocardium. Slow development of the antiarrhythmic and arrhythmo-genic effects of the drug. In: Velasco M, Israel A, Romero E, Silva H, eds. Recent Advances in Pharmacology and Therapeutics. New York: Excerpta Medica, 1989:259–263.

    Google Scholar 

  189. Antzelevitch C, Davidenko JM, Sicouri S, et al. Quinidine-induced early afterdepolarizations and triggered activity. J Electrophysiol 1989;5:323–338.

    Google Scholar 

  190. Davidenko JM, Cohen L, Goodrow RJ, Antzelevitch C. Quinidine-induced action potential prolongation, early afterdepolarizations, and triggered activity in canine Purkinje fibers. Effects of stimulation rate, potassium, and magnesium. Circulation 1989;79:674–686.

    PubMed  CAS  Google Scholar 

  191. van Opstal JM, Schoenmakers M, Verduyn SC, et al. Chronic amiodarone evokes no torsade de pointes arrhythmias despite QT lengthening in an animal model of acquired long-QT syndrome. Circulation 2001;104:2722–2727.

    PubMed  Google Scholar 

  192. Burashnikov A, Antzelevitch C. Differences in the electrophysiologic response of four canine ventricular cell types to a1-adrenergic agonists. Cardiovasc Res 1999;43:901–908.

    PubMed  CAS  Google Scholar 

  193. Sicouri S, Antzelevitch C. Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium: The effects of acetylstrophanthidin and Bay K 8644. PACE 1991;14:1714–1720.

    PubMed  CAS  Google Scholar 

  194. Light PE, Cordeiro JM, French RJ. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres. Cardiovasc Res 1999;44:356–369.

    PubMed  CAS  Google Scholar 

  195. Antzelevitch C, Litovsky SH, Lukas A. Epicardium vs. endocardium. Electrophysiology and pharmacology. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology, From Cell to Bedside. New York: W.B. Saunders, 1990:386–395.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antzelevitch, C., Zygmunt, A.C., Dumaine, R. (2003). Electrophysiology and Pharmacology of Ventricular Repolarization. In: Gussak, I., Antzelevitch, C., Hammill, S.C., Shen, WK., Bjerregaard, P. (eds) Cardiac Repolarization. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-362-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-362-0_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-336-7

  • Online ISBN: 978-1-59259-362-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics