Skip to main content

Antiarrhythmic Drugs and Future Direction

  • Chapter
Book cover Cardiac Repolarization

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Antiarrhythmic agents play an important role in the termination and suppression of both atrial and ventricular arrhythmias as primary or adjunctive therapy. The use of hybrid treatment, combining drugs with radiofrequency ablation or ICD implantation, is expected to rise as the number of patients with complex arrhythmias continues to increase (1,2). In this evolving management scenario, selection of an effective yet safe pharmacologic agent is challenging. The challenge arises from factors intrinsic to the patient, disease condition or the drug itself. These factors primarily include variability in the pathophysiologic substrate, diverse arrhythmia mechanisms, multiple clinical presentation with differing prognostic implications, along with variability in drug disposition and/or response in a highly heterogeneous patient population. Moreover, the availability of multiple therapeutic options and the narrow therapeutic index with limited ability to determine satisfactory endpoints further emphasize the need for better understanding of interactions between drug, end target, and disease condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murgatroyd FD. “Pills and pulses”: hybrid therapy for atrial fibrillation. J Cardiovasc Electrophysiol 2002;13:S40–S46.

    PubMed  Google Scholar 

  2. Ozcan C, Jahangir A, Friedman PA, et al. Long-term survival after ablation of the atrioventricular node and implantation of a permanent pacemaker in patients with atrial fibrillation. N Engl J Med 2001;344:1043–1051.

    PubMed  CAS  Google Scholar 

  3. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide or placebo. The Cardiac Arrhythmia Suppression Trial (CAST). N Engl J Med 1991;324: 781–788.

    PubMed  CAS  Google Scholar 

  4. Waldo AL, Camm AJ, Deruyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet 1996;348:7–12.

    PubMed  CAS  Google Scholar 

  5. Roden DM, Spooner PM. Inherited long QT syndromes: a paradigm for understanding arrhyth-mogenesis. J Cardiovasc Electrophysiol 1999;10:1664–1683.

    PubMed  CAS  Google Scholar 

  6. Members of the Sicilian Gambit. New approaches to antiarrhythmic therapy—Emerging therapeutic applications of the cell biology of cardiac arrhythmias. Eur Heart J 2001;22:2148–2163.

    Google Scholar 

  7. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology: The Sicilian Gambit: A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 1991;84:1831–1851.

    Google Scholar 

  8. Greenberg HM, Dwyer EM Jr, Hochman JS, Steinberg JS, Echt DS, Peters RW. Interaction of is-chaemia and encainide/flecainide treatment: a proposed mechanism for the increased mortality in CAST I. Br Heart J 1995;74:631–635.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Nattel S, Li DS. Ionic remodeling in the heart—Pathophysiological significance and new therapeutic opportunities for atrial fibrillation. Circ Res 2000;87:440–447.

    PubMed  CAS  Google Scholar 

  10. Nattel S. Effects of ionic remodeling on cardiac antiarrhythmic drug actions. J Cardiovasc Pharmacol 2001;38:809–811.

    PubMed  CAS  Google Scholar 

  11. Aupetit JF, Loufouamoundanga J, Faucon G, Timour Q. Ischaemia-induced loss or reversal of the effects of the class I antiarrhythmic drugs on vulnerability to fibrillation. Br J Pharmacol 1997; 120: 523–529.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Li D, Melnyk P, Feng J, Wang Z, Petrecca K, Shrier A, Nattel S. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 2000;101:2631–2638.

    PubMed  CAS  Google Scholar 

  13. Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002;415:219–226.

    PubMed  CAS  Google Scholar 

  14. Singh BN. Current antiarrhythmic drugs: An overview of mechanisms of action and potential clinical utility. J Cardiovasc Electrophysiol 1999;10:283–301.

    PubMed  CAS  Google Scholar 

  15. Sager PT. New advances in class III antiarrhythmic drug therapy. Curr Opin Cardiol 2000;15:41–53.

    PubMed  CAS  Google Scholar 

  16. Roden DM, Balser JR, George AL, Anderson ME. Cardiac ion channels. Annu Rev Physiol 2002;64:431–475.

    PubMed  CAS  Google Scholar 

  17. Marban E. Cardiac channelopathies. Nature 2002;415:213–218.

    PubMed  CAS  Google Scholar 

  18. Kaab S, Dixon J, Due J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 1998;98:1383–1393.

    PubMed  CAS  Google Scholar 

  19. Wickenden AD, Kaprielian R, Kassiri Z, et al. The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. Cardiovasc Res 1998;37:312–323.

    PubMed  CAS  Google Scholar 

  20. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999;42:270–283.

    PubMed  CAS  Google Scholar 

  21. Pinto JM, Boyden PA. Electrical remodeling in ischemia and infarction. Cardiovasc Res 1999;42: 284–297.

    PubMed  CAS  Google Scholar 

  22. Colatsky TJ. Controlling cardiac arrhythmias: New drugs in development and insights from molecular biology. J Cardiovasc Pharmacol Ther 1998;3:337–342.

    PubMed  CAS  Google Scholar 

  23. Curran ME. Potassium ion channels and human disease: Phenotypes to drug targets? Curr Opin Biotechnol 1998;9:565–572.

    PubMed  CAS  Google Scholar 

  24. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000;52:557–594.

    PubMed  CAS  Google Scholar 

  25. Jahangir A, Terzic A, Shen WK. Potassium channel openers: therapeutic potential in cardiology and medicine. Exp Opin Pharmacother 2001;2:1995–2010.

    CAS  Google Scholar 

  26. Nair LA, Grant AO. Emerging class III antiarrhythmic agents: Mechanism of action and proarrhythmic potential. Cardiovasc Drugs Ther 1997;11:149–167.

    PubMed  CAS  Google Scholar 

  27. Nattel S, Singh BN. Evolution, mechanisms, and classification of antiarrhythmic drugs: Focus on class III actions. Am J Cardiol 1999;84:11R-19R.

    PubMed  CAS  Google Scholar 

  28. Rensma PL, Allessie MA, Lammers WJ, Bonke FI, Schalij MJ. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 1988;62:395–410.

    PubMed  CAS  Google Scholar 

  29. Wang J, Bourne GW, Wang Z, Villemaire C, Talajic M, Nattel S. Comparative mechanisms of antiarrhythmic drug action in experimental atrial fibrillation. Circulation 1993;88:1030–1044.

    PubMed  CAS  Google Scholar 

  30. Wijffels MC, Dorland R, Mast F. Widening of the excitable gap during pharmacological cardioversion of atrial fibrillation in the goat: effects of cibenzoline, hydroquinidine, flecainide, and d-sotalol. Circulation 2000;102:260–267.

    PubMed  CAS  Google Scholar 

  31. Tai CT, Chen SA, Feng AN, Yu, WC, Chen YJ, Chang MS. Electropharmacologic effects of class I and class III antiarrhythmic drugs on typical atrial flutter: Insights into the mechanism of termination. Circulation 1998;97:1935–1945.

    PubMed  CAS  Google Scholar 

  32. Weerapura M, Hebert TE, Nattel S. Dofetilide block involves interactions with open and inactivated states of HERG channels. Pflugers Arch 2002;443:520–531.

    PubMed  CAS  Google Scholar 

  33. Singh BN, Sarma JS. What niche will newer class III antiarrhythmic drugs occupy? Curr Cardiol Rep 2001;3:314–323.

    PubMed  CAS  Google Scholar 

  34. Viswanathan PC, Shaw RM, Rudy Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 1999;99:2466–2474.

    PubMed  CAS  Google Scholar 

  35. Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent: specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res 1993;72:75–83.

    PubMed  CAS  Google Scholar 

  36. Carmeliet E. Use-dependent block of the delayed K+ current in rabbit ventricular myocytes. Cardiovasc Drugs Ther 1993;3:599–604.

    Google Scholar 

  37. Hondeghem LM. Classification of antiarrhythmic agents and the two laws of pharmacology. Cardiovasc Res 2000;45:57–60.

    PubMed  CAS  Google Scholar 

  38. Bauer A, Becker R, Freigang KD, et al. Electrophysiologic effects of the new I-Ks-blocking agent chromanol 293b in the postinfarction canine heart—Preserved positive use-dependence and preferential prolongation of refractoriness in the infarct zone. Bas Res Cardiol 2000;95:324–332.

    CAS  Google Scholar 

  39. Nattel S. The molecular and ionic specificity of antiarrhythmic drug actions. J Cardiovasc Electrophysiol 1999;10:272–282.

    PubMed  CAS  Google Scholar 

  40. Hondeghem LM. Computer aided development of antiarrhythmic agents with class Ilia properties. J Cardiovasc Electrophysiol 1994;5:711–721.

    PubMed  CAS  Google Scholar 

  41. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci 2000;97:12329–12333.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Mitcheson JS, Chen J, Sanguinetti MC. Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J Gen Physiol 2000b; 115:229–239.

    CAS  Google Scholar 

  43. Lees-Miller JP, Duan Y, Teng GQ, Duff HJ. Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes: involvement of S6 sites. Mol Pharmacol 2000;57:367–374.

    PubMed  CAS  Google Scholar 

  44. del Camino D, Holmgren M, Liu Y, Yellen G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 2000;403:321–325.

    PubMed  Google Scholar 

  45. Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998;280:69–77.

    PubMed  CAS  Google Scholar 

  46. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a CIC chloride channel at 3.0 angstrom reveals the molecular basis of anion selectivity. Nature 2002;415:287–294.

    PubMed  CAS  Google Scholar 

  47. Feng J, Wible B, Li GR, Wang Z, Nattel S. Antisense oligodeoxynucleotides directed against Kvl.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 1997;80:572–579.

    PubMed  CAS  Google Scholar 

  48. Abitbol I, Peretz A, Lerche C, Busch AE, Attali B. Stilbenes and fenamates rescue the loss of IKS channel function induced by an LQT5 mutation and other IsK mutants. EMBO J 1999;18:4137–4148.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Nuss HB, Johns DC, Kaab S, et al. Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther 1996;3:900–912.

    PubMed  CAS  Google Scholar 

  50. Nuss HB, Marban E, Johns DC. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest 1999;103:889–896.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Donahue JK. Focal modification of electrical conduction in the heart by viral gene transfer. Nature Med 2000;6:1395–1398.

    PubMed  CAS  Google Scholar 

  52. Ennis IL, Li RA, Murphy AM, Marban E, Nuss HB. Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. J Clin Invest 2002;109:393–400.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Neyroud N, Nuss HB, Leppo MK, Marban E, Donahue JK. Gene delivery to cardiac muscle. Methods Enzymol 2002;346:323–334.

    PubMed  CAS  Google Scholar 

  54. Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996;79:659–668.

    PubMed  CAS  Google Scholar 

  55. Di Diego JM, Sun ZQ, Antzelevitch C. ITO and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 1996;271:H548-H561.

    PubMed  Google Scholar 

  56. Bailly P, Benitah JP, Mouchoniere M, Vassort G, Lorente P. Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy. Circulation 1997;96:1266–1274.

    PubMed  CAS  Google Scholar 

  57. Hoppe UC, Marban E, Johns DC. Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. J Clin Invest 2000;105:1077–1084.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Bas Res Cardiol 2001;96:517–527.

    CAS  Google Scholar 

  59. Shimoni Y. Hormonal control of cardiac ion channels and transporters. Prog Biophy Mol Biol 1999;72:67–108.

    CAS  Google Scholar 

  60. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983;305:147–148.

    PubMed  CAS  Google Scholar 

  61. Yamada K, Ji JJ, Yuan HJ, et al. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 2001;292:1543–1546.

    PubMed  CAS  Google Scholar 

  62. Zingman LV, Alekseev AE, Bienengraeber M, et al. Signaling in channel/enzyme multimers. ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron 2001;31:233–245.

    PubMed  CAS  Google Scholar 

  63. Carrasco A J, Dzeja PP, Alekseev AE, et al. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci 2001;98:7623–7628.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Inagaki N, Gonoi T, Clement JP, et al. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 1995;270:1166–1170.

    PubMed  CAS  Google Scholar 

  65. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 1999;84:973–979.

    PubMed  CAS  Google Scholar 

  66. Grover GJ, Garlid KD. ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 2000;32:677–695.

    PubMed  CAS  Google Scholar 

  67. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Physiol 1995;269:C525-C545.

    PubMed  CAS  Google Scholar 

  68. Jovanovic N, Jovanovic S, Jovanovic A, Terzic A. Gene delivery of Kir6.2/SUR2A in conjunction with pinacidil handles intracellular Ca2+ homeostasis under metabolic stress. FASEB J 1999;13:923–929.

    PubMed  CAS  Google Scholar 

  69. Suzuki M, Sasaki N, Miki T, et al. Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 2002;109:509–516.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Lopez JR, Jahangir R, Jahangir A, Shen WK, Terzic A. Potassium channel openers prevent potassium-induced calcium loading of cardiac cells: Possible implications in cardioplegia. J Thorac Cardiovasc Surg 1996;112:820–831.

    PubMed  CAS  Google Scholar 

  71. Ozcan C, Holmuhamedov EL, Jahangir A, Terzic A. Diazoxide protects mitochondria from anoxic injury: Implications for myopreservation. J Thorac Cardiovasc Surg 2001;121:298–306.

    PubMed  CAS  Google Scholar 

  72. Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A. Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev 2001;122:1073–1086.

    PubMed  CAS  Google Scholar 

  73. Holmuhamedov EL, Ozcan C, Jahangir A, Terzic A. Restoration of Ca2+-inhibited oxidative phosphorylation in cardiac mitochondria by mitochondrial Ca2+ unloading. Mol Cell Biochem 2001;220: 135–140.

    PubMed  CAS  Google Scholar 

  74. Ashcroft FM, Gribble FM. New windows on the mechanism of action of K-ATP channel openers. Trends Pharmacol Sci 2000;21:439–445.

    PubMed  CAS  Google Scholar 

  75. Terzic A, Vivaudou M. Molecular pharmacology of ATP-sensitive K+ channels: How and why? In Potassium Channels in Cardiovascular Biology. Archer SL, Rusch NJ, eds. San Diego: Academic Press, 2001;257–277.

    Google Scholar 

  76. Seino S. ATP-sensitive potassium channels: A model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 1999;61:337–362.

    PubMed  CAS  Google Scholar 

  77. Haverkamp W, Borggrefe M, Breithardt G. Electrophysiologic effects of potassium channel openers. Cardiovasc Drug Ther 1995;9:195–202.

    Google Scholar 

  78. Kondo M, Tsutsumi T, Mashima S. Potassium channel openers antagonize the effects of class iii antiarrhythmic agents in canine purkinje fiber action potentials—implications for prevention of proarrhythmia induced by class III agents. Jpn Heart J 1999;40:609–619.

    PubMed  CAS  Google Scholar 

  79. Vegh A, Gyorgyi K, Papp JG, Sakai K, Parratt JR. Nicorandil suppressed ventricular arrhythmias in a canine model of myocardial ischaemia. Eur J Pharmacol 1996;305:163–168.

    PubMed  CAS  Google Scholar 

  80. Carlsson L, Abrahamsson C, Drews L, Duker G. Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization. Circulation 1992;85:1491–1500.

    PubMed  CAS  Google Scholar 

  81. Shimizu W, Antzelevitch C. Effects of a K+ channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation 2000;102:706–712.

    PubMed  CAS  Google Scholar 

  82. Shimizu W, Kurita T, Matsuo K, et al. Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation 1998;97:1581–1588.

    PubMed  CAS  Google Scholar 

  83. Sato T, Hata Y, Yamamoto M, et al. Early afterdepolarization abolished by potassium channel opener in a patient with idiopathic long QT syndrome. J Cardiovasc Electrophysiol 1995;6:279–282.

    PubMed  CAS  Google Scholar 

  84. Wilde AA, Janse MJ. Electrophysiological effects of ATP sensitive potassium channel modulation: implications for arrhythmogenesis. Cardiovasc Res 1994;28:16–24.

    PubMed  CAS  Google Scholar 

  85. Miyazaki T, Moritani K, Miyoshi S, et al. Nicorandil augments regional ischemia-induced monophasic action potential shortening and potassium accumulation without serious proarrhythmia. J Cardiovasc Pharmacol 1995;26:949–956.

    PubMed  CAS  Google Scholar 

  86. The IONA Study Group. Trial to show the impact of nicorandil in angina (IONA): design, methodology and management. Heart 2001;85:e9.

    Google Scholar 

  87. Markham A, Plosker GL, Goa KL. Nicorandil — An updated review of its use in ischaemic heart disease with emphasis on its cardioprotective effects. Drugs 2000;60:955–974.

    PubMed  CAS  Google Scholar 

  88. Ito H, Taniyama Y, Iwakura K, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol 1999;33:654–660.

    PubMed  CAS  Google Scholar 

  89. Gumina RJ, Jahangir A, Gross GJ, Terzic A. Cardioprotection: Emerging pharmacotherapy. Exp Opin Pharmacother 2001;2:739–752.

    CAS  Google Scholar 

  90. Lawson K, Dunne MJ. Peripheral channelopathies as targets for potassium channel openers. Exp Opin Investig Drug 2001;10:1345–1359.

    CAS  Google Scholar 

  91. Atwal KS, Grover GJ, Lodge NJ, et al. Binding of ATP-sensitive potassium channel KATP openers to cardiac membranes: correlation of binding affinities with cardioprotective and smooth muscle relaxing potencies. J Med Chem 1998;41:271–275.

    PubMed  CAS  Google Scholar 

  92. Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 1995;374:135–141.

    PubMed  CAS  Google Scholar 

  93. Kurachi Y, Tung R, Ito H, Nakajima T. G protein activation of cardiac muscarinic K+ channels. Prog Neurobiol 1992;39:226–246.

    Google Scholar 

  94. Yamada M, Jahangir A, Hosoya Y, Inanobe A, Katada T, Kurachi Y. GK and brain G beta gamma activate muscarinic K+ channel through the same mechanism. J Biol Chem 1993;268:24551–24554.

    PubMed  CAS  Google Scholar 

  95. Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 1998;20:103–114.

    PubMed  CAS  Google Scholar 

  96. Yamada M. The role of muscarinic K+ channels in the negative chronotropic effect of a muscarinic agonist. J Pharmacol Exp Ther 2002;300:681–687.

    PubMed  CAS  Google Scholar 

  97. Srinivas M, Song YJ, Shryock JC, Belardinelli L. Cardiac electrophysiological actions of adenosine. Drug Develop Res 1998;45:420–426.

    CAS  Google Scholar 

  98. Drici MD, Diochot S, Terrenoire C, Romey G, Lazdunski M. The bee venom peptide tertiapin underlines the role of I(KACh) in acetylcholine-induced atrioventricular blocks. Br J Pharmacol 2000;131:569–577.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Jahangir A, Munger TM, Packer DL, Crijns H. Atrial fibrillation. In: Podrid PJ, Kowey PR, eds. Cardiac arrhythmia: mechanisms, diagnosis, and management. 2nd edition. Philadelphia: Lippincott Williams & Wilkins, 2001:457–499.

    Google Scholar 

  100. Kabell G, Buchanan LV, Gibson JK, Belardinelli L. Effects of adenosine on atrial refractoriness and arrhythmias. Cardiovasc Res 1994;28:1385–1389.

    PubMed  CAS  Google Scholar 

  101. Kovoor P, Wickman K, Maguire CT, et al. Evaluation of the role of I-KACh in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol 2001;37:2136–2143.

    PubMed  CAS  Google Scholar 

  102. Ackerman MJ, Schroeder JJ, Berry R, et al. A novel mutation in KVLQT1 is the molecular basis of inherited long QT syndrome in a near-drowning patient’s family. Pediatr Res 1998;44:148–153.

    PubMed  CAS  Google Scholar 

  103. Abraham MR, Jahangir A, Alekseev AE, Terzic A. Channelopathies of inwardly rectifying potassium channels. FASEB J 1999;13:1901–1910.

    PubMed  CAS  Google Scholar 

  104. Priori SG, Napolitano C, Paganini V, Cantu F, Schwartz PJ. Molecular biology of the long QT syndrome: impact on management. Pacing Clin Electrophysiol 1997;20:2052–2057.

    PubMed  CAS  Google Scholar 

  105. Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J 2001;22:1374–1450.

    PubMed  CAS  Google Scholar 

  106. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995;81:299–307.

    PubMed  CAS  Google Scholar 

  107. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80:795–803.

    PubMed  CAS  Google Scholar 

  108. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996;12:17–23.

    PubMed  Google Scholar 

  109. Neyroud N, Tesson F, Denjoy I, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997;15:186–189.

    PubMed  CAS  Google Scholar 

  110. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 1997;17:338–340.

    PubMed  CAS  Google Scholar 

  111. Abbott GW, Sesti F, Splawski I, et al. MiRPl forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999;97:175–187.

    PubMed  CAS  Google Scholar 

  112. Zhou Z, Gong Q, January CT. Correction of defective protein trafficking of a mutant herg potassium channel in human long QT syndrome. J Biol Chem 1999;274:31123–31126.

    PubMed  CAS  Google Scholar 

  113. Ficker E, Obejero-Paz CA, Zhao S, Brown AM. The binding site for channel blockers that rescue misprocessed human long QT Syndrome type 2 ether-a-gogo-related gene (HERG) mutations. J Biol Chem 2002;277:4989–4998.

    PubMed  CAS  Google Scholar 

  114. Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation 1996;94:1018–1022.

    PubMed  CAS  Google Scholar 

  115. Numaguchi H, Johnson JP, Petersen CI, Balser JR. A sensitive mechanism for cation modulation of potassium current. Nature Neurosci 2000;3:429–430.

    PubMed  CAS  Google Scholar 

  116. Balser JR. The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol 2001;33:599–613.

    PubMed  CAS  Google Scholar 

  117. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995;92:3381–3386.

    PubMed  CAS  Google Scholar 

  118. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanisms for idiopathic ventricular fibrillation. Nature 1998;392:293–296.

    PubMed  CAS  Google Scholar 

  119. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation 1999;100:1660–1666.

    PubMed  CAS  Google Scholar 

  120. Belhassen B, Viskin S, Fish R, Glick A, Setbon I, Eldar M. Effects of electrophysiologic-guided therapy with Class IA antiarrhythmic drugs on the long-term outcome of patients with idiopathic ventricular fibrillation with or without the Brugada syndrome. J Cardiovasc Electrophysiol 1999;10:1301–1312.

    PubMed  CAS  Google Scholar 

  121. Alings M, Dekker L, Sadee A, Wilde A. Quinidine induced electrocardiographic normalization in two patients with Brugada syndrome. PACE 2001;24:1420–1422.

    PubMed  CAS  Google Scholar 

  122. Suzuki H, Torigoe K, Numata O, Yazaki S. Infant case with a malignant form of Brugada syndrome. J Cardiovasc Electrophysiol 2000;11:1277–1280.

    PubMed  CAS  Google Scholar 

  123. Brugada R, Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-Segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000;101:510–515.

    PubMed  CAS  Google Scholar 

  124. Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation 2000;102:945–947.

    PubMed  CAS  Google Scholar 

  125. Abernethy DR, Flockhart DA. Molecular basis of cardiovascular drug metabolism implications for predicting clinically important drug interactions. Circulation 2000;101:1749–1753.

    PubMed  CAS  Google Scholar 

  126. Roden DM. Pharmacogenetics and drug-induced arrhythmias. Cardiovasc Res 2001;50:224–231.

    PubMed  CAS  Google Scholar 

  127. Ingelman-Sundberg, M. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999;20:342–349.

    PubMed  CAS  Google Scholar 

  128. Siddoway LA, Thompson KA, McAllister BC, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987;75:785–791.

    PubMed  CAS  Google Scholar 

  129. Legebrve RA, Van Peer A, Woestenborghs R. Influence of itraconazole on the pharmacokinetics and electrocardiographic effect of astemizole. Br J Clin Pharmacol 1997;43:319–322.

    Google Scholar 

  130. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998;63:332–341.

    PubMed  CAS  Google Scholar 

  131. Escande D. Pharmacogenetics of cardiac K+ channels. Eur J Pharmacol 2000;410:281–287.

    PubMed  CAS  Google Scholar 

  132. Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J Cardiovasc Electrophysiol 2000;11:691–696.

    PubMed  CAS  Google Scholar 

  133. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci 2000;97:10613–10618.

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Bonnie A, Fijal MS, Hall JM, Witte JS. Clinical trials in the genomic era. Effects of protective genotypes on sample size and duration of trial 2000. Controlled Clin Trials 2000;21:7–20.

    Google Scholar 

  135. Roses AD. Pharmacogenetics and the practice of medicine. Nature 2000;405:857–865.

    PubMed  CAS  Google Scholar 

  136. Bates DW, Spell N, Cullen DJ, et al. The costs of adverse drug events in hospitalized patients. J Am Med Assoc 1997;277:307–311.

    CAS  Google Scholar 

  137. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients—a meta-analysis of prospective studies. J Am Med Assoc 1998;279:1200–1205.

    CAS  Google Scholar 

  138. Yao JA, Jiang M, Fan JS, Zhou YY, Tseng GN. Heterogeneous changes in K currents in rat ventricles three days after myocardial infarction. Cardiovasc Res 1999;44:132–145.

    PubMed  CAS  Google Scholar 

  139. Allessie MA, Boyden PA, Camm AJ, et al. Pathophysiology and prevention of atrial fibrillation. Circulation 2001;103:769–777.

    PubMed  CAS  Google Scholar 

  140. Yu H, Gao J, Wang H. Effects of the renin-angiotensin system on the current ItO in epicardial and endocardial ventricular myocytes from the canine heart Circ Res 2000;86:1062–1068.

    PubMed  CAS  Google Scholar 

  141. Courtemanche M, Ramirez RJ, Nattel S. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res 1999;42:477–489.

    PubMed  CAS  Google Scholar 

  142. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 1999;85:428–436.

    PubMed  Google Scholar 

  143. Shinagawa K, Li DS, Leung TK, Nattel S. Consequences of atrial tachycardia-induced remodeling depend on the preexisting atrial substrate. Circulation 2002;105:251–257.

    PubMed  Google Scholar 

  144. Shimoni Y. Inhibition of the formation or action of angiotensin II reverses attenuated K+ currents in type 1 and type 2 diabetes. J Physiol 2001;537:83–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Li DS, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 2001;104:2608–2614.

    PubMed  CAS  Google Scholar 

  146. Pedersen OD, Bagger H, Kober L, Torp-Pedersen C. Trandolapril reducs the incidence of atrial fibrilation after myocardial infarction in patients with left ventricular dysfunction. Circulation 1999;100:376–380.

    PubMed  CAS  Google Scholar 

  147. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–717.

    PubMed  CAS  Google Scholar 

  148. Abrol R, Page RL. Azimilide dihydrochloride: a new class III antiarrhythmic agent. Exp Opin Investigat Drug 2000;9:2705–2715.

    CAS  Google Scholar 

  149. Sun W, Sarma JSM, Singh BN. Electrophysiological effects of dronedarone (SR33589), anoniodinated benzofuran derivative, in the rabbit heart—Comparison with amiodarone. Circulation 1999; 100:2276–2281.

    PubMed  CAS  Google Scholar 

  150. Pattabiraman N. Analysis of ligand-macromolecule contacts: computational methods. Curr Med Chem 2002;9:609–621.

    PubMed  CAS  Google Scholar 

  151. Kanno S, Saffitz JE. The role of myocardial gap junctions in electrical conduction and arrhyth-mogenesis. Cardiovasc Pathol 2001;10:169–177.

    PubMed  CAS  Google Scholar 

  152. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual [beta]-adrenergic responsiveness. Circ Res 2001;88:1159–1167.

    PubMed  CAS  Google Scholar 

  153. Adachi-Akahane S, Kurachi Y. New era for translational research in cardiac arrhythmias. Circ Res 2001;88:1095–1096.

    PubMed  CAS  Google Scholar 

  154. Elias CL, Lukas A, Shurraw S, et al. Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and antiarrhythmic consequences. Am J Physiol 2001;281:H1334-H1345.

    CAS  Google Scholar 

  155. Gazmuri RJ, Ayoub IM, Hoffner E, Kolarova JD. Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide. Circulation 2001;104:234–239.

    PubMed  CAS  Google Scholar 

  156. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103:196–200.

    PubMed  CAS  Google Scholar 

  157. Dzeja PP, Holmuhamedov EL, Ozcan C, Pucar D, Jahangir A, Terzic A. Mitochondria: gateway for cytoprotection. Circ Res 2001;89:744–746.

    PubMed  CAS  Google Scholar 

  158. Terzic A, Kurachi Y. Actin microfilament disrupters enhance K(ATP) channel opening in patches from guinea-pig cardiomyocytes. J Physiol 1996;492:395–404.

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Dzhura I, Wu YJ, Colbran RJ, Balser JR, Anderson ME. Calmodulin kinase determines calcium dependent facilitation of L-type calcium channels. Nat Cell Biol 2000;2:173–177.

    PubMed  CAS  Google Scholar 

  160. Anderson ME. Calmodulin and the philosopher’s stone: Changing Ca2+ into arrhythmias. J Cardiovasc Electrophysiol 2002;13:195–197.

    PubMed  Google Scholar 

  161. January CT, Gong QM, Zhou ZF. Long QT syndrome: Cellular basis and arrhythmia mechanism in LQT2. J Cardiovasc Electrophysiol 2000;11:1413–1418.

    PubMed  CAS  Google Scholar 

  162. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001;104:569–580.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jahangir, A., Terzic, A., Shen, WK. (2003). Antiarrhythmic Drugs and Future Direction. In: Gussak, I., Antzelevitch, C., Hammill, S.C., Shen, WK., Bjerregaard, P. (eds) Cardiac Repolarization. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-362-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-362-0_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-336-7

  • Online ISBN: 978-1-59259-362-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics