Skip to main content

DNA Shuffling for Whole Cell Engineering

  • Chapter
Handbook of Industrial Cell Culture

Abstract

Pasteur patented the use of whole microbial cells in fermentation in the latter part of the nineteenth century. However, there are much earlier references to microbial fermentations, dating back to alcohol fermentation thousands of years ago. Although more recent times have seen the introduction of many novel processes. We have yet reached a full understanding of even the simplest fermentation. Today the commercial application of whole cells is broad and impacts industries as varied as pharmaceuticals, fuels, foods, and chemicals. Despite the complexity of whole cells, they remain the most commercially successful of the “biocatalysts.” Still, as with the commercialization of all biological systems, the challenge is both identifying new and useful properties of commercial interest, and the performance of these biological systems under conditions that are commercially relevant. The most promising biocatalysts never find commercial success simply because they do not perform under conditions that would make them cost effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babbitt, P. C., Mrachko, G. T., Hasson, M. S., Huisman, G. W., Kolter, R., et al. (1995) A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science 267, 1159–1161.

    Article  CAS  Google Scholar 

  2. Baltz, R. H. (1986) Mutagenesis in Streptomyces spp., in Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC.

    Google Scholar 

  3. Chen, T. S. and Inamine, E. S. (1989) Studies on the biosynthesis of avermectins. Archives of Biochemistry and Biophysics 270, 521–525.

    Article  CAS  Google Scholar 

  4. Crameri, A., Dawes, G., Rodriguez, E., Jr., Silver, S., and Stemmer, W. P. (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 15, 436–438.

    Article  CAS  Google Scholar 

  5. Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.

    Article  CAS  Google Scholar 

  6. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    Article  CAS  Google Scholar 

  7. Giver, L. and Arnold, F. H. (1998). Combinatorial protein design by in vitro recombination. Curr. Opin. Chem. Biol. 2, 335–338.

    Article  CAS  Google Scholar 

  8. Hopwood, D. A. and Wright, H. M. (1978). Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol. Gen. Genet. 162, 307–317.

    Article  CAS  Google Scholar 

  9. Hopwood, D. A. and Wright, H. M. (1979). Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolor. J. Gen. Microbiol. 111, 137–143.

    Article  CAS  Google Scholar 

  10. Ikeda, H., Nonomiya, T., Usami, M., Ohta, T., and Omura, S. (1999). Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509–9514.

    Article  CAS  Google Scholar 

  11. Ikeda, H. and Omura, S.. (1995). Control of avermectin biosynthesis in Streptomyces avermitilis for the selective production of a useful component. J. Antibiotics 48, 549–562.

    Article  CAS  Google Scholar 

  12. MacNeil, D. J. (1995). Avermectins. Biotechnology 28: 421–42.

    CAS  Google Scholar 

  13. May, O., Nguyen, P. T., and Arnold, F. H. (2000). Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat. Biotechnol. 18m 317–320.

    Article  CAS  Google Scholar 

  14. Minshull, J. and Stemmer, W. P. (1999). Protein evolution by molecular breeding. Curr. Opin. Chem. Biol. 3, 284–290.

    Article  CAS  Google Scholar 

  15. Moore, J. C. and Arnold, F. H. (1996). Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14, 458–467.

    Article  CAS  Google Scholar 

  16. Ness, J. E., del Cardayre, S. B., Minshull, J., and Stemmer, W. P. (2000). Molecular breeding: the natural approach to protein design. Adv. Protein Chem. 55, 261–292.

    CAS  Google Scholar 

  17. Ness, J. E., Welch, M., Giver, L., Bueno, M., Cherry, J. R., et al. (1999). DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17, 893–896.

    Article  CAS  Google Scholar 

  18. Patnaik, R., Louie, S. K. P., and Del Cardayre, S. B. (2001). Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 38, 707–712.

    Google Scholar 

  19. Powell, K. A., Ramer, S. W., del Cardayre, S. B., Stemmer, W. P. C., Tobin, M. B., et al. (2001). Directed Evolution and Biocatalysis. Angewanndte Chemie International Edition 40, 3948–3959.

    Article  CAS  Google Scholar 

  20. Raillard, S., Krebber, A., Chen, Y., Ness, J. E., Bermudez, E., et al. (2001). Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8, 891–898.

    Article  CAS  Google Scholar 

  21. Stemmer, W. P. (1994). DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10,747–10,751.

    Article  Google Scholar 

  22. Stemmer, W. P. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  CAS  Google Scholar 

  23. Tobin, M. B., Gustafsson, C., and Huisman, G. W. (2000). DIrected Evolution: the ‘rational’ basis for ‘irrational’ design. Current Opinion in Structural Biology 10, 421–427.

    Article  CAS  Google Scholar 

  24. Vinci, V. A. and Byng, G. 1999. Strain improvement by non-recombinant methods, in Manual of Industrial Microbiology and Biotechnology, (Demain, A. L., Davies, J. E., eds.), ASM Press, Washington, DC.

    Google Scholar 

  25. Zhang, J. H., Dawes, G., and Stemmer, W. P. (1997). Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509.

    Article  CAS  Google Scholar 

  26. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K. A., Stemmer, W. P., and del Cardayre, S. B. (2001). Genome shuffling leads to rapid improvement in bacterial phenotype. Nature 415, 644–646.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

del Cardayre, S., Powell, K. (2003). DNA Shuffling for Whole Cell Engineering. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics