Skip to main content

Recent Advances in the Molecular Mechanisms of Psychostimulant Abuse Using Knockout Mice

  • Chapter
  • 155 Accesses

Abstract

In the last years, generalization of homologous recombination approaches in the mouse has been extremely fruitful for our general understanding of the molecular mechanisms underlying the acute and chronic effects of psychostimulant drugs. Indeed, this technique based on genetic manipulations provides advantages that surpass inconveniences from pharmacological tools and offer unexpected insights into the field of action of psychostimulant drugs. For example, the extremely sharp precision of gene invalidation surpasses the specificity of drugs that can be available for in vivo experiments, and this is especially important in the study of psychostimulants given that these drugs are not specific within the family of their target proteins. Also, even though the technique may be hampered by genetic heterogeneity and developmental adaptations bias, the life-long consequences of the gene deletion together with the possibility of a reliable reproducibility in animal groups present a strong and exciting basis of investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glowinski, J., and Axelrod, J. (1964) Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204, 1318–1319.

    Article  PubMed  CAS  Google Scholar 

  2. Kuhar, M. J., Ritz, M. C., and Boja, J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurol. Sci. 14, 299–302.

    Article  CAS  Google Scholar 

  3. Di Chiara, G. and Imperato, A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA 85, 5274–5278.

    Article  PubMed  Google Scholar 

  4. Amara, S. G. and Kuhar, M. J. (1993) Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci. 16, 73–93.

    Article  PubMed  CAS  Google Scholar 

  5. Giros, B. and Caron, M. G. (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol. Sci. 14, 43–49.

    Article  PubMed  CAS  Google Scholar 

  6. Uhl, G. R. and Hartig, P. R. (1992) Transporter explosion: update on uptake. Trends Pharmacol. Sci. 13, 421–425.

    Article  PubMed  CAS  Google Scholar 

  7. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., and Caron, M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612.

    Article  PubMed  CAS  Google Scholar 

  8. Bosse, R., Fumagalli, F., Jaber, M., Giros, B., Gainetdinov, R. R., Wetsel, W. C., Missale, C., and Caron, M. G. (1997) Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter. Neuron 19, 127–138.

    Article  PubMed  CAS  Google Scholar 

  9. Spielewoy, C., Gonon, F., Roubert, C., Fauchey, V., Jaber, M., Caron, M. G., Roques, B. P., Hamon, M., Betancur, C., Maldonado, R. and Giros, B. (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur. J. Neurosci. 12, 1827–1837.

    Article  PubMed  CAS  Google Scholar 

  10. Walker, J. K., Gainetdinov, R. R., Mangel, A. W., Caron, M. G., and Shetzline, M. A. (2000) Mice lacking the dopamine transporter display altered regulation of distal colonic motility. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G311–G318.

    PubMed  CAS  Google Scholar 

  11. Ralph, R. J., Paulus, M. P., Fumagalli, F., Caron, M. G., and Geyer, M. A. (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J. Neurosci. 21, 305–313.

    PubMed  CAS  Google Scholar 

  12. Wisor, J. P., Nishino, S., Sora, I., Uhl, G. H., Mignot, E., and Edgar, D. M. (2001) Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21, 1787–1794.

    PubMed  CAS  Google Scholar 

  13. Spielewoy, C., Roubert, C., Hamon, M., Nosten-Bertrand, M., Betancur, C., and Giros, B. (2000) Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behay. Pharmacol. 11, 279–290.

    Article  CAS  Google Scholar 

  14. Gainetdinov, R. R., Jones, S. R., and Caron, M. G. (1999) Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol. Psychiatr. 46, 303–311.

    Article  CAS  Google Scholar 

  15. Jones, S. R., Gainetdinov, R. R., Jaber, M., Giros, B., Wightman, R. M., and Caron, M. G. (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. USA 95, 4029–4034.

    Article  PubMed  CAS  Google Scholar 

  16. Jaber, M., Dumartin, B., Sagne, C., Haycock, J. W., Roubert, C., Giros, B., Bloch, B., and Caron, M. G. (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur. J. Neurosci. 11, 3499–3511.

    Article  PubMed  CAS  Google Scholar 

  17. Benoit-Marand, M., Jaber, M., and Gonon, F. (2000) Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences. Eur. J. Neurosci. 12, 2985–2992.

    Article  PubMed  CAS  Google Scholar 

  18. Jones, S. R., Gainetdinov, R. R., Hu, X. T., Cooper, D. C., Wightman, R. M., White, F. J., and Caron, M. G. (1999) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat. Neurosci. 2, 649–655.

    Article  PubMed  CAS  Google Scholar 

  19. Fauchey, V., Jaber, M., Caron, M. G., Bloch, B., and Le Moine, C. (2000) Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur. J. Neurosci. 12, 19–26.

    Article  PubMed  CAS  Google Scholar 

  20. Fauchey, V., Jaber, M., Bloch, B., and Le Moine, C. (2000) Dopamine control of striatal gene expression during development: relevance to knockout mice for the dopamine transporter. Eur. J. Neurosci. 12, 3415–3425.

    Article  PubMed  CAS  Google Scholar 

  21. Dumartin, B., Jaber, M., Gonon, F., Caron, M. G., Giros, B., and Bloch, B. (2000) Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporterdeficient mice. Proc. Natl. Acad. Sci. USA 97, 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  22. Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Levin, E. D., Jaber, M., and Caron, M. G. (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283, 397–401.

    Article  PubMed  CAS  Google Scholar 

  23. Spielewoy, C., Biala, G., Roubert, C., Hamon, M., Betancur, C., and Giros, B. (2002) Hypolocomotor effects of acute and chronic D-amphetamine in mice lacking the dopamine transporter. Psychopharmacology (Berlin) 159, 2–9.

    Article  CAS  Google Scholar 

  24. Sora, I., Wichems, C., Takahashi, N., Li, X. F., Zeng, Z., Revay, R., Lesch, K. P., Murphy, D. L., and Uhl, G. R. (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc. Natl. Acad. Sci. USA 95, 7699–7704.

    Article  PubMed  CAS  Google Scholar 

  25. Rocha, B. A., Fumagalli, F., Gainetdinov, R. R., Jones, S. R., Ator, R., Giros, B., Miller, G. W., and Caron M. G. (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nat. Neurosci. 1, 132–137.

    Article  PubMed  CAS  Google Scholar 

  26. Sora, I., Hall, F. S., Andrews, A. M., Itokawa, M., Li, X. F., Wei, H. B., Wichems C., Lesch, K. P., Murphy, D. L., and Uhl, G. R. (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl. Acad. Sci. USA 98, 5300–5305.

    Article  PubMed  CAS  Google Scholar 

  27. Carboni, E., Spielewoy, C., Vacca, C., Nosten-Bertrand, M., Giros, B., and Di Chiara, G. (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J. Neurosci. 21, RC141: 1–4.

    PubMed  Google Scholar 

  28. Bengel, D., Murphy, D. L., Andrews, A. M., Wichems, C. H., Feltner, D., Heils, A., Mossner, R., Westphal, H. and Lesch, K. P. (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol. Pharmacol. 53, 649–655.

    PubMed  CAS  Google Scholar 

  29. Xu, F., Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Bohn, L. M., Miller, G. W., Wang, Y. M. and Caron, M. G. (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat. Neurosci. 3, 465–471.

    Article  PubMed  CAS  Google Scholar 

  30. Henry, J. P. and Scherman, D. (1989) Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem. Pharmacol. 38, 2395–2404.

    Article  PubMed  CAS  Google Scholar 

  31. Henry, J. P., Sagne, C., Bedet, C., and Gasnier, B. (1998) The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem. Int. 32, 227–246.

    Article  PubMed  CAS  Google Scholar 

  32. Seedat, Y. K. (2001) The limits of antihypertensive therapy lessons from Third World to First. Cardiovasc. J. S. Afr. 12, 94–100.

    PubMed  CAS  Google Scholar 

  33. Carlsson, A. (1967) Basic actions of psychoactive drugs. Int. J. Neurol. 6, 27–45.

    PubMed  CAS  Google Scholar 

  34. Erickson, J. D., Eiden, L. E., and Hoffman, B. J. (1992) Expression cloning of a reserpinesensitive vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 89, 10,993–10,997.

    Article  CAS  Google Scholar 

  35. Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G. G., Eisenberg, D., Brecha, N., and Edwards, R. H. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70, 539–551.

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., and Uhl, G. R. (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc. Natl. Acad. Sci. USA 94, 9938–9943.

    Article  PubMed  CAS  Google Scholar 

  37. Fon, E. A., Pothos, E. N., Sun, B. C., Killeen, N., Sulzer, D., and Edwards, R. H. (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 1271–1283.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Y. M., Gainetdinov, R. R., Fumagalli, F., Xu, F., Jones, S. R., Bock, C. B., Miller, G. W., Wightman, R. M., and Caron, M. G. (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19, 1285–1296.

    Article  PubMed  CAS  Google Scholar 

  39. Sulzer, D., Chen, T. K., Lau, Y. Y., Kristensen, H., Rayport, S., and Ewing, A. (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15, 4102–4108.

    PubMed  CAS  Google Scholar 

  40. Jones, S. R., Gainetdinov, R. R., Wightman, R. M., and Caron, M. G. (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J. Neurosci. 18, 1979–1986.

    PubMed  CAS  Google Scholar 

  41. Pothos, E. N., Davila, V. and Sulzer, D. (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18, 4106–4118.

    PubMed  CAS  Google Scholar 

  42. Pothos, E. N., Larsen, K. E., Krantz, D. E., Liu, Y., Haycock, J. W., Setlik, W., Gershon, M. D., Edwards, R. H., and Sulzer, D. (2000) Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J. Neurosci. 20, 7297–7306.

    PubMed  CAS  Google Scholar 

  43. Gingrich, J. A. and Caron, M. G. (1993) Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 16, 299–321.

    Article  PubMed  CAS  Google Scholar 

  44. Kebabian, J. W., and Calne, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.

    Article  PubMed  CAS  Google Scholar 

  45. Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., and Caron, M. G. (1998) Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.

    PubMed  CAS  Google Scholar 

  46. Vallone D., Picetti R., and Borrelli, E. (2000) Structure and function of dopamine receptors. Neurosci. Biobehay. Rev. 24, 125–132.

    Article  CAS  Google Scholar 

  47. Wise R. A. and Bozarth M. A. (1987) A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492.

    Article  PubMed  CAS  Google Scholar 

  48. Beninger, R. J., Hoffman, D. C., and Mazurski, E. J. (1989) Receptor subtype-specific dopaminergic agents and conditioned behavior. Neurosci. Biobehay. Rev. 13, 113–122.

    Article  CAS  Google Scholar 

  49. Caine, S. B. and Koob, G. F. (1994) Effects of dopamine D-1 and D-2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat. J. Pharmacol. Exp. Ther. 270, 209–218.

    PubMed  CAS  Google Scholar 

  50. Phillips G. D., Robbins T. W. and Everitt B. J. (1994) Bilateral intra-accumbens self-administration of d-amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride. Psychopharmacology (Berl) 114, 477–485.

    Article  CAS  Google Scholar 

  51. Pierce, R. C. and Kalivas, P. W. (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192–216.

    Article  PubMed  CAS  Google Scholar 

  52. Robertson, G. S., Vincent, S. R., and Fibiger, H. C. (1992) D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience 49, 285–296.

    Article  PubMed  CAS  Google Scholar 

  53. Self, D. W. and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463–495.

    Article  PubMed  CAS  Google Scholar 

  54. Gerfen, C. R., Engber, T. M., Mahan, L. C., Suzel, Z., Chase, T. N., Monsuma, F. J., and Sibley, D. R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  55. Caine, S. B., Koob, G. F., Parsons, L. H., Everitt, B. J., Schwartz, J. C., and Sokoloff„ P. (1997) D3 receptor test in vitro predicts decreased cocaine self-administration in rats. Neuroreport 8, 2373–2377.

    Article  PubMed  CAS  Google Scholar 

  56. Parsons, L. H., Caine, S. B., Sokoloff, P., Schwartz, J. C., Koob, G. F., and Weiss, F. (1996) Neurochemical evidence that postsynaptic nucleus accumbens D3 receptor stimulation enhances cocaine reinforcement. J. Neurochem. 67, 1078–1089.

    Article  PubMed  CAS  Google Scholar 

  57. Pilla, M., Perachon, S., Sautel, F., Garrido, F., Mann, A., Wermuth, C. G., Schwartz, J. C., Everitt, B. J., and Sokoloff, P. (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400, 371–375.

    Article  PubMed  CAS  Google Scholar 

  58. Diaz, J., Levesque, D., Griffon, N., Lammers, C. H., Martres, M. P., Sokoloff, P., and Schwartz, J. C. (1994) Opposing roles for dopamine D2 and D3 receptors on neurotensin mRNA expression in nucleus accumbens. Eur. J. Neurosci. 6, 1384–1387.

    Article  PubMed  CAS  Google Scholar 

  59. Xu, M., Moratalla, R., Gold, L. H., Hiroi, N., Koob, G. F., Graybiel, A. M., and Tonegawa, S. (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742.

    Article  PubMed  CAS  Google Scholar 

  60. Drago, J., Gerfen, C. R., Lachowicz, J. E., Steiner, H., Hollon, T. R., Love, P. E., et al. (1994) Altered striatal function in a mutant mouse lacking D 1 A dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12564–12568.

    Article  PubMed  CAS  Google Scholar 

  61. Waddington, J. L., Clifford, J. J., McNamara, F. N., Tomiyama, K., Koshikawa, N., and Croke, D. T. (2001) The psychopharmacology-molecular biology interface: exploring the behavioural roles of dopamine receptor subtypes using targeted gene deletion (‘knockout’). Prog. Neuropsychopharmacol. Biol. Psychiatr. 25, 925–964.

    Article  CAS  Google Scholar 

  62. Xu, M., Hu, X. T., Cooper, D. C., Moratalla, R., Graybiel, A. M., White, F. J., and Tonegawa, S. (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79, 945–955.

    Article  PubMed  CAS  Google Scholar 

  63. Cabib, S., Castellano, C., Cestari, V., Filibeck, U., and Puglisi-Allegra, S. (1991) D1 and D2 receptor antagonists differently affect cocaine-induced locomotor hyperactivity in the mouse. Psychopharmacology (Berl.) 105, 335–339.

    Article  CAS  Google Scholar 

  64. Tella, S. R. (1994) Differential blockade of chronic versus acute effects of intravenous cocaine by dopamine receptor antagonists. Pharmacol. Biochem. Behay. 48, 151–159.

    Article  CAS  Google Scholar 

  65. Pradham, S. N., Battacharyya, A. K., and Pradham, S. (1979) Serotonergic manipulation of the behavioral effects of cocaine in rats. Commun. Psychopharmacol. 2, 481–487.

    Google Scholar 

  66. Xu, M., Guo, Y., Vorhees, C. V., and Zhang, J. (2000) Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor. Brain Res. 852, 198–207.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang, J., Walsh, R. R., and Xu, M. (2000) Probing the role of the dopamine D1 receptor in psychostimulant addiction. Ann. N.Y. Acad. Sci. 914, 13–21.

    Article  PubMed  CAS  Google Scholar 

  68. Crawford, C. A., Drago, J., Watson, J. B., and Levine, M. S. (1997) Effects of repeated amphetamine treatment on the locomotor activity of the dopamine D1A-deficient mouse. Neuroreport 8, 2523–2527.

    Article  PubMed  CAS  Google Scholar 

  69. Cador, M., Bjijou, Y., and Stinus, L. (1995) Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience 65, 385–395.

    Article  PubMed  CAS  Google Scholar 

  70. Bjijou, Y., Stinus, L., Le Moal, M., and Cador, M. (1996) Evidence for selective involvement of dopamine D1 receptors of the ventral tegmental area in the behavioral sensitization induced by intra-ventral tegmental area injections of D-amphetamine. J. Pharmacol. Exp. Ther. 277, 1177–1187.

    PubMed  CAS  Google Scholar 

  71. Miner, L. L., Drago J., Chamberlain, P. M., Donovan, D., and Uhl, G. R. (1995) Retained cocaine conditioned place preference in D1 receptor deficient mice. Neuroreport 6, 2314–2316.

    Article  PubMed  CAS  Google Scholar 

  72. Moratalla, R., Xu, M., Tonegawa, S., and Graybiel, A. M. (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc. Natl. Acad. Sci. USA 93, 14928–14933.

    Article  PubMed  CAS  Google Scholar 

  73. Drago, J., Gerfen, C. R., Westphal, H., and Steiner, H. (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74, 813–823.

    Article  PubMed  CAS  Google Scholar 

  74. Holmes, A., Hollon, T. R., Gleason, T. C., Liu, Z., Dreiling, J., Sibley, D. R., and Crawley, J. N. (2001) Behavioral characterization of dopamine D5 receptor null mutant mice. Behay. Neurosci. 115, 1129–1144.

    Article  CAS  Google Scholar 

  75. Baik, J. H., Picetti, R., Saiardi, A., Thiriet, G., Dierich, A., Depaulis, A., Le Meur, M., and Borrelli, E. (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377, 424–428.

    Article  PubMed  CAS  Google Scholar 

  76. Kelly, M. A., Rubinstein, M., Asa, S. L., Zhang, G., Saez, C., Bunzow, J. R., Allen, R. G., Hnasko, R., Ben-Jonathan, N., Grandy, D. K., and Low, M. J. (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19, 103–113.

    Article  PubMed  CAS  Google Scholar 

  77. Mercuri, N. B., Saiardi, A., Bonci, A., Picetti, R., Calabresi, P., Bernardi, G., and Borrelli, E. (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79, 323–327.

    Article  PubMed  CAS  Google Scholar 

  78. Kelly, M. A., Rubinstein, M., Phillips, T. J., Lessov, C. N., Burkhart-Kasch, S., Zhang, G., Bunzow, J. R., Fang, Y., Gerhardt, G. A., Grandy, D. K., and Low, M. J. (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosci. 18, 3470–3479.

    PubMed  CAS  Google Scholar 

  79. Dickinson, S. D., Sabeti, J., Larson, G. A., Giardina, K., Rubinstein, M., Kelly, M. A., Grandy, D. K., Low, M. J., Gerhardt, G. A., and Zahniser, N. R. (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J. Neurochem. 72, 148–156.

    Article  PubMed  CAS  Google Scholar 

  80. Maldonado, R., Saiardi, A., Valverde, O., Samad, T. A., Roques, B. P., and Borrelli, E. (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388, 586–589.

    Article  PubMed  CAS  Google Scholar 

  81. Phillips, T. J., Brown, K. J., Burkhart-Kasch, S., Wenger, C. D., Kelly, M. A., Rubinstein, M., Grandy, D. K., and Low, M. J. (1998) Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat. Neurosci. 1, 610–615.

    Article  PubMed  CAS  Google Scholar 

  82. Caine, S. B., Negus, S. S., Mello, N. K., Patel, S., Bristow, L., Kulagowski, J., Vallone, D., Saiardi, A., and Borrelli, E. (2000) Role for the dopamine D2 receptor subtype in the regulation of cocaine self-administration in rats and mice. Society for Neurosci. New Orleans 6818, 1833.

    Google Scholar 

  83. Accili, D., Fishburn, C. S., Drago, J., Steiner, H., Lachowicz, J. E., Park, B. H., Gauda, E. B., Lee, E. J., Cool, M. H., Sibley, D. R., Gerfen, C. R., Westphal, H., and Fuchs, S. (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc. Natl. Acad. Sci. USA 93, 1945–1949.

    Article  PubMed  CAS  Google Scholar 

  84. Xu, M., Koeltzow, T. E., Santiago, G. T., Moratalla, R., Cooper, D. C., Hu, X. T., White, N. M., Graybiel, A. M., White, F. J., and Tonegawa, S. (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 19, 837–848.

    Article  PubMed  CAS  Google Scholar 

  85. Steiner, H., Fuchs, S., and Accili, D. (1997) D3 dopamine receptor-deficient mouse: evidence for reduced anxiety. Physiol. Behay. 63, 137–141.

    Article  CAS  Google Scholar 

  86. Svensson K., Carlsson, A., and Waters, N. (1994) Locomotor inhibition by the D3 ligand R(+)-7-OH-DPAT is independent of changes in dopamine release. J. Neural. Transm. Gen. Sect. 95, 71–74.

    Article  PubMed  CAS  Google Scholar 

  87. Daly, S. A. and Waddington, J. L. (1993) Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other “D-2-like” agonists. Neuropharmacology 32, 509,510.

    Google Scholar 

  88. Sautel, F., Griffon, N., Sokoloff, P., Schwartz, J. C., Launay, C., Simon, P., et al. (1995) Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J. Pharmacol. Exp. Ther. 275, 1239–1246.

    PubMed  CAS  Google Scholar 

  89. Koeltzow, T. E., Xu, M., Cooper, D. C., Hu, X. T., Tonegawa, S., Wolf, M. E., and White, F. J. (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J. Neurosci. 18, 2231–2238.

    PubMed  CAS  Google Scholar 

  90. Carta, A. R., Gerfen, C. R., and Steiner, H. (2000) Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice. Neuroreport 11, 2395–2399.

    Article  PubMed  CAS  Google Scholar 

  91. Caine, S. B. and Koob, G. F. (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260, 1814–1816.

    Article  PubMed  CAS  Google Scholar 

  92. Betancur, C., Lepee-Lorgeoux, I., Cazillis, M., Accili, D., Fuchs, S., and Rostene, W. (2001) Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 24, 170–182.

    Article  PubMed  CAS  Google Scholar 

  93. Rubinstein, M., Phillips, T. J., Bunzow, J. R., Falzone, T. L., Dziewczapolski, G., Zhang, G., Fang, Y., Larson, J. L., McDougall, J. A., Chester, J. A., Saez, C., Pugsley, T. A., Gershanik, O., Low, M. J., and Grandy, D. K. (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90, 991–1001.

    Article  PubMed  CAS  Google Scholar 

  94. Dulawa, S. C., Grandy, D. K., Low, M. J., Paulus, M. P., and Geyer, M. A. (1999) Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J. Neurosci. 19, 9550–9556.

    PubMed  CAS  Google Scholar 

  95. Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., and Hamer, D. H. (1996) Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat. Genet. 12, 81–84.

    Article  PubMed  CAS  Google Scholar 

  96. Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., Bennett, E. R., Nemanov, L., Katz, M. and Belmaker, R. H. (1996) Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat. Genet. 12, 78–80.

    Article  PubMed  CAS  Google Scholar 

  97. Nestler, E. J. (1994) Molecular neurobiology of drug addiction. Neuropsychopharmacology 11, 77–87.

    PubMed  CAS  Google Scholar 

  98. Nestler, E. J. and Aghajanian, G. K. (1997) Molecular and cellular basis of addiction. Science 278, 58–63.

    Article  PubMed  CAS  Google Scholar 

  99. Nestler, E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.

    Article  PubMed  CAS  Google Scholar 

  100. Herve, D., Levi-Strauss, M., Marey-Semper, I., Verney, C., Tassin, J. P., Glowinski, J., and Girault, J. A. (1993) G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. J. Neurosci. 13, 2237–2248.

    PubMed  CAS  Google Scholar 

  101. Zhuang, X., Belluscio, L., and Hen, R. (2000) GOLFalpha mediates dopamine D1 receptor signaling. J. Neurosci. 20, RC91.

    PubMed  CAS  Google Scholar 

  102. Greengard, P., Allen, P. B., and Nairn, A. C. (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435–447.

    Article  PubMed  CAS  Google Scholar 

  103. Fienberg, A. A., Hiroi, N., Mermelstein, P. G., Song, W., Snyder, G. L., Nishi, A., Cheramy, A., O’Callaghan, J. P., Miller, D. B., Cole, D. G., Corbett, R., Haile, C. N., Cooper, D. C., Onn, S. P., Grace, A. A., Ouimet, C. C., White, F. J., Hyman, S. E., Surmeier, D. J., Girault, J., Nestler, E. J., and Greengard, P. (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281, 838–842.

    Article  PubMed  CAS  Google Scholar 

  104. Hiroi, N., Fienberg, A. A., Haile, C. N., Alburges, M., Hanson, G. R., Greengard, P., and Nestler, E. J. (1999) Neuronal and behavioural abnormalities in striatal function in DARPP32-mutant mice. Eur. J. Neurosci. 11, 1114–1118.

    Article  PubMed  CAS  Google Scholar 

  105. Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Ladarola, M. J., Nakabeppu, Y., Duman, R. S., and Nestler, E. J. (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  106. Moratalla, R., Elibol, B., Vallejo, M., and Graybiel, A. M. (1996) Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17, 147–156.

    Article  PubMed  CAS  Google Scholar 

  107. Hiroi, N., Brown, J. R., Haile, C. N., Ye, H., Greenberg, M. E., and Nestler, E. J. (1997) FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine’s psychomotor and rewarding effects. Proc. Natl. Acad. Sci. USA 94, 10,397–10,402.

    Article  CAS  Google Scholar 

  108. Brown, J. R., Ye, H., Bronson, R. T., Dikkes, P., and Greenberg, M. E. (1996) A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86, 297–309.

    Article  PubMed  CAS  Google Scholar 

  109. Kelz, M. B., Chen, J., Carlezon, W. A., Jr., Whisler, K., Gilden, L., Beckmann, A. M., Steffen, C., Zhang, Y. J., Marotti, L., Self, D. W., Tkatch, T., Baranauskas, G., Surmeier, D. J., Neve, R. L., Duman, R. S., Picciotto, M. R., and Nestler, E. J. (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276.

    Article  PubMed  CAS  Google Scholar 

  110. Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., and Greengard, P. (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376–380.

    Article  PubMed  CAS  Google Scholar 

  111. Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., and Lindsay, R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  112. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  113. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M., and Hyman, C. (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4phenylpyridinium ion toxicity: involvement of the glutathione system. J. Neurochem. 59, 99–106.

    Article  PubMed  CAS  Google Scholar 

  114. Kearns, C. M., and Gash, D. M. (1995) GDNF protects nigral dopamine neurons against 6hydroxydopamine in vivo. Brain Res. 672, 104–111.

    Article  PubMed  CAS  Google Scholar 

  115. Kawamoto, Y., Nakamura, S., Nakano, S., Oka, N., Akiguchi, I., and Kimura, J. (1996) Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neuroscience 74, 1209–1226.

    PubMed  CAS  Google Scholar 

  116. Treanor, J. J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, C. D., Gray, C., Armanini, M. P., Pollock, R. A., Hefti, F., Phillips, H. S., Goddard, A., Moore, M. W., BujBello, A., Davies, A. M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C. E., and Rosenthal, A. (1996) Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83.

    Article  PubMed  CAS  Google Scholar 

  117. Berhow, M. T., Russell, D. S., Terwilliger, R. Z., Beitner-Johnson, D., Self, D. W., Lindsay, R. M., and Nestler, E. J. (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 68, 969–979.

    Article  PubMed  CAS  Google Scholar 

  118. Robinson, T. E. and Kolb, B. (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491–8497.

    PubMed  CAS  Google Scholar 

  119. Berhow, M. T., Hiroi, N., and Nestler, E. J. (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707–4715.

    PubMed  CAS  Google Scholar 

  120. Horger, B. A., Iyasere, C. A., Berhow, M. T., Messer, C. J., Nestler, E. J., and Taylor, J. R. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J. Neurosci. 19, 4110–4122.

    PubMed  CAS  Google Scholar 

  121. Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J. C., and Sokoloff, P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411, 86–89.

    Article  PubMed  CAS  Google Scholar 

  122. Messer, C. J., Eisch, A. J., Carlezon, W. A., Jr., Whisler, K., Shen, L., Wolf, D. H., Westphal, H., Collins, F., Russell, D. S., and Nestler, E. J. (2000) Role for GDNF in biochemical and behavioral adaptations to drugs of abuse. Neuron 26, 247–257.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spielewoy, C., Giros, B. (2003). Recent Advances in the Molecular Mechanisms of Psychostimulant Abuse Using Knockout Mice. In: Maldonado, R. (eds) Molecular Biology of Drug Addiction. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-343-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-343-9_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-330-5

  • Online ISBN: 978-1-59259-343-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics