Skip to main content

Culture Medium Optimization and Scale-Up for Microbial Fermentations

  • Chapter
Handbook of Industrial Cell Culture
  • 634 Accesses

Abstract

The art of fermentation has been around for centuries. Brewing and food-based fermentations were the beginnings of the fermentation industry as we know it today. At the turn of the twentieth century, fermentations were used to make chemicals such as glycerol for the manufacture of explosives. With all that history, the discovery of penicillin may have been the real “coming out” party for the fermentation industry. For the first time in its history, fermentation was used to produce a product with a tangible benefit—saving lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frommer, W., Ager, B., Archer, L., Brunius, G., Collins, C., and Donikian, R. (1989) Safe biotechnology. III. Safety precautions for handling microorganisms of different risk classes. Appl. Microbiol. Biotechnol. 30, 541–552.

    Article  Google Scholar 

  2. Pazouki, M., Felse, P., Sinha, J., and Panda, T. (2000) Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose. Bioprocess. Eng. 22, 353–361.

    Article  CAS  Google Scholar 

  3. Suzuki, A., Sarangbin, S., Kirimura, K., and Usami, V. (1996) Direct production of citric acid from starch by a 2-deoxyglucose-resistant mutant strain of Aspergillus niger. J. Ferment. Bioeng. 81, 320–323.

    Article  CAS  Google Scholar 

  4. Leangon, S., Maddox, I., and Brooks, J. (1999) Influence of the glycolytic rate on production of citric acid and oxalic acid by Aspergillus niger in solid substrate fermentation. World J. Microbiol. Biotechnol. 15, 493–495.

    Article  CAS  Google Scholar 

  5. Tran, C., Sly, L., and Mitchell, D. (1998) Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World J. Microbiol. Biotechnol. 14, 399–404.

    Article  CAS  Google Scholar 

  6. Vandenberghe, L., Soccol, C., Pandey, A., and Lebeault, J. (2000) Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour. Technol. 74, 175–178.

    Article  CAS  Google Scholar 

  7. Zabriskie, D., Arminger, W., Phillips, D., and Albano, P. (1988) Fermentation medium formulation, in Traders Guide to Fermentation Medium Formulation. Traders Protein, Memphis, TN, pp. 1–44.

    Google Scholar 

  8. Han, K., Lim, H., and Hong, J. (1992) Acetic acid formation in Escherichia coli fermentation. Biotechnol. Bioeng. 39, 663–671.

    Article  CAS  Google Scholar 

  9. Van Dijken, J., Weusthuis, R., and Pronk, J. (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Leeuwenhoek 63, 343–352.

    Article  Google Scholar 

  10. Dekeleva, M. and Strohl, W. (1987) Glucose stimulated acidogenesis by Streptomyces peucetius. Can. J. Microbiol. 33, 1129–1132.

    Article  Google Scholar 

  11. Madden, T., Ward, J., and Ison, A. (1996) Organic acid excretion by Streptomyces lividans TK24 during growth on defined carbon and nitrogen sources. Microbiology 142, 3181–3185.

    Article  CAS  Google Scholar 

  12. Cortes, J., Liras, P., Castro, J., and Martin, J. (1986) Glucose regulation of cephamycin biosynthesis in Streptomyces lactamdurans is exerted on the formation of alpha-aminoadipylcysteinyl-valine and deacetoxycephalosporin-C-synthase. J. Gen. Microbiol. 132, 1805–1814.

    CAS  Google Scholar 

  13. Martin, J., Revilla, G., Zanca, D., and Lopez, N. (1982) Carbon catabolite regulation of penicillin and cephalosporin biosynthesis. Trends Antibiot. Res. Genet. Biosynth., Actions, and New Subst. Proc. Int. Conf. pp. 258–268.

    Google Scholar 

  14. Spizek, J. and Tichy, P. (1995) Some aspects of overproduction of secondary metabolites. Folia Microbiol. 40, 43–50.

    Article  CAS  Google Scholar 

  15. Caddick, M., Peters, D., and Platt, A. (1994) Nitrogen regulation in fungi. Antonie Leeuwenhoek 65, 169–177.

    Article  CAS  Google Scholar 

  16. Lo, Y., Yang, S., and Min, D. (1997) Effects on yeast extract and glucose on xanthan production and cell growth in batch culture of Xanthomonas campestris. Appl. Microbiol. Biotechnol. 47, 689–694.

    Article  CAS  Google Scholar 

  17. Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol. 54, 741–750.

    Article  CAS  Google Scholar 

  18. Atlas, R. and Parks, L. (1993) Handbook ot Microbiological Media, UKU Press, Boca Raton, FL.

    Google Scholar 

  19. Zhu, Y., Rinzema, A., Tramper, J., and Bol, J. (1996) Medium design based on stoichiometric analysis of microbial transglutaminase production by Streptoverticillium mobaraense. Biotechnol. Bioeng. 50, 291–298.

    Article  CAS  Google Scholar 

  20. Strobel, R. and Sullivan, G. (1999) Experimental design for improvement of fermentations, in Manual of Industrial Microbiology and Biotechnology (Demain, A. and Davies, J., eds.), American Society for Microbiology, Washington, DC, pp. 80–93.

    Google Scholar 

  21. Plackett, R. and Burman, J. (1946) The design of optimum multifactorial experiments. Biometrika 33, 305–325.

    Article  Google Scholar 

  22. Box, G., Hunter, W., and Hunter, J. (1978) Fractional factorial designs at two levels, in: Statistics for Experimenters. John Wiley, New York, NY.

    Google Scholar 

  23. Box, G. and Behnken, D. (1960) Some three level variable designs for the study of quantitative variables. Technometrics 2, 455–475.

    Article  Google Scholar 

  24. Myers, R. and Montgomery, D. (1995) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley, New York, NY.

    Google Scholar 

  25. Demming, S. and Morgan, S. (1973) Simplex optimization of variables in analytical chemistry. Anal. Chem. 45, 278–283.

    Google Scholar 

  26. Weuster-Botz, D. (2000) Experimental design for fermentation media development: statistical design or global random search. J.Biosci Bioeng. 90, 473–483.

    CAS  Google Scholar 

  27. Zuzek, M., Friedrich, J., Cestnik, B., Karalic, A., and Cimerman, A. (2000) Optimization of fermen-tation medium by a modified method of genetic algorithms. Biotechnol. Tech. 10, 991–996.

    Article  Google Scholar 

  28. Goldberg, D. (1989) Genetic Algorithms in Search, Optimisation, and Machine Learning. Addison-Wesley, Reading.

    Google Scholar 

  29. Back, T. (1993) Optimal mutation rates in genetic search, in Proceedings of the Fifth International Conference on Genetic Algorithms (Forrest, S., ed.), Morgan Kauffman Pub., San Mateo, CA.

    Google Scholar 

  30. Weuster-Botz, D., Kelle, R., Frantzen, M., and Wandrey, C. (1997) Substrate controlled fedbatch production of 1-lysine with Corynebacterium glutamicum. Biotechnol. Prog. 13, 387–393.

    Article  CAS  Google Scholar 

  31. Weuster-Botz, D. and Wandrey, C. (1995) Medium optimisation by genetic algorithm for continuous production of formate dehydrogenase. Process Biochem. 30, 563–571.

    CAS  Google Scholar 

  32. Cockshott, A. and Hartmann, G. (2001) Improving the fermentation medium for echinocandin B production part II: particle swarm optimization. Proc. Biochem. 36, 661–669.

    Article  CAS  Google Scholar 

  33. Cockshott, A. and Sullivan, G. (2001) Improving the fermentation medium for echinocandin B production part I: sequential statistical experimental design. Proc. Biochem. 36, 647–660.

    Article  CAS  Google Scholar 

  34. Connors, N., Petersen, L., Hughes, R., Saini, K., Olewinski, R., and Salmon, P. (2000) Residual fructose and osmolality affect the levels of pneumocandins B0 and C0 produced by Glarea lozoyensis. Appl. Microbiol. Biotechnol. 54, 814–818.

    Article  CAS  Google Scholar 

  35. Petersen, L., Hughes, D., Hughes, R., DiMichele, L., Salmon, P., and Connors, N. (2001) Effects of amino acid and trace element supplementation on pneumocandin production by Glarea lozoyensis: impact on titer, analogue levels, and the identification of new analogues of pneumocandin B0. J. Industr. Microbiol. Biotechnol. 26, 216–221.

    Article  CAS  Google Scholar 

  36. van Gulik, W., de Laat, W., Vinke, J., and Heijnen, J. (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 68, 602–618.

    Article  Google Scholar 

  37. Sauer, U., Lasko, D., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., et al. (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia col i central carbon metabolism. J. Bacteriol. 181, 6679–6688.

    CAS  Google Scholar 

  38. Stanbury, P. and Whitaker, A. (1984) Principles of Fermentation Technology. Pergamon Press, Oxford, UK.

    Google Scholar 

  39. Wang, D., Cooney, C., Demain, A., Dunnhill, P., Humphrey, A., and Lilly, M. (1979) Fermentation and Enzyme Technology. John Wiley, New York, NY.

    Google Scholar 

  40. Yegneswaran, P., Gray, M., and Thompson, B. (1991) Experimental simulation of dissolved oxygen fluctuations in large fermentors: effect on Streptomyces clavuligerus. Biotechnol. Bioeng. 38, 1203–1209.

    Article  CAS  Google Scholar 

  41. Funahashi, H., Harada, H., Taguhi, H., and Yoshida, T. (1987) Circulation time distribution and volume mixing regions in highly viscous xanthan gum solution in a stirred vessel. J. Ferment. Technol. 20, 277–282.

    CAS  Google Scholar 

  42. Bajpai, R. and Reuss, M. (1982) Coupling of mixing and microbial kinetics for evaluating the performance of bioreactors. Can. J. Chem. Eng. 60, 384–392.

    Article  CAS  Google Scholar 

  43. Enfors, S., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jurgen, B., et al. (2001) Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 85, 175–185.

    Article  CAS  Google Scholar 

  44. Sweere, A., Luyben, K., and Kossen, N. (1987) Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzyme Microb. Technol. 9, 386–398.

    Article  CAS  Google Scholar 

  45. Geraats, S. (1994) Scaling-up of a lipase fermentation process: a practical approach, in Advances in Bioprocess Engineering (Galindo, E. and Ramirez, O., eds.), Kluwer Academic Publishers, Dordrecht, pp. 41–46.

    Google Scholar 

  46. Vardar, F. and Lilly, M. (1982) Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations. Eur. J. Appl. Microbiol. Biotechnol. 14, 203–211.

    Article  CAS  Google Scholar 

  47. Larsson, G. and Enfors, S. (1988) Studies of insufficient mixing in bioreactors: effects of limiting oxygen concentrations and short term oxygen starvation on Penicillium chrysogenum. Bioproc. Eng. 3, 123–127.

    Article  CAS  Google Scholar 

  48. George, S., Larsson, G., and Enfors, S. (1993) A scale-down two compartment reactor with controlled substrate oscillations: metabolic response of Saccharomyces cerevisiae. Bioproc. Eng. 9, 249–257.

    Article  CAS  Google Scholar 

  49. Lashkari, D., DeRisi, J., McCusker, J., Namath, A., Gentile, C., Hwang, S., et al. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94, 13,057–13,062.

    Google Scholar 

  50. Tao, H., Bausch, C., Richmond, C., Blattner, F., and Conway, T. (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181, 6425–6440.

    CAS  Google Scholar 

  51. Neidhardt, F. (1996) The enteric bacterial cell and the age of bacteria, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. (Neidhardt, F. and Curtis, R., III, Ingraham, J., Lin, E., Low, K., Magasanik, B., et al., eds.), ASM Press, Washington, DC, pp. 1–3.

    Google Scholar 

  52. Schweder, T., Kruger, E., Xu, B., Jurgen, B., Blomsten, G., Enfors, S.-O., et al. (1999) Monitoring of genes that respond to process-related stress in large scale bioprocesses. Biotechnol. Bioeng. 65, 151–159.

    Article  CAS  Google Scholar 

  53. Tseng, G., Oh, M., Rohlin, L., Liao, J., and Wong, W. (2001) Issues in cDNA microarray analysis: quality filtering, channel normalizaion, models of variations and assessment of gene effects. Nucleic Acids Res. 29, 2549–2557.

    Article  CAS  Google Scholar 

  54. Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998) Cluster analysis and display of gneome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–14,868.

    Google Scholar 

  55. Wen, X., Fuhrman, S., Michaels, G., Carr, D., Smith, S., Barker, J., et al. (1998) Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95, 334–339.

    Article  CAS  Google Scholar 

  56. Tamayo, P., Slomin, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and applications to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.

    Article  CAS  Google Scholar 

  57. Rigoutsos, I., Floratos, A., Parida, L., Gao, Y., and Platt, D. (2000) The emergence of pattern discovery techniques in computational biology. Metab. Eng. 2, 159–177.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Connors, N.C. (2003). Culture Medium Optimization and Scale-Up for Microbial Fermentations. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics