Skip to main content

Different Intracellular Signaling Systems Involved in Opioid Tolerance/Dependence

  • Chapter
Molecular Biology of Drug Addiction

Abstract

Although opioids are highly effective for the treatment of pain, they are also known to be intensively addictive. After chronic opioid intake, the drug becomes less effective, so that higher doses are needed to produce the same effect as before —a phenomenon that is called tolerance. At the same time, a situation develops in which the interruption of taking the drugs results in withdrawal sickness, unmasking a state called dependence (1). Both tolerance and dependence result from biochemical changes in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstein, A. (1994) Addiction, in: From Biology to Drug Policy. Freeman, New York.

    Google Scholar 

  2. Johnson, P. S., Wang, J. B., Wang, W. F., and Uhl, G. R. (1994) Expressed mu opiate receptor couples to adenylate cyclase and phosphatidyl inositol turnover. Neuroreport 5, 507–509.

    Article  PubMed  CAS  Google Scholar 

  3. Smith, F. L., Lohmann, A. B., and Dewey, W. L. (1999) Involvement of phospholipid signal transduction pathways in morphine tolerance in mice. Br. J. Pharmacol. 128, 220–226.

    Article  PubMed  CAS  Google Scholar 

  4. Smart, D., Smith, G., and Lambert, D. G. (1995) Mu-opioids activate phospholipase C in SHSY5Y human neuroblastoma cells via calcium-channel opening. Biochem. J. 305, 577–581.

    PubMed  CAS  Google Scholar 

  5. Smart, D., Smith, G., and Lambert, D. G. (1994) Mu-opioid receptor stimulation of inositol (1,4,5)trisphosphate formation via a pertussis toxin-sensitive G protein. J. Neurochem. 62, 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  6. Schulz, S. and Hollt, V. (1998) Opioid withdrawal activates MAP kinase in locus coeruleus neurons in morphine-dependent rats in vivo. Eur. J. Neurosci. 10, 1196–1201.

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt, H., Schulz, S., Klutzny, M., Koch, T., Handel, M., and Hollt, V. (2000) Involvement of mitogen-activated protein kinase in agonist-induced phosphorylation of the mu-opioid receptor in HEK 293 cells. J. Neurochem. 74, 414–422.

    Article  PubMed  CAS  Google Scholar 

  8. Li, L. Y. and Chang, K. J. (1996) The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol. Pharmacol. 50, 599–602.

    PubMed  CAS  Google Scholar 

  9. Burt, R. P., Chapple, C. R., and Marshall, I. (1996) The role of diacylglycerol and activation of protein kinase C in alpha 1A-adrenoceptor-mediated contraction to noradrenaline of rat isolated epididymal vas deferens. Br. J. Pharmacol. 117, 224–230.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, Y. and Yu, L. (1994) Differential regulation by cAMP-dependent protein kinase and protein kinase C of the mu opioid receptor coupling to a G protein-activated K+ channel. J. Biol. Chem. 269, 7839–7842.

    PubMed  CAS  Google Scholar 

  11. Ikeda, K., Kobayashi, T., Ichikawa, T., Usui, H., and Kumanishi, T. (1995) Functional couplings of the delta- and the kappa-opioid receptors with the G-protein-activated K+ channel. Biochem. Biophys. Res. Commun. 208, 302–308.

    Article  PubMed  CAS  Google Scholar 

  12. Kaneko, S. (1995) [Analysis of receptor-ion channel functions in Xenopus oocyte translation system]. Nippon Yakurigaku Zasshi 106, 243–253.

    Article  PubMed  CAS  Google Scholar 

  13. Pei, G., Kieffer, B. L., Lefkowitz, R. J., and Freedman, N. J. (1995) Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol. Pharmacol. 48, 173–177.

    PubMed  CAS  Google Scholar 

  14. Arden, J. R., Segredo, V., Wang, Z., Lameh, J., and Sadee, W. (1995) Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK 293 cells. J. Neurochem. 65, 1636–1645.

    Article  PubMed  CAS  Google Scholar 

  15. Appleyard, S. M., Patterson, T. A., Jin, W., and Chavkin, C. (1997) Agonist-induced phosphorylation of the kappa-opioid receptor. J. Neurochem. 69, 2405–2412.

    Article  PubMed  CAS  Google Scholar 

  16. Kovoor, A., Nappey, V., Kieffer, B. L., and Chavkin, C. (1997) Mu and delta opioid receptors are differentially desensitized by the coexpression of beta-adrenergic receptor kinase 2 and beta-arrestin 2 in xenopus oocytes. J. Biol. Chem. 272, 27605–27611.

    Article  PubMed  CAS  Google Scholar 

  17. Koch, T., Kroslak, T., Mayer, P., Raulf, E., and Hollt, V. (1997) Site mutation in the rat muopioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitization. J. Neurochem. 69, 1767–1770.

    Article  PubMed  CAS  Google Scholar 

  18. Mestek, A., Hurley, J. H., Bye, L. S., Campbell, A. D., Chen, Y., Tian, M., Liu, J., Schulman, H., and Yu, L. (1995) The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C. J. Neurosci. 15, 2396–2406.

    PubMed  CAS  Google Scholar 

  19. Zhang, L., Yu, Y., Mackin, S., Weight, F. F., Uhl, G. R., and Wang, J. B. (1996) Differential mu opiate receptor phosphorylation and desensitization induced by agonists and phorbol esters. J. Biol. Chem. 271, 11,449–11,454.

    Google Scholar 

  20. Lohse, M. J., Krasel, C., Winstel, R., and Mayor, F., Jr. (1996) G-protein-coupled receptor kinases. Kidney Int. 49, 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  21. Ferguson, S. S., Barak, L. S., Zhang, J., and Caron, M. G. (1996) G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 74, 1095–1110.

    Article  PubMed  CAS  Google Scholar 

  22. Premont, R. T., Inglese, J., and Lefkowitz, R. J. (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J. 9, 175–182.

    PubMed  CAS  Google Scholar 

  23. Hurle, M. A. (2001) Changes in the expression of G protein-coupled receptor kinases and betaarrestin 2 in rat brain during opioid tolerance and supersensitivity. J. Neurochem. 77, 486–492.

    Article  PubMed  CAS  Google Scholar 

  24. Li, A. H. and Wang, H. L. (2001) G protein-coupled receptor kinase 2 mediates mu-opioid receptor desensitization in GABAergic neurons of the nucleus raphe magnus. J. Neurochem. 77, 435–444.

    Article  PubMed  CAS  Google Scholar 

  25. Kovoor, A., Celver, J. P., Wu, A., and Chavkin, C. (1998) Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol. Pharmacol. 54, 704–711.

    PubMed  CAS  Google Scholar 

  26. Wang, H. L. (2000) A cluster of Ser/Thr residues at the C-terminus of mu-opioid receptor is required for G protein-coupled receptor kinase 2-mediated desensitization. Neuropharmacology 39, 353–363.

    Article  PubMed  CAS  Google Scholar 

  27. Wolf, R., Koch, T., Schulz, S., Klutzny, M., Schroder, H., Raulf, E., Buhling, F., and Hollt, V. (1999) Replacement of threonine 394 by alanine facilitates internalization and resensitization of the rat mu opioid receptor. Mol. Pharmacol. 55, 263–268.

    PubMed  CAS  Google Scholar 

  28. Deng, H. B., Yu, Y., Pak, Y., O’Dowd, B. F., George, S. R., Surratt, C. K., Uhl, G. R., and Wang, J. B. (2000) Role for the C-terminus in agonist-induced mu opioid receptor phosphorylation and desensitization. Biochemistry 39, 5492–5499.

    Article  PubMed  CAS  Google Scholar 

  29. Pak, Y., O’Dowd, B. F., and George, S. R. (1997) Agonist-induced desensitization of the mu opioid receptor is determined by threonine 394 preceded by acidic amino acids in the COOH-terminal tail. J. Biol. Chem. 272, 24961–24965.

    Article  PubMed  CAS  Google Scholar 

  30. Guo, J., Wu, Y., Zhang, W., Zhao, J., Devi, L. A., Pei, G., and Ma, L. (2000) Identification of G protein-coupled receptor kinase 2 phosphorylation sites responsible for agonist-stimulated delta-opioid receptor phosphorylation. Mol. Pharmacol. 58, 1050–1056.

    PubMed  CAS  Google Scholar 

  31. Appleyard, S. M., Celver, J., Pineda, V., Kovoor, A., Wayman, G. A., and Chavkin, C. (1999) Agonist-dependent desensitization of the kappa opioid receptor by G protein receptor kinase and beta-arrestin. J. Biol. Chem. 274, 23802–23807.

    Article  PubMed  CAS  Google Scholar 

  32. McLaughlin, J. P. (2001) Phosphospecific antibody recognizes the desensitized form of the kappa opioid receptor (KOR). 32nd International Narcotics Research Conference, Helsinki, Finland.

    Google Scholar 

  33. Wang, Z., Arden, J., and Sadee, W. (1996) Basal phosphorylation of mu opioid receptor is agonist modulated and Ca2+-dependent. FEBS Lett. 387, 53–57.

    Article  PubMed  CAS  Google Scholar 

  34. Koch, T., Kroslak, T., Averbeck, M., Mayer, P., Schroder, H., Raulf, E., and Hollt, V. (2000) Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. Mol. Pharmacol. 58, 328–334.

    PubMed  CAS  Google Scholar 

  35. Bruggemann, I., Schulz, S., Wiborny, D., and Hollt, V. (2000) Colocalization of the mu-opioid receptor and calcium/calmodulin- dependent kinase II in distinct pain-processing brain regions. Brain Res. Mol. Brain Res. 85, 239–250.

    Article  PubMed  CAS  Google Scholar 

  36. Lou, L., Zhou, T., Wang, P., and Pei, G. (1999) Modulation of Ca2+/calmodulin-dependent protein kinase II activity by acute and chronic morphine administration in rat hippocampus: differential regulation of alpha and beta isoforms. Mol. Pharmacol. 55, 557–563.

    PubMed  CAS  Google Scholar 

  37. Fan, G. H., Wang, L. Z., Qiu, H. C., Ma, L., and Pei, G. (1999) Inhibition of calcium/ calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence. Mol. Pharmacol. 56, 39–45.

    PubMed  CAS  Google Scholar 

  38. Zimprich, A., Simon, T., and Hollt, V. (1995) Transfected rat mu opioid receptors (rMOR1 and rMOR1B) stimulate phospholipase C and Ca2+ mobilization. Neuroreport 7, 54–56.

    PubMed  CAS  Google Scholar 

  39. Narita, M., Mizoguchi, H., and Tseng, L. F. (1995) Inhibition of protein kinase C, but not of protein kinase A, blocks the development of acute antinociceptive tolerance to an intrathecally administered mu-opioid receptor agonist in the mouse. Eur. J. Pharmacol. 280, R1–R3.

    Article  PubMed  CAS  Google Scholar 

  40. Narita, M., Mizoguchi, H., Kampine, J. P., and Tseng, L. F. (1996) Role of protein kinase C in desensitization of spinal delta-opioid- mediated antinociception in the mouse. Br. J. Pharmacol. 118, 1829–1835.

    Article  PubMed  CAS  Google Scholar 

  41. Wang, Z. and Sadee, W. (2000) Tolerance to morphine at the mu-opioid receptor differentially induced by cAMP-dependent protein kinase activation and morphine. Eur. J. Pharmacol. 389, 165–171.

    Article  PubMed  CAS  Google Scholar 

  42. Wagner, E. J., Ronnekleiv, O. K., and Kelly, M. J. (1998) Protein kinase A maintains cellular tolerance to mu opioid receptor agonists in hypothalamic neurosecretory cells with chronic morphine treatment: convergence on a common pathway with estrogen in modulating mu opioid receptor/effector coupling. J. Pharmacol. Exp. Ther. 285, 1266–1273.

    PubMed  CAS  Google Scholar 

  43. Narita, M., Ohsawa, M., Mizoguchi, H., Kamei, J., and Tseng, L. F. (1997) Pretreatment with protein kinase C activator phorbol 12,13-dibutyrate attenuates the antinociception induced by mu- but not epsilon-opioid receptor agonist in the mouse. Neuroscience 76, 291–298.

    Article  PubMed  CAS  Google Scholar 

  44. Narita, M., Mizoguchi, H., Nagase, H., Suzuki, T., and Tseng, L. F. (2001) Involvement of spinal protein kinase Cgamma in the attenuation of opioid mu-receptor-mediated G-protein activation after chronic intrathecal administration of [D-Ala2,N-MePhe4,Gly-O1(5)]enkephalin. J. Neurosci. 21, 3715–3720.

    PubMed  CAS  Google Scholar 

  45. Polakiewicz, R. D., Schieferl, S. M., Dorner, L. F., Kansra, V., and Comb, M. J. (1998) A mitogen-activated protein kinase pathway is required for mu-opioid receptor desensitization. J. Biol. Chem. 273, 12402–12406.

    Article  PubMed  CAS  Google Scholar 

  46. Belcheva, M. M., Szucs, M., Wang, D., Sadee, W., and Coscia, C. J. (2001) Mu opiod receptor-mediated ERK-activation involves calmodulin-dependent EGF receptor transactivation. J. Biol. Chem. 16, 16.

    Google Scholar 

  47. Koenig, J. A. and Edwardson, J. M. (1997) Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol. Sci. 18, 276–287.

    PubMed  CAS  Google Scholar 

  48. Bohn, L. M., Gainetdinov, R. R., Lin, F. T., Lefkowitz, R. J., and Caron, M. G. (2000) Muopioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720–723.

    Article  PubMed  CAS  Google Scholar 

  49. Lefkowitz, R. J., Pitcher, J., Krueger, K., and Daaka, Y. (1998) Mechanisms of beta-adrenergic receptor desensitization and resensitization. Adv. Pharmacol. 42, 416–420.

    Article  PubMed  CAS  Google Scholar 

  50. Koch, T., Schulz, S., Schroder, H., Wolf, R., Raulf, E., and Hollt, V. (1998) Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. J. Biol. Chem. 273, 13652–13657.

    Article  PubMed  CAS  Google Scholar 

  51. Law, P. Y., Erickson, L. J., El-Kouhen, R., Dicker, L., Solberg, J., Wang, W., Miller, E., Burd, A. L., and Loh, H. H. (2000) Receptor density and recycling affect the rate of agonist-induced desensitization of mu-opioid receptor. Mol. Pharmacol. 58, 388–398.

    PubMed  CAS  Google Scholar 

  52. Koch, T., Schulz, S., Pfeiffer, M., Klutzny, M., Schroder, H., Kahl, E., and Hollt, V. (2001) Cterminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J. Biol. Chem. 276, 31, 408–31,414.

    Google Scholar 

  53. Ferguson, S. S., Zhang, J., Barak, L. S., and Caron, M. G. (1998) Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci. 62, 1561–1565

    Article  PubMed  CAS  Google Scholar 

  54. Miller, W. E. and Lefkowitz, R. J. (2001) Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell. Biol. 13, 139–145.

    Article  PubMed  CAS  Google Scholar 

  55. Gaidarov, I. and Keen, J. H. (1999) Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J. Cell. Biol. 146, 755–764.

    Article  PubMed  CAS  Google Scholar 

  56. McDonald, P. H., Cote, N. L., Lin, F. T., Premont, R. T., Pitcher, J. A., and Lefkowitz, R. J. (1999) Identification of NSF as a beta-arrestin 1-binding protein. Implications for beta2-adrenergic receptor regulation. J. Biol. Chem. 274, 10, 677–10,680.

    Google Scholar 

  57. Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G., and Lefkowitz, R. J. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661.

    Article  PubMed  CAS  Google Scholar 

  58. Sim-Selley, L. J., Selley, D. E., Vogt, L. J., Childers, S. R., and Martin, T. J. (2000) Chronic heroin self-administration desensitizes mu opioid receptor- activated G-proteins in specific regions of rat brain. J. Neurosci. 20, 4555–4562.

    PubMed  CAS  Google Scholar 

  59. Elliott, J., Guo, L., and Traynor, J. R. (1997) Tolerance to mu-opioid agonists in human neuroblastoma SH-SY5Y cells as determined by changes in guanosine-5′-O-(3-[35S]-thio)triphosphate binding. Br. J. Pharmacol. 121, 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  60. Chang, K. J., Eckel, R. W., and Blanchard, S. G. (1982) Opioid peptides induce reduction of enkephalin receptors in cultured neuroblastoma cells. Nature 296, 446–448.

    Article  PubMed  CAS  Google Scholar 

  61. Tao, P. L., Lee, H. Y., Chang, L. R., and Loh, H. H. (1990) Decrease in mu-opioid receptor binding capacity in rat brain after chronic PL017 treatment. Brain Res. 526, 270–275.

    Article  PubMed  CAS  Google Scholar 

  62. Tao, P. L., Han, K. F., Wang, S. D., Lue, W. M., Elde, R., Law, P. Y., and Loh, H. H. (1998) Immunohistochemical evidence of down-regulation of mu-opioid receptor after chronic PL017 in rats. Eur. J. Pharmacol. 344, 137–142.

    Article  PubMed  CAS  Google Scholar 

  63. Zadina, J. E., Chang, S. L., Ge, L. J., and Kastin, A. J. (1993) Mu opiate receptor downregulation by morphine and up-regulation by naloxone in SH-SY5Y human neuroblastoma cells. J. Pharmacol. Exp. Ther. 265, 254–262.

    PubMed  CAS  Google Scholar 

  64. Zadina, J. E., Harrison, L. M., Ge, L. J., Kastin, A. J., and Chang, S. L. (1994) Differential regulation of mu and delta opiate receptors by morphine, selective agonists and antagonists and differentiating agents in SH- SY5Y human neuroblastoma cells. J. Pharmacol. Exp. Ther. 270, 1086–1096.

    PubMed  CAS  Google Scholar 

  65. Bernstein, M. A. and Welch, S. P. (1998) Muopioid receptor down-regulation and cAMPdependent protein kinase phosphorylation in a mouse model of chronic morphine tolerance. Brain Res. Mol. Brain Res. 55, 237–242.

    Article  PubMed  CAS  Google Scholar 

  66. Law, P. Y., Hom, D. S., and Loh, H. H. (1983) Opiate receptor down-regulation and desensitization in neuroblastoma X glioma NG 108–15 hybrid cells are two separate cellular adaptation processes. Mol. Pharmacol. 24, 413–424.

    PubMed  CAS  Google Scholar 

  67. Yabaluri, N. and Medzihradsky, F. (1997) Down-regulation of mu-opioid receptor by full but not partial agonists is independent of G protein coupling. Mol. Pharmacol. 52, 896–902.

    PubMed  CAS  Google Scholar 

  68. Werling, L. L., McMahon, P. N., and Cox, B. M. (1989) Selective changes in mu opioid receptor properties induced by chronic morphine exposure. Proc. Natl. Acad. Sci. USA 86, 6393–6397.

    Article  PubMed  CAS  Google Scholar 

  69. Tao, P. L., Law, P. Y., and Loh, H. H. (1987) Decrease in delta and mu opioid receptor binding capacity in rat brain after chronic etorphine treatment. J. Pharmacol. Exp. Ther. 240, 809–816.

    PubMed  CAS  Google Scholar 

  70. Burd, A. L., El-Kouhen, R., Erickson, L. J., Loh, H. H., and Law, P. Y. (1998) Identification of serine 356 and serine 363 as the amino acids involved in etorphine-induced down-regulation of the mu-opioid receptor. J. Biol. Chem. 273, 34,488–34,495.

    Google Scholar 

  71. Kraus, J., Horn, G., Zimprich, A., Simon, T., Mayer, P., and Hollt, V. (1995) Molecular cloning and functional analysis of the rat mu opioid receptor gene promoter. Biochem. Biophys. Res. Commun. 215, 591–597.

    Article  PubMed  CAS  Google Scholar 

  72. Kim, D. S., Chin, H., and Klee, W. A. (1995) Agonist regulation of the expression of the delta opioid receptor in NG108–15 cells. FEBS Lett. 376, 11–14.

    Article  PubMed  CAS  Google Scholar 

  73. Buzas, B., Rosenberger, J., and Cox, B. M. (1997) Regulation of delta-opioid receptor mRNA levels by receptor-mediated and direct activation of the adenylyl cyclase-protein kinase A pathway. J. Neurochem. 68, 610–615.

    Article  PubMed  CAS  Google Scholar 

  74. Woltje, M., Kraus, J., and Hollt, V. (2000) Regulation of mouse delta-opioid receptor gene transcription: involvement of the transcription factors AP-1 and AP-2. J. Neurochem. 74, 1355–1362.

    Article  PubMed  CAS  Google Scholar 

  75. Sharma, S. K., Klee, W. A., and Nirenberg, M. (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA 72, 3092–3096.

    Article  PubMed  CAS  Google Scholar 

  76. Nevo, I., Avidor-Reiss, T., Levy, R., Bayewitch, M., Heldman, E., and Vogel, Z. (1998) Regulation of adenylyl cyclase isozymes on acute and chronic activation of inhibitory receptors. Mol. Pharmacol. 54, 419–426.

    PubMed  CAS  Google Scholar 

  77. Avidor-Reiss, T., Bayewitch, M., Levy, R., Matus-Leibovitch, N., Nevo, I., and Vogel, Z. (1995) Adenylylcyclase supersensitization in mu-opioid receptor-transfected Chinese hamster ovary cells following chronic opioid treatment. J. Biol. Chem. 270, 29,732–29,738.

    Google Scholar 

  78. Avidor-Reiss, T., Nevo, I., Levy, R., Pfeuffer, T., and Vogel, Z. (1996) Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma. J. Biol. Chem. 271, 21, 309–21,315.

    Google Scholar 

  79. Chakrabarti, S., Rivera, M., Yan, S. Z., Tang, W. J., and Gintzler, A. R. (1998) Chronic morphine augments G(beta)(gamma)/Gs(alpha) stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol. Pharmacol. 54, 655–662.

    PubMed  CAS  Google Scholar 

  80. Chakrabarti, S., Oppermann, M., and Gintzler, A. R. (2001) Chronic morphine induces the concomitant phosphorylation and altered association of multiple signaling proteins: a novel mechanism for modulating cell signaling. Proc. Natl. Acad. Sci. USA 98, 4209–4214.

    Article  PubMed  CAS  Google Scholar 

  81. Chakrabarti, S., Wang, L., Tang, W. J., and Gintzler, A. R. (1998) Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/ dependence. Mol. Pharmacol. 54, 949–953.

    PubMed  CAS  Google Scholar 

  82. Duman, R. S., Tallman, J. F., and Nestler, E. J. (1988) Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J. Pharmacol. Exp. Ther. 246, 1033–1039.

    PubMed  CAS  Google Scholar 

  83. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M., and Nestler, E. J. (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110.

    Article  PubMed  CAS  Google Scholar 

  84. Haddad, L. B., Hiller, J. M., Simon, E. J., and Kramer, H. K. Opioid withdrawal decreases basal MAP kinase levels through protein kinase A (PKA). 32nd International Narcotics Research Conference, Helsinki, Finland.

    Google Scholar 

  85. Narita, M., Feng, Y., Makimura, M., Hoskins, B., and Ho, I. K. (1994) A protein kinase inhibitor, H-7, inhibits the development of tolerance to opioid antinociception. Eur. J. Pharmacol. 271, 543–545.

    Article  PubMed  CAS  Google Scholar 

  86. Nestler, E. J., Alreja, M., and Aghajanian, G. K. (1999) Molecular control of locus coeruleus neurotransmission. Biol. Psychiatr. 46, 1131–1139.

    Article  CAS  Google Scholar 

  87. Daaka, Y., Luttrell, L. M., and Lefkowitz, R. J. (1997) Switching of the coupling of the beta2adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91.

    Article  PubMed  CAS  Google Scholar 

  88. Luo, X., Zeng, W., Xu, X., Popov, S., Davignon, I., Wilkie, T. M., Mumby, S. M., and Muallem, S. (1999) Alternate coupling of receptors to Gs and Gi in pancreatic and submandibular gland cells. J. Biol. Chem. 274, 17,684–17,690.

    Google Scholar 

  89. Wolf, D. H., Numan, S., Nestler, E. J., and Russell, D. S. (1999) Regulation of phospholipase Cgamma in the mesolimbic dopamine system by chronic morphine administration. J. Neurochem. 73, 1520–1528.

    Article  PubMed  CAS  Google Scholar 

  90. Ueda, H., Inoue, M., and Matsumoto, T. (2001) Protein kinase C-mediated inhibition of muopioid receptor internalization and its involvement in the development of acute tolerance to peripheral mu-agonist analgesia. J. Neurosci. 21, 2967–2973.

    PubMed  CAS  Google Scholar 

  91. Kimes, A. S., Vaupel, D. B., and London, E. D. (1993) Attenuation of some signs of opioid withdrawal by inhibitors of nitric oxide synthase. Psychopharmacology 112, 521–524.

    Article  PubMed  CAS  Google Scholar 

  92. London, E. D., Kimes, A. S., and Vaupel, D. B. (1995) Inhibitors of nitric oxide synthase and the opioid withdrawal syndrome. NIDA Res. Monogr. 147, 170–181.

    PubMed  CAS  Google Scholar 

  93. Adams, M. L., Kalicki, J. M., Meyer, E. R., and Cicero, T. J. (1993) Inhibition of the morphine withdrawal syndrome by a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester. Life Sci. 52, L245–L249.

    Article  Google Scholar 

  94. Xu, J. Y., Hill, K. P., and Bidlack, J. M. (1998) The nitric oxide/cyclic GMP system at the supraspinal site is involved in the development of acute morphine antinociceptive tolerance. J. Pharmacol. Exp. Ther. 284, 196–201.

    PubMed  CAS  Google Scholar 

  95. Machelska, H., Ziolkowska, B., Mika, J., Przewlocka, B., and Przewlocki, R. (1997) Chronic morphine increases biosynthesis of nitric oxide synthase in the rat spinal cord. Neuroreport 8, 2743–2747.

    Article  PubMed  CAS  Google Scholar 

  96. Cuellar, B., Fernandez, A. P., Lizasoain, I., Moro, M. A., Lorenzo, P., Bentura, M. L., Rodrigo, J., and Leza, J. C. (2000) Up-regulation of neuronal NO synthase immunoreactivity in opiate dependence and withdrawal. Psychopharmacology (Berl.) 148, 66–73.

    Article  CAS  Google Scholar 

  97. Pataki, I. and Telegdy, G. (1998) Further evidence that nitric oxide modifies acute and chronic morphine actions in mice. Eur. J. Pharmacol. 357, 157–162.

    Article  PubMed  CAS  Google Scholar 

  98. Trujillo, K. A. and Akil, H. (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251, 85–87.

    Article  PubMed  CAS  Google Scholar 

  99. Marek, P., Ben-Eliyahu, S., Vaccarino, A. L., and Liebeskind, J. C. (1991) Delayed application of MK-801 attenuates development of morphine tolerance in rats. Brain Res. 558, 163–165.

    Article  PubMed  CAS  Google Scholar 

  100. Tiseo, P. J. and Inturrisi, C. E. (1993) Attenuation and reversal of morphine tolerance by the competitive N-methyl-D-aspartate receptor antagonist, LY274614. J. Pharmacol. Exp. Ther. 264, 1090–1096.

    PubMed  CAS  Google Scholar 

  101. Bredt, D. S. and Snyder, S. H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11.

    Article  PubMed  CAS  Google Scholar 

  102. Aghajanian, G. K. (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276, 186–188.

    Article  PubMed  CAS  Google Scholar 

  103. Akaoka, H. and Aston-Jones, G. (1991) Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J. Neurosci. 11, 3830–3839.

    PubMed  CAS  Google Scholar 

  104. Williams, J. T., Christie, M. J., and Manzoni, O. (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343.

    PubMed  CAS  Google Scholar 

  105. Chieng, B. and Christie, M. D. (1996) Local opioid withdrawal in rat single periaqueductal gray neurons in vitro. J. Neurosci. 16, 7128–7136.

    PubMed  CAS  Google Scholar 

  106. Crain, S. M. and Shen, K. F. (1990) Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends Pharmacol. Sci. 11, 77–81.

    Article  PubMed  CAS  Google Scholar 

  107. Crain, S. M. and Shen, K. F. (1992) After chronic opioid exposure sensory neurons become supersensitive to the excitatory effects of opioid agonists and antagonists as occurs after acute elevation of GM1 ganglioside. Brain Res. 575, 13–24.

    Article  PubMed  CAS  Google Scholar 

  108. Clapham, D. E. and Neer, E. J. (1993) New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature 365, 403–406..

    Article  PubMed  CAS  Google Scholar 

  109. Daaka, Y., Pitcher, J. A., Richardson, M., Stoffel, R. H., Robishaw, J. D., and Lefkowitz, R. J. (1997) Receptor and G betagamma isoform-specific interactions with G protein- coupled receptor kinases. Proc. Natl. Acad. Sci. USA 94, 2180–2185.

    Article  PubMed  CAS  Google Scholar 

  110. Sarnago, S., Elorza, A., and Mayor, F., Jr. (1999) Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J. Biol. Chem. 274, 34,411–34,416.

    Google Scholar 

  111. Chuang, T. T., LeVine, H., 3rd, and De Blasi, A. (1995) Phosphorylation and activation of beta-adrenergic receptor kinase by protein kinase C. J. Biol. Chem. 270, 18,660–18,665.

    Google Scholar 

  112. Murthy, K. S., Grider, J. R., and Makhlouf, G. M. (2000) Heterologous desensitization of response mediated by selective PKC- dependent phosphorylation of G(i-1) and G(i-2). Am. J. Physiol. Cell. Physiol. 279, C925–C934.

    PubMed  CAS  Google Scholar 

  113. Strassheim, D., Law, P. Y., and Loh, H. H. (1998) Contribution of phospholipase C-beta3 phosphorylation to the rapid attenuation of opioid-activated phosphoinositide response. Mol. Pharmacol. 53, 1047–1053.

    PubMed  CAS  Google Scholar 

  114. Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentivesensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291.

    Article  PubMed  CAS  Google Scholar 

  115. Robinson, T. E. and Berridge, K. C. (2001) Incentive-sensitization and addiction. Addiction 96, 103–114.

    Article  PubMed  CAS  Google Scholar 

  116. Erdtmann-Vourliotis, M., Mayer, P., Riechert, U., Grecksch, G., and Hollt, V. (1998) Identification of brain regions that are markedly activated by morphine in tolerant but not in naive rats. Brain Res. Mol. Brain Res. 61, 51–61.

    Article  PubMed  CAS  Google Scholar 

  117. Erdtmann-Vourliotis, M., Mayer, P., Linke, R., Riechert, U., and Hollt, V. (1999) Long-lasting sensitization towards morphine in motoric and limbic areas as determined by c-fos expression in rat brain. Brain Res. Mol. Brain Res. 72, 1–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, T., Schulz, S., Höllt, V. (2003). Different Intracellular Signaling Systems Involved in Opioid Tolerance/Dependence. In: Maldonado, R. (eds) Molecular Biology of Drug Addiction. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-343-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-343-9_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-330-5

  • Online ISBN: 978-1-59259-343-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics