Skip to main content

Opioid Modulation of Psychomotor Stimulant Effects

  • Chapter
Book cover Molecular Biology of Drug Addiction

Abstract

The acute administration of psychomotor stimulants, such as cocaine and amphetamine, produce behavioral activation in humans and increased locomotor activity in laboratory animals. These agents are also self-administered by various species by virtue of their reinforcing effects. It is generally accepted that these actions results, at least in part, from an increase in dopaminergic (DAergic) neurotransmission in the nucleus accumbens (NAc), a terminal projection region of dopamine (DA) neurons comprising the mesocorticolimbic system (1). Cocaine increases extracellular DA concentrations by binding to the DA transporter and inhibiting the uptake of DA from the synaptic cleft, whereas amphetamine causes a reversal of the DA transporter and increases DA release (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Moal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 71, 155–234.

    PubMed  Google Scholar 

  2. White, F. J. and Kalivas, P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–153.

    Article  PubMed  CAS  Google Scholar 

  3. Pifl, C., Drobny, H., Reither, H., Hornykiewicz, O., and Singer, E. A. (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol. Pharmacol. 47, 368–373.

    PubMed  CAS  Google Scholar 

  4. Horger, B. A., Shelton, K., and Schenk, S. (1990) Preexposure sensitizes rats to the rewarding effects of cocaine. Pharmacol. Biochem. Behay. 37, 707–711.

    Article  CAS  Google Scholar 

  5. Shippenberg, T. S. and Heidbreder, C. (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J. Pharmacol. Exp. Ther. 273, 808–815.

    PubMed  CAS  Google Scholar 

  6. Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentivesensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291.

    Article  PubMed  CAS  Google Scholar 

  7. Bartlett, E., Hallin, A., Chapman, B., and Angrist, B. (1997) Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology 16, 77–82.

    Article  PubMed  CAS  Google Scholar 

  8. Strakowski, S. M. and Sax, K. W. (1998) Progressive behavioral response to repeated Damphetamine challenge: further evidence for sensitization in humans. Biol. Psychiatr. 44, 1171–1177.

    Article  CAS  Google Scholar 

  9. Ackerman, J. M. and White, F. J. (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci. Lett. 117, 181–187.

    Article  PubMed  CAS  Google Scholar 

  10. White, F. J. and Wang, R. Y. (1984) Electrophysiological evidence for A 10 dopamine autoreceptor subsensitivity following chronic D-amphetamine treatment. Brain Res. 309, 283–292.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, T. H., Gao, W. Y., Davidson, C., and Ellinwood, E. H. (1999) Altered activity of midbrain dopamine neurons following 7-day withdrawal from chronic cocaine abuse is normalized by D2 receptor stimulation during the early withdrawal phase. Neuropsychopharmacology 21, 127–136.

    Article  PubMed  CAS  Google Scholar 

  12. Yi, S. J. and Johnson, K. M. (1990) Chronic cocaine treatment impairs the regulation of synaptosomal 3H-DA release by D2 autoreceptors. Pharmacol. Biochem. Behay. 36, 457–461.

    Article  CAS  Google Scholar 

  13. Davidson, C., Ellinwood, E. H., and Lee, T. H. (2000) Altered sensitivity of dopamine autoreceptors in rat accumbens 1 and 7 days after intermittent or continuous cocaine withdrawal. Brain Res. Bull. 51, 89–93.

    Article  PubMed  CAS  Google Scholar 

  14. Akimoto, K., Hamamura, T., Kazahaya, Y., Akiyama, K., and Otsuki, S. (1990) Enhanced extracellular dopamine level may be the fundamental neuropharmacological basis of crossbehavioral sensitization between methamphetamine and cocaine-an in vivo dialysis study in freely moving rats. Brain Res. 507, 344–346.

    Article  PubMed  CAS  Google Scholar 

  15. Akimoto, K., Hamamura, T., and Otsuki, S. (1989) Subchronic cocaine treatment enhances cocaine-induced dopamine efflux, studied by in vivo intracerebral dialysis [published erratum appears in Brain Res 1989 Aug 21; 495(1): 2031. Brain Res. 490, 339–344.

    Article  PubMed  CAS  Google Scholar 

  16. Kalivas, P. W. and Duffy, P. (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5, 48–58.

    Article  PubMed  CAS  Google Scholar 

  17. Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13, 266–275.

    PubMed  CAS  Google Scholar 

  18. Henry, D. J. and White, F. J. (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J. Pharmacol. Exp. Ther. 258, 882–890.

    PubMed  CAS  Google Scholar 

  19. Self, D. W. and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463–495.

    Article  PubMed  CAS  Google Scholar 

  20. Pierce, R. C. and Kalivas, P. W. (1997) Repeated cocaine modifies the mechanism by which amphetamine releases dopamine. J. Neurosci. 17, 3254–3261.

    PubMed  CAS  Google Scholar 

  21. Herz, A. (1998) Opioid reward mechanisms: a key role in drug abuse? Can. J. Physiol. Pharmacol. 76 252–258.

    Article  PubMed  CAS  Google Scholar 

  22. Spanagel, R., Herz, A., and Shippenberg, T. S. (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl. Acad. Sci. USA 89, 2046–2050.

    Article  PubMed  CAS  Google Scholar 

  23. Churchill, L. and Kalivas, P. W. (1996) Dopamine-opioid interactions in the basal forebrain. in The Modulation of Dopaminergic Neurotransmission by Other Neurotransmitters. (Ashby, C. R., ed.), CRC Press, New York, pp. 55–86.

    Google Scholar 

  24. Swanson, L. W. (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353.

    Article  PubMed  CAS  Google Scholar 

  25. Carr, D. B. and Sesack, S. R. (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38, 114–123.

    Article  PubMed  CAS  Google Scholar 

  26. Carr, D. B. and Sesack, S. R. (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20, 3864–3873.

    PubMed  CAS  Google Scholar 

  27. Tong, Z. Y., Overton, P. G., Martinez-Cue, C., and Clark, D. (1998) Do non-dopaminergic neurons in the ventral tegmental area play a role in the responses elicited in A10 dopaminergic neurons by electrical stimulation of the prefrontal cortex? Exp. Brain Res. 118, 466–476.

    Article  PubMed  CAS  Google Scholar 

  28. Tong, Z. Y., Overton, P. G., and Clark, D. (1996) Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse 22, 195–208.

    Article  PubMed  CAS  Google Scholar 

  29. Overton, P. G., Tong, Z. Y., and Clark, D. (1996) A pharmacological analysis of the burst events induced in midbrain dopaminergic neurons by electrical stimulation of the prefrontal cortex in the rat. J. Neural Transm. Gen. Sect. 103, 523–540.

    Article  CAS  Google Scholar 

  30. Murase, S., Grenhoff, J., Chouvet, G., Gonon, F. G., and Svensson, T. H. (1993) Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci. Lett. 157, 53–56.

    Article  PubMed  CAS  Google Scholar 

  31. Karreman, M. and Moghaddam, B. (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J. Neurochem. 66, 589–598.

    Article  PubMed  CAS  Google Scholar 

  32. White, F. J., Hu, X. T., Zhang, X. F., and Wolf, M. E. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445–454.

    PubMed  CAS  Google Scholar 

  33. Sorg, B. A., Davidson, D. L., Kalivas, P. W., and Prasad, B. M. (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J. Pharmacol. Exp. Ther. 281, 54–61.

    PubMed  CAS  Google Scholar 

  34. Chefer, V. I., Moron, J. A., Hope, B., Rea, W., and Shippenberg, T. S. (2000) Kappa-opioid receptor activation prevents alterations in mesocortical dopamine neurotransmission that occur during abstinence from cocaine. Neuroscience 101, 619–627.

    Article  PubMed  CAS  Google Scholar 

  35. Castaneda, E., Becker, J. B., and Robinson, T. E. (1988) The long-term effects of repeated amphetamine treatment in vivo on amphetamine, KC1 and electrical stimulation evoked striatal dopamine release in vitro. Life Sci. 42, 2447–2456.

    Article  PubMed  CAS  Google Scholar 

  36. Meredith, G. E. (1999) The synaptic framework for chemical signaling in nucleus accumbens. Ann. N.Y. Acad. Sci. 877, 140–156.

    Article  PubMed  CAS  Google Scholar 

  37. Meredith, G. E., Pennartz, C. M., and Groenewegen, H. J. (1993) The cellular framework for chemical signalling in the nucleus accumbens. Prog. Brain Res. 99, 3–24.

    Article  PubMed  CAS  Google Scholar 

  38. Meredith, G. E., Agolia, R., Arts, M. P., Groenewegen, H. J., and Zahm, D. S. (1992) Morphological differences between projection neurons of the core and shell in the nucleus accumbens of the rat. Neuroscience 50, 149–162.

    Article  PubMed  CAS  Google Scholar 

  39. Hirata, K. and Mogenson, G. J. (1984) Inhibitory response of pallidal neurons to cortical stimulation and the influence of conditioning stimulation of substantia nigra. Brain Res. 321, 9–19.

    Article  PubMed  CAS  Google Scholar 

  40. Hirata, K., Yim, C. Y., and Mogenson, G. J. (1984) Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra. Brain Res. 321, 1–8.

    Article  PubMed  CAS  Google Scholar 

  41. Sesack, S. R. and Pickel, V. M. (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol. 320, 145–160.

    Article  PubMed  CAS  Google Scholar 

  42. O’Donnell, P. and Grace, A. A. (1994) Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res. 634, 105–112.

    Article  PubMed  Google Scholar 

  43. Grace, A. A. (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res. Brain Res. Rev. 31, 330–341.

    Article  PubMed  CAS  Google Scholar 

  44. Zadina, J. E., Hackler, L., Ge, L. J. and Kastin, A. J. (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386, 499–502.

    Article  PubMed  CAS  Google Scholar 

  45. Akil, H., Meng, F., Mansour, A., Thompson, R., Xie, G. X., and Watson, S. (1996) Cloning and characterization of multiple opioid receptors. NIDA Res. Monogr. 161, 127–140.

    PubMed  CAS  Google Scholar 

  46. Kieffer, B. L. (1999) Opioids: first lessons from knockout mice. Trends Pharmacol. Sci. 20, 19–26.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, Y., Fan, Y., Liu, J., Mestek, A., Tian, M., Kozak, C. A., and Yu, L. (1994) Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett. 347, 279–283.

    Article  PubMed  CAS  Google Scholar 

  48. Mollereau, C, Parmentier, M., Mailleux, P., Butour, J. L., Moisand, C, Chalon, P., Caput, D., Vassart, G., and Meunier, J. C. (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 341, 33–38.

    Article  PubMed  CAS  Google Scholar 

  49. Neal, C. R., Jr., Mansour, A., Reinscheid, R., Nothacker, H. P., Civelli, O., Akil, H., and Watson, S. J., Jr. (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J. Comp. Neurol. 412, 563–605.

    Article  PubMed  CAS  Google Scholar 

  50. Meunier, J. C, Mollereau, C, Toll, L., Suaudeau, C, Moisand, C, Alvinerie, P. J., Butour, L., Guillemot, J. C, Ferrara, P., Monsarrat, B., et al. (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 317 532–535.

    Article  Google Scholar 

  51. Reinscheid, R. K., Nothacker, H. P., Bourson, A., Ardati, A., Henningsen, R. A., Bunzow, J. R., Grandy, D. K., Langen, H., Monsma, F. J., Jr., and Civelli, O. (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270, 792–794.

    Article  PubMed  CAS  Google Scholar 

  52. Finley, J. C, Lindstrom, P., and Petrusz, P. (1981) Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. Neuroendocrinology 33, 28–42.

    Article  PubMed  Google Scholar 

  53. Schreff, M., Schulz, S., Wiborny, D., and Hollt, V. (1998) Immunofluorescent identification of endomorphin-2-containing nerve fibers and terminals in the rat brain and spinal cord. Neuroreport 9, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  54. Fallon, J. H. and Leslie, F. M. (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J. Comp. Neurol. 249, 293–336.

    Article  PubMed  CAS  Google Scholar 

  55. Neal, C. R., Jr., Mansour, A., Reinscheid, R., Nothacker, H. P., Civelli, O., and Watson, S. J., Jr. (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J. Comp. Neurol. 406, 503–547.

    Article  PubMed  CAS  Google Scholar 

  56. Curran, E. J. and Watson, S. J., Jr. (1995) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol. 361, 57–76.

    Article  PubMed  CAS  Google Scholar 

  57. Mansour, A., Fox, C. A., Burke, S., Akil, H., and Watson, S. J. (1995) Immunohistochemical localization of the cloned mu opioid receptor in the rat CNS. J. Chem. Neuroanat. 8,283–305.

    Article  PubMed  CAS  Google Scholar 

  58. Mansour, A., Fox, C. A., Akil, H., and Watson, S. J. (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 18, 22–29.

    Article  PubMed  CAS  Google Scholar 

  59. Mansour, A., Fox, C. A., Burke, S., Meng, F., Thompson, R. C, Akil, H., and Watson, S. J. (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J. Comp. Neurol. 350, 412–438.

    Article  PubMed  CAS  Google Scholar 

  60. Svingos, A. L., Colago, E. E., and Pickel, V. M. (1999) Cellular sites for dynorphin activation of kappa-opioid receptors in the rat nucleus accumbens shell. J. Neurosci. 19, 1804–1813.

    PubMed  CAS  Google Scholar 

  61. Svingos, A. L., Clarke, C. L., and Pickel, V. M. (1999) Localization of the delta-opioid receptor and dopamine transporter in the nucleus accumbens shell: implications for opiate and psychostimulant cross-sensitization. Synapse 34, 1–10.

    Article  PubMed  CAS  Google Scholar 

  62. Svingos, A. L., Moriwaki, A., Wang, J. B., Uhl, G. R., and Pickel, V. M. (1997) Mu-opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J. Neurosci. 17, 2585–2594.

    PubMed  CAS  Google Scholar 

  63. Sesack, S. R. and Pickel, V. M. (1992) Dual ultrastructural localization of enkephalin and tyrosine hydroxylase immunoreactivity in the rat ventral tegmental area: multiple substrates for opiate-dopamine interactions. J. Neurosci. 12, 1335–1350.

    PubMed  CAS  Google Scholar 

  64. Mansour, A., Khachaturian, H., Lewis, M. E., Akil, H., and Watson, S. J. (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J. Neurosci. 7, 2445–2464.

    PubMed  CAS  Google Scholar 

  65. Garzon, M. and Pickel, V. M. (2001) Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. Synapse 41, 311–328.

    Article  PubMed  CAS  Google Scholar 

  66. Klitenick, M. A., DeWitte, P., and Kalivas, P. W. (1992) Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J. Neurosci. 12, 2623–2632.

    PubMed  CAS  Google Scholar 

  67. Johnson, S. W., and North, R. A. (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J. Physiol. (Lond.) 450, 455–468.

    CAS  Google Scholar 

  68. Peckys, D. and Landwehrmeyer, G. B. (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88, 1093–1135.

    Article  PubMed  CAS  Google Scholar 

  69. Pickel, V. M., Chan, J., and Sesack, S. R. (1993) Cellular substrates for interactions between dynorphin terminals and dopamine dendrites in rat ventral tegmental area and substantia nigra. Brain Res. 602, 275–289.

    Article  PubMed  CAS  Google Scholar 

  70. Hurd, Y. L. (1996) Differential messenger RNA expression of prodynorphin and proenkephalin in the human brain. Neuroscience 72, 767–783.

    Article  PubMed  CAS  Google Scholar 

  71. Aggleton, J. P. (1985) A description of intra-amygdaloid connections in old world monkeys. Exp. Brain Res. 57, 390–399.

    Article  PubMed  CAS  Google Scholar 

  72. Aggleton, J. P., Friedman, D. P., and Mishkin, M. (1987) A comparison between the connections of the amygdala and hippocampus with the basal forebrain in the macaque. Exp. Brain Res. 67, 556–568.

    Article  PubMed  CAS  Google Scholar 

  73. Fudge, J. L. and Haber, S. N. (2000) The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 97, 479–494.

    Article  PubMed  CAS  Google Scholar 

  74. Meis, S. and Pape, H. C. (2001) Control of glutamate and GABA release by nociceptin/orphanin FQ in the rat lateral amygdala. J. Physiol 532, 701–712.

    Article  PubMed  CAS  Google Scholar 

  75. Di Chiara, G. and Imperato, A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA 85, 5274–5278.

    Article  PubMed  Google Scholar 

  76. Spanagel, R., Herz, A., and Shippenberg, T. S. (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J. Neurochem. 55, 1734–1740.

    Article  PubMed  CAS  Google Scholar 

  77. Heijna, M. H., Bakker, J. M., Hogenboom, F., Mulder, A. H., and Schoffelmeer, A. N. (1992) Opioid receptors and inhibition of dopamine-sensitive adenylate cyclase in slices of rat brain regions receiving a dense dopaminergic input. Eur. J. Pharmacol. 229, 197–202.

    Article  PubMed  CAS  Google Scholar 

  78. Heijna, M. H., Hogenboom, F., Mulder, A. H., and Schoffelmeer, A. N. (1992) Opioid receptor-mediated inhibition of 3H-dopamine and 14C-acetylcholine release from rat nucleus accumbens slices. A study on the possible involvement of K+ channels and adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol. 345, 627–632.

    Article  PubMed  CAS  Google Scholar 

  79. Pennartz, C. M., Groenewegen, H. J., and Lopes da Silva, F. H. (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761.

    Article  PubMed  CAS  Google Scholar 

  80. Meshul, C. K. and McGinty, J. F. (2000) Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons. Neuroscience 96, 91–99.

    Article  PubMed  CAS  Google Scholar 

  81. Hjelmstad, G. O. and Fields, H. L. (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J. Neurophysiol. 85, 1153–1158.

    PubMed  CAS  Google Scholar 

  82. Rawls, S. M., and McGinty, J. F. (1998) Kappa receptor activation attenuates 1-trans-pyrrolidine2,4-dicarboxylic acid-evoked glutamate levels in the striatum. J. Neurochem. 70, 626–634.

    Article  PubMed  CAS  Google Scholar 

  83. Gray, A. M., Rawls, S. M., Shippenberg, T. S., and McGinty, J. F. (1999) The kappa-opioid agonist, U-69593, decreases acute amphetamine-evoked behaviors and calcium-dependent dialysate levels of dopamine and glutamate in the ventral striatum. J. Neurochem. 73, 1066–1074.

    Article  PubMed  CAS  Google Scholar 

  84. Thompson, A. C., Zapata, A., Justice, J. B., Vaughan, R. A., Sharpe, L. G., and Shippenberg, T. S. (2000) Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J. Neurosci. 20, 9333–9340.

    PubMed  CAS  Google Scholar 

  85. Devine, D. P., Leone, P., Pocock, D., and Wise, R. A. (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J. Pharmacol. Exp. Ther. 266, 1236–1246.

    PubMed  CAS  Google Scholar 

  86. Yoshida, Y., Koide, S., Hirose, N., Takada, K., Tomiyama, K., Koshikawa, N., and Cools, A. R. (1999) Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors. Neuroscience 92, 1357–1365.

    Article  PubMed  CAS  Google Scholar 

  87. Martin, G., Nie, Z., and Siggins, G. R. (1997) Mu-Opioid receptors modulate NMDA receptormediated responses in nucleus accumbens neurons. J. Neurosci. 17, 11–22.

    PubMed  CAS  Google Scholar 

  88. Dauge, V., Kalivas, P. W., Duffy, T., and Roques, B. P. (1992) Effect of inhibiting enkephalin catabolism in the VTA on motor activity and extracellular dopamine. Brain Res. 599, 209–214.

    Article  PubMed  CAS  Google Scholar 

  89. Longoni, R., Spina, L., Mulas, A., Carboni, E., Garau, L., Melchiorri, P., and Di Chiara, G. (1991) (D-A1a2)deltorphin II: D1-dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. J. Neurosci. 11, 1565–1576.

    PubMed  CAS  Google Scholar 

  90. Murphy, N. P., Ly, H. T., and Maidment, N. T. (1996) Intracerebroventricular orphanin FQ/ nociceptin suppresses dopamine release in the nucleus accumbens of anaesthetized rats. Neuroscience 75, 1–4.

    Article  PubMed  CAS  Google Scholar 

  91. Murphy, N. P. and Maidment, N. T. (1999) Orphanin FQ/nociceptin modulation of mesolimbic dopamine transmission determined by microdialysis. J. Neurochem. 73, 179–186.

    Article  PubMed  CAS  Google Scholar 

  92. Henderson, G. and McKnight, A. T. (1997) The orphan opioid receptor and its endogenous ligand—nociceptin/orphanin FQ. Trends Pharmacol. Sci. 18, 293–300.

    Article  PubMed  CAS  Google Scholar 

  93. Sesack, S. R. and Pickel, V. M. (1995) Ultrastructural relationships between terminals immunoreactive for enkephalin, GABA, or both transmitters in the rat ventral tegmental area. Brain Res. 672, 261–275.

    Article  PubMed  CAS  Google Scholar 

  94. Hurd, Y. L. and Herkenham, M. (1992) Influence of a single injection of cocaine, amphetamine or GBR 12909 on mRNA expression of striatal neuropeptides. Brain Res. Mol. Brain Res. 16, 97–104.

    Article  PubMed  CAS  Google Scholar 

  95. Wang, J. Q. and McGinty, J. F. (1995) Dose-dependent alteration in zif/268 and preprodynorphin mRNA expression induced by amphetamine or methamphetamine in rat forebrain. J. Pharmacol. Exp. Ther. 273, 909–917.

    PubMed  CAS  Google Scholar 

  96. Turchan, J., Przewlocka, B., Lason, W., and Przewlocki, R. (1998) Effects of repeated psychostimulant administration on the prodynorphin system activity and kappa opioid receptor density in the rat brain. Neuroscience 85, 1051–1059.

    Article  PubMed  CAS  Google Scholar 

  97. Hurd, Y. L., Brown, E. E., Finlay, J. M., Fibiger, H. C., and Gerfen, C. R. (1992) Cocaine selfadministration differentially alters mRNA expression of striatal peptides. Brain Res. Mol. Brain Res. 13, 165–170.

    Article  PubMed  CAS  Google Scholar 

  98. Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D., Goodman, J. M., Kantor, H. L., Gastfriend, D. R., Riorden, J. P., Mathew, R. T., Rosen, B. R., and Hyman, S. E. (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591–611.

    Article  PubMed  CAS  Google Scholar 

  99. Svensson, P. and Hurd, Y. L. (1998) Specific reductions of striatal prodynorphin and D1 dopamine receptor messenger RNAs during cocaine abstinence. Brain Res. Mol. Brain Res. 56, 162–168.

    Article  PubMed  CAS  Google Scholar 

  100. Smiley, P. L., Johnson, M., Bush, L., Gibb, J. W., and Hanson, G. R. (1990) Effects of cocaine on extrapyramidal and limbic dynorphin systems. J. Pharmacol. Exp. Ther. 253, 938–943.

    PubMed  CAS  Google Scholar 

  101. Unterwald, E. M., Rubenfeld, J. M., and Kreek, M. J. (1994) Repeated cocaine administration upregulates kappa and mu, but not delta, opioid receptors. Neuroreport 5, 1613–1616.

    Article  PubMed  CAS  Google Scholar 

  102. Staley, J. K., R. B. Rothman, K. C. Rice, J. Partilla, and D. C. Mash (1997) Kappa2 opioid receptors in limbic areas of the human brain are upregulated by cocaine in fatal overdose victims. J. Neurosci. 17, 8225–8233.

    PubMed  CAS  Google Scholar 

  103. Mash, D. C. and Staley, J. K. (1999) D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Ann. N.Y. Acad. Sci. 877, 507–522.

    Article  PubMed  CAS  Google Scholar 

  104. Pfeiffer, A., Brantl, V., Herz, A., and Emrich, H. M. (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233, 774–776.

    Article  PubMed  CAS  Google Scholar 

  105. Bals-Kubik, R., Herz, A., and Shippenberg, T. S (1989) Evidence that the aversive effects of opioid antagonists and kappa-agonists are centrally mediated. Psychopharmacology (Berl.) 98, 203–206.

    Article  CAS  Google Scholar 

  106. Bals-Kubik, R., Ableitner, A., Herz, A., and Shippenberg, T. S. (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J. Pharmacol. Exp. Ther. 264, 489–495.

    PubMed  CAS  Google Scholar 

  107. Gawin, F. H. and Ellinwood, E. H., Jr. (1989) Cocaine dependence. Annu. Rev. Med. 40, 149–161.

    Article  PubMed  CAS  Google Scholar 

  108. Crespo, J. A., Manzanares, J., Oliva, J. M., Corchero, J., Palomo, T., and Ambrosio, E. (2001) Extinction of cocaine self-administration produces a differential time-related regulation of proenkephalin gene expression in rat brain. Neuropsychopharmacology 25, 185–194.

    Article  PubMed  CAS  Google Scholar 

  109. Mathieu-Kia, A. M. and Besson, M. J. (1998) Repeated administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat. Brain Res. Mol. Brain Res. 54, 141–151.

    Article  PubMed  CAS  Google Scholar 

  110. Unterwald, E. M., Horne-King, J., and Kreek, M. J. (1992) Chronic cocaine alters brain mu opioid receptors. Brain Res. 584, 314–318.

    Article  PubMed  CAS  Google Scholar 

  111. Zubieta, J. K., Gorelick, D. A., Stauffer, R., Ravert, H. T., Dannals, R. F., and Frost, J. J. (1996) Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat. Med. 2, 1225–1229.

    Article  PubMed  CAS  Google Scholar 

  112. Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., and Sibley, D. R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  113. Heidbreder, C. A., Goldberg, S. R., and Shippenberg, T. S. (1993) The kappa-opioid receptor agonist U-69593 attenuates cocaine-induced behavioral sensitization in the rat. Brain Res. 616, 335–338.

    Article  PubMed  CAS  Google Scholar 

  114. Heidbreder, C. A., Babovic-Vuksanovic, D., Shoaib, M., and Shippenberg, T. S. (1995) Development of behavioral sensitization to cocaine: influence of kappa opioid receptor agonists. J. Pharmacol. Exp. Ther. 275, 150–163.

    PubMed  CAS  Google Scholar 

  115. Collins, S. L., Gerdes, R. M., D’Addario, C., and Izenwasser, S. (2001) Kappa opioid agonists alter dopamine markers and cocaine-stimulated locomotor activity. Behay. Pharmacol. 12, 237–245.

    Article  CAS  Google Scholar 

  116. Shippenberg, T. S. and W. Rea (1997) Sensitization to the behavioral effects of cocaine: modulation by dynorphin and kappa-opioid receptor agonists. Pharmacol. Biochem. Behay. 57, 449–455.

    Article  CAS  Google Scholar 

  117. Heidbreder, C. A. and Shippenberg, T. S. (1994) U-69593 prevents cocaine sensitization by normalizing basal accumbens dopamine. Neuroreport. 5, 1797–1800.

    Article  PubMed  CAS  Google Scholar 

  118. Heidbreder, C. A., Thompson, A. C., and Shippenberg, T. S. (1996) Role of extracellular dopamine in the initiation and long-term expression of behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 278, 490–502.

    PubMed  CAS  Google Scholar 

  119. Bohn, L. M., Belcheva, M. M., and Coscia, C. J. (2000) Mitogenic signaling via endogenous kappa-opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen-activated protein kinase signaling cascade. J. Neurochem. 74, 564–573.

    Article  PubMed  CAS  Google Scholar 

  120. Saunders, C., Ferrer, J. V., Shi, L., Chen, J., Merrill, G., Lamb, M. E., Leeb-Lundberg, L. M., Carvelli, L., Javitch, J. A., and Galli, A. (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc. Natl. Acad. Sci. USA 97, 6850–6855.

    Article  PubMed  CAS  Google Scholar 

  121. Vaughan, R. A., Huff, R. A., Uhl, G. R., and Kuhar, M. J. (1997) Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes. J. Biol. Chem. 272, 15541–15546.

    Article  PubMed  CAS  Google Scholar 

  122. Chefer, V., Thompson, A. C., and Shippenberg, T. S. (1999) Modulation of cocaine-induced sensitization by kappa-opioid receptor agonists. Role of the nucleus accumbens and medial prefrontal cortex. Ann. N.Y Acad. Sci. 877, 803–806.

    Article  PubMed  CAS  Google Scholar 

  123. Heijna, M. H., Padt, M., Hogenboom, F., Schoffelmeer, A. N., and Mulder, A. H. (1991) Opioid-receptor-mediated inhibition of [3H]dopamine but not [3H]noradrenaline release from rat mediobasal hypothalamus slices. Neuroendocrinology 54, 118–126.

    Article  PubMed  CAS  Google Scholar 

  124. Heijna, M. H., Padt, M., Hogenboom, F., Portoghese, P. S., Mulder, A. H., and Schoffelmeer, A. N. (1990) Opioid receptor-mediated inhibition of dopamine and acetylcholine release from slices of rat nucleus accumbens, olfactory tubercle and frontal cortex. Eur. J. Pharmacol. 181, 267–278.

    Article  PubMed  CAS  Google Scholar 

  125. Izenwasser, S., Acri, J. B., Kunko, P. M., and Shippenberg, T. (1998) Repeated treatment with the selective kappa opioid agonist U-69593 produces a marked depletion of dopamine D2 receptors. Synapse 30, 275–283.

    Article  PubMed  CAS  Google Scholar 

  126. Acri, J. B., Thompson, A. C., and Shippenberg, T. (2001) Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593. Synapse 39, 343–350.

    Article  PubMed  CAS  Google Scholar 

  127. Seamans, J. K., Gorelova, N., Durstewitz, D., and Yang, C. R. (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J. Neurosci. 21, 3628–3638.

    PubMed  CAS  Google Scholar 

  128. Kalivas, P. W. and Stewart, J. (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Brain Res. Rev. 16, 223–244.

    Article  PubMed  CAS  Google Scholar 

  129. Grisel, J. E., Mogil, J. S., Grahame, N. J., Rubinstein, M., Belknap, J. K., Crabbe, J. C., and Low, M. J. (1999) Ethanol oral self-administration is increased in mutant mice with decreased beta-endorphin expression. Brain Res. 835, 62–67.

    Article  PubMed  CAS  Google Scholar 

  130. Rubinstein, M., Mogil, J. S., Japon, M., Chan, E. C., Allen, R. G., and Low, M. J. (1996) Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 93, 3995–4000.

    Article  PubMed  CAS  Google Scholar 

  131. Brady, L. S., Herkenham, M., Rothman, R. B., Partilla, J. S., Konig, M., Zimmer, A. M., and Zimmer, A. (1999) Region-specific up-regulation of opioid receptor binding in enkephalin knockout mice. Brain Res. Mol. Brain Res. 68, 193–197.

    Article  PubMed  CAS  Google Scholar 

  132. Konig, M., Zimmer, A. M., Steiner, H. P., Holmes, V., Crawley, J. N., Brownstein, M. J., and Zimmer, A. (1996) Pain responses, anxiety and aggression in mice deficient in preproenkephalin. Nature 383, 535–538.

    Article  PubMed  CAS  Google Scholar 

  133. Sharifi, N., Diehl, N., Yaswen, L., Brennan, M. B., and Hochgeschwender, U. (2001) Generation of dynorphin knockout mice. Brain Res. Mol. Brain Res. 86, 70–75.

    Article  PubMed  CAS  Google Scholar 

  134. Matthes, H. W., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I., Befort, K., Dierich, A., Le Meur, M., Dolle, P., Tzavara, E., Hanoune, J., Roques, B. P., and Kieffer, B. L. (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819–823.

    Article  PubMed  CAS  Google Scholar 

  135. Matthes, H. W., Smadja, C., Valverde, O., Vonesch, J. L., Foutz, A. S., Boudinot, E., Denavit Saubie, M., Severini, C., Negri, L., Roques, B. P., Maldonado, R., and Kieffer, B. L. (1998) Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor. J. Neurosci. 18, 7285–7295.

    PubMed  CAS  Google Scholar 

  136. Zhu, Y., King, M. A., Schuller, A. G., Nitsche, J. F., Reidl, M., Elde, R. P., Unterwald, E. G., Pasternak, W., and Pintar, J. E. (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24, 243–252.

    Article  PubMed  CAS  Google Scholar 

  137. Filliol, D., Ghozland, S., Chluba, J., Martin, M., Matthes, H. W., Simonin, F., Befort, K., Gaveriaux-Ruff, C., Dierich, A., LeMeur, M., Valverde, O., Maldonado, R., and Kieffer, B. L. (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat. Genet. 25, 195–200.

    Article  PubMed  CAS  Google Scholar 

  138. Slowe, S. J., Simonin, F., Kieffer, B., and Kitchen, I. (1999) Quantitative autoradiography of mu-, delta- and kappal opioid receptors in kappa-opioid receptor knockout mice. Brain Res. 818, 335–345.

    Article  PubMed  CAS  Google Scholar 

  139. Simonin, F., Valverde, O., Smadja, C., Slowe, S., Kitchen, I., Dierich, A., Le Meur, M., Roques, B. P., Maldonado, R., and Kieffer, B. L. (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J. 17, 886–897.

    Article  PubMed  CAS  Google Scholar 

  140. Chefer, V., Czyzyk, T., Pintar, J. E., and Shippenberg, T. S. (2000) Dopaminergic neurotransmission in the nucleus accumbens of kappa-opioid receptor (KOR) knockout mice: an in vivo microdialysis study. Proceedings International Narcotics Research Conference, Seattle, WA.

    Google Scholar 

  141. Lutfy, K., Do, T., and Maidment, N. T. (2001) Orphanin FQ/nociceptin attenuates motor stimulation and changes in nucleus accumbens extracellular dopamine induced by cocaine in rats. Psychopharmacology (Berl.) 154, 1–7.

    Article  CAS  Google Scholar 

  142. Narayanan, S. and Maidment, N. T. (1999) Orphanin FQ and behavioral sensitization to cocaine. Pharmacol. Biochem. Behay. 63, 271–277.

    Article  CAS  Google Scholar 

  143. DuMars, L. A., Rodger, L. D., and Kalivas, P. W. (1988) Behavioral cross-sensitization between cocaine and enkephalin in the A10 dopamine region. Behay. Brain Res. 27, 87–91.

    Article  CAS  Google Scholar 

  144. Vezina, P., Giovino, A. A., Wise, R. A., and Stewart, J. (1989) Environment-specific crosssensitization between the locomotor activating effects of morphine and amphetamine. Pharmacol. Biochem. Behay. 32, 581–584.

    Article  CAS  Google Scholar 

  145. Lett, B. T. (1989) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berl.) 98, 357–362.

    Article  CAS  Google Scholar 

  146. Cunningham, S. T., Finn, M., and Kelley, A. E. (1997) Sensitization of the locomotor response to psychostimulants after repeated opiate exposure: role of the nucleus accumbens. Neuropsychopharmacology 16, 147–155.

    Article  PubMed  CAS  Google Scholar 

  147. Sala, M., Braida, D., Colombo, M., Groppetti, A., Sacco, S., Gori, E., and Parenti, M. (1995) Behavioral and biochemical evidence of opioidergic involvement in cocaine sensitization. J. Pharmacol. Exp. Ther. 274, 450–457.

    PubMed  CAS  Google Scholar 

  148. Mucha, R. F. (1987) Is the motivational effect of opiate withdrawal reflected by common somatic indices of precipitated withdrawal? A place conditioning study in the rat. Brain Res. 418, 214–220.

    Article  PubMed  CAS  Google Scholar 

  149. Braida, D., Paladini, E., Gori, E., and Sala, M. (1997) Naltrexone, naltrindole, and CTOP block cocaine-induced sensitization to seizures and death. Peptides 18, 1189–1195.

    Article  PubMed  CAS  Google Scholar 

  150. Heidbreder, C., Shoaib, M., and Shippenberg, T. S. (1996) Differential role of delta-opioid receptors in the development and expression of behavioral sensitization to cocaine. Eur. J. Pharmacol. 298, 207–216.

    Article  PubMed  CAS  Google Scholar 

  151. Chen, J. C., Liang, K. W., and Huang, E. Y. (2001) Differential effects of endomorphin-1 and -2 on amphetamine sensitization: neurochemical and behavioral aspects. Synapse 39, 239–248.

    Article  PubMed  CAS  Google Scholar 

  152. Konradi, C., Cole, R. L., Heckers, S., and Hyman, S. E. (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14, 5623–5634.

    PubMed  CAS  Google Scholar 

  153. Berke, J. D., and Hyman, S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532.

    Article  PubMed  CAS  Google Scholar 

  154. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., and Caron, M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612.

    Article  PubMed  CAS  Google Scholar 

  155. Xu, M., Hu, X. T., Cooper, D. C., Moratalla, R., Graybiel, A. M., White, F. J., and Tonegawa, S. (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice [see comments]. Cell 79, 945–955.

    Article  PubMed  CAS  Google Scholar 

  156. Cole, R. L., Konradi, C., Douglass, J., and Hyman, S. E. (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813–823.

    Article  PubMed  CAS  Google Scholar 

  157. Sutton, M. A., Masters, S. E., Bagnall, M. W., and Carew, T. J. (2001) Molecular mechanisms underlying a unique intermediate phase of memory in aplysia. Neuron 31, 143–154.

    Article  PubMed  CAS  Google Scholar 

  158. Terman, G. W., Wagner, J. J., and Chavkin, C. (1994) Kappa opioids inhibit induction of long-term potentiation in the dentate gyrus of the guinea pig hippocampus. J. Neurosci. 14, 4740–4747.

    PubMed  CAS  Google Scholar 

  159. Bonci, A. and Malenka, R. C. (1999) Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730.

    PubMed  CAS  Google Scholar 

  160. Thomas, M. J., Malenka, R. C., and Bonci A. (2000) Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586.

    PubMed  CAS  Google Scholar 

  161. Derrick, B. E. and Martinez, J. L., Jr. (1994) Opioid receptor activation is one factor underlying the frequency dependence of mossy fiber LTP induction. J. Neurosci. 14, 4359–4367.

    PubMed  CAS  Google Scholar 

  162. Jin, W. and Chavkin, C. (1999) Mu opioids enhance mossy fiber synaptic transmission indirectly by reducing GABAB receptor activation. Brain Res. 821, 286–293.

    Article  PubMed  CAS  Google Scholar 

  163. Weisskopf, M. G., Zalutsky, R. A., and Nicoll, R. A. (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates longterm potentiation. Nature 362, 423–427.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shippenberg, T.S., Chefer, V.I. (2003). Opioid Modulation of Psychomotor Stimulant Effects. In: Maldonado, R. (eds) Molecular Biology of Drug Addiction. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-343-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-343-9_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-330-5

  • Online ISBN: 978-1-59259-343-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics