Skip to main content

Molecular and Behavioral Aspects of Nicotine Dependence and Reward

  • Chapter
Molecular Biology of Drug Addiction

Abstract

Tobacco produces dependence or addiction in humans. Dependence can be defined as a maladaptive pattern of substance use or drug taking over an extended time period. The American Psychiatric Association, in its DSM-IV manual for psychiatric diagnosis (1), suggest an operative diagnosis of tobacco dependence when three or more of the following seven symptoms or signs are identified in a subject:

  1. 1.

    Persistent desire and unsuccessful attempts to quit

  2. 2.

    Use of large amounts of drug and for a longer period than intended

  3. 3.

    Continued use in the face of medical, familial, and social problems

  4. 4.

    Important social, familial, and recreational activities given up or reduced because of drug craving

  5. 5.

    Expenditure of a great deal of time and activity in relation to drugs

  6. 6.

    Tolerance

  7. 7.

    Physical dependence (withdrawal)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. (1994) Diagnostic and Statistical Manual of Mental Disorders, DSM-IV. American Psychiatric Association, Washington, DC.

    Google Scholar 

  2. Jarvik, M. E. (1995) Commentary. Psychopharmacology 117,18–20.

    Article  CAS  Google Scholar 

  3. US Department of Health, Education and Welfare. (1964) Smoking and Health. Report of the advisory committee to the Surgeon General of the Public Health Service, Maryland.

    Google Scholar 

  4. US Department of Health and Human Services. (1988) The Health Consequences of Smoking, Nicotine Addiction. A Report of the Surgeon General, Office of Smoking and Health, Bethesda, Maryland.

    Google Scholar 

  5. O’Brien, C. P. (1996) Drug addiction and drug abuse, in The Pharmacological Basis of Therapeutics (Goodman, L. S. and Gilman, P. R., eds.), McGraw-Hill, New York, pp. 276–282.

    Google Scholar 

  6. Stolerman, I. P. and Jarvis, M. J. (1995) The scientific case that nicotine is addictive. Psychopharmacology 117, 2–10.

    Article  PubMed  CAS  Google Scholar 

  7. Domino, E. F. (1997) Tobacco smoking and nicotine neuropsychopharmacology, some future research directions. Neuropsychopharmacology 18, 456–468.

    Article  Google Scholar 

  8. Stolerman, I. P. (1992) Drug of abuse, behavioral principles, methods and term. TIPS 13, 170–176.

    PubMed  CAS  Google Scholar 

  9. Koob, G. F. and Le Moal, M. (1997) Drug abuse, hedonic homeostatic dysregulation. Science 278, 52–58.

    Article  PubMed  CAS  Google Scholar 

  10. Di Chiara, G. (2000) Behavioral pharmacology and neurobiology of nicotine reward and dependence, in Handbook of Experimental Pharmacology, vol. 144, (Clementi, F., Fomasari, D., and Gotti, C., eds.), Neural Nicotinic Receptors, Springer-Verlag, Berlin, Heidelberg, pp. 603–750.

    Google Scholar 

  11. Hennigfield, J. E. and Goldberg, S. R. (1983) Control of behavior by intravenous injection of nicotine in human subjects. Pharmacol. Physiol. Behay. 19,1021–1026.

    Google Scholar 

  12. Altman, J., Everitt, B. J., Glautier, S., Markou, A., Nutt, D., Oretti, R., Phillips, G. D., and Robbins T. W. (1996) The biological, social, and clinical bases of drug addiction, commentary and debate. Psychopharmacology 125, 285–345.

    Article  PubMed  CAS  Google Scholar 

  13. Koob, G. F. (1992) Drug of abuse, anatomy, pharmacology and function of reward pathways. TIPS 13, 177–184.

    PubMed  CAS  Google Scholar 

  14. Corrigall, W. A. (1999) Nicotine self-administration in animal as a dependence model. Nicotine & Tobacco Res. 1, 11–20.

    Article  CAS  Google Scholar 

  15. Olds, J. and Milner, P. M. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Pshysiol. Psychol. 47, 419–427.

    Article  CAS  Google Scholar 

  16. Wise, R. A. (1996) Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251.

    Article  PubMed  CAS  Google Scholar 

  17. Schaefer, G. J. and Michael, R. P. (1986) Task-specific effects of nicotine in rats, intracranial self-stimulation and locomotor activity. Neuropharmacology 25, 125–131.

    Article  PubMed  CAS  Google Scholar 

  18. Huston-Lyon, D. and Kornetski, C. (1992) Effects of nicotine on the threshold for rewarding brain stimulation in rats. Pharmacol. Biochem. Behay. 41, 755–759.

    Article  Google Scholar 

  19. Bauco, P. and Wise, R. A. (1994) Potentiation of lateral hypothalamic and midline mesencephalic brain stimulation reinforcement by nicotine, examination of repeated treatment. J. Pharmacol. Exp. Ther. 271, 294–301.

    PubMed  CAS  Google Scholar 

  20. Robbins, T. W.,and Everitt, B. J. (1996) Neurobehavioral mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–256.

    Article  PubMed  CAS  Google Scholar 

  21. Kreek, M. J. and Koob, G. F. (1998) Drug dependence, stress and dysregulation of brain reward pathways. Drug & Alcohol Dependence 51, 23–47.

    Article  CAS  Google Scholar 

  22. White, N. M. (1996) Addictive drugs as reinforcers, multiple partial actions on memory system. Addiction 91, 921–946.

    Article  PubMed  CAS  Google Scholar 

  23. Cador, M., Robbins, T. W., and Everitt, B. J. (1989) Involvement of amygdala in stimulusreward association, interaction with the ventral striatum. Neuroscience 30, 77–86.

    Article  PubMed  CAS  Google Scholar 

  24. White, N. M. and Hiroi, N. (1993) Amphetamine conditioned cue preference and the neurobiology of drug seeking. Semin. Neurosci. 5, 329–336.

    Article  CAS  Google Scholar 

  25. Tiffani, S. T. (1990) A cognitive model of drug urges and drug-use behavior, role of automatic and nonautomatic processes. Psychol. Rev. 97, 147–168.

    Article  Google Scholar 

  26. Chiamulera, C., Borgo, C., Falchetto, S., Valerio, E., and Tessari, M. (1996) Nicotine reinstatement of nicotine self-administration after long term extinction. Psychopharmacology 127, 102–107.

    Article  PubMed  CAS  Google Scholar 

  27. Shaham, Y., Adamson, L. K., Grocki, S., and Corrigall, W. A. (1997) Reinstatement and spontaneous recovery of nicotine seeking in rats. Psychopharmacology 130, 396–403.

    Article  PubMed  CAS  Google Scholar 

  28. Snyder, F. R., Davis, F. C., and Henningfield, J. E. (1989) The tobacco withdrawal syndrome, performance decrements assessed on computerised test battery. Drug Alcohol Depend. 23, 259–266.

    Article  PubMed  CAS  Google Scholar 

  29. Malin, D. H., Lake, J. R., Carter, V. A., Cunningham, J. S., and Wilson, O. B. (1993) Naloxone precipitates nicotien abstinence syndrome in the rat. Psychopharmacology 112, 339–342.

    Article  PubMed  CAS  Google Scholar 

  30. Epping-Jordan, M. P., Watkins, S. S., Koob, G. F., and Markou, A. (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393, 76–79.

    Article  PubMed  CAS  Google Scholar 

  31. Markou, A., Kosten, T. R., and Koob, G. F. (1998) Neurobiological similarities in depression and drug dependence: a self—medication hypothesis. Neuropsychopharmacology 18, 135–174.

    Article  PubMed  CAS  Google Scholar 

  32. Fagernstrom, K. O. (1978) Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Add. Behay. 3, 235–241.

    Article  Google Scholar 

  33. Watkins, S. S., Koob, G. F., and Markou A. (2000) Neural mechanisms underlying nicotine addiction, acute positive reinforcement and withdrawal. Nicotine & Tobacco Res. 2, 19–37.

    Article  CAS  Google Scholar 

  34. Spealman, R. D. (1983) Maintenance of behavior by postponement of scheduled injections of nicotine in squirrel monkeys. J. Pharmacol. Exp. Ther. 227, 154–159.

    PubMed  CAS  Google Scholar 

  35. Irvine, E. E., Bagnalasta, M., Marcon, C., Motta, C., Tessari, M., File, S. E., and Chiamulera, C. (2001) Nicotine self-administration and withdrawal, modulation of anxiety in the social interaction test in rats. Psychopharmacologia 153, 315–320.

    Article  CAS  Google Scholar 

  36. Singer, G., Simpson, F., and Lang, W. J. (1978) Schedule induced self-injections of nicotine with recovered body weight. Pharmacol. Biochem. Behay. 9, 387–389.

    Article  CAS  Google Scholar 

  37. Latiff, A. A., Smith, L. A., and Lang, W. J. (1980) Effects of changing dosage and urinary pH in rats self-administering nicotine on a food delivery schedule. Pharmacol. Biochem. Behay. 13, 209–213.

    Article  CAS  Google Scholar 

  38. Smith, L.A. and Lang, W.J. (1980) Changes occuring in self-administration of nicotine by rats over a 28-day period. Pharmacol. Biochem. Behay. 13, 215–220.

    Article  CAS  Google Scholar 

  39. Goldberg, S. R., Spealman, R. D., and Goldberg D. M. (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214, 573–575.

    Article  PubMed  CAS  Google Scholar 

  40. Cox, B. M., Goldstein, A., and Nelson, W. T. (1984) Nicotine self-administration in rats. Br. J. Pharmacol. 83, 49–55.

    Article  PubMed  CAS  Google Scholar 

  41. Corrigall, W. A. and Coen, K. M. (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99, 473–478.

    Article  PubMed  CAS  Google Scholar 

  42. Tessari, M., Valerio, E., Chiamulera, C., and Beardsley, P. M. (1995) Nicotine reinforcement in rats with histories of cocaine self-administration. Psychopharmacology 121, 282–283.

    Article  PubMed  CAS  Google Scholar 

  43. Shoaib, M., Schindler, C. W., and Goldberg, S. R. (1997) Nicotine self-administration in rats, strain, and nicotine pre-exposure effects on acquisition. Psychopharmacology 129, 35–43.

    Article  PubMed  CAS  Google Scholar 

  44. Donny, E. C., Caggiula, A. R., Mielke, M. M., Jacobs, K. S., Rose, C., and Sved, A. F. (1998) Acquisition of nicotine self-administration in rats, the effects of dose, feeding schedule, and drug contingency. Psychopharmacology 136, 83–90.

    Article  PubMed  CAS  Google Scholar 

  45. Dworkin, S. I., Vrana, S. L., Broadbent, J., and Robinson, J. H. (1993) Comparing the reinforcing effects of nicotine, caffeine, methylphenidate and cocaine. Med. Chem. Res. 2, 593–602.

    CAS  Google Scholar 

  46. Valentine, J. D., Hokanson, J. S., Matta, S. G., and Sharp, B. M. (1997) Self-administration in rats allowed unlimited access to nicotine. Psychopharmacology 133, 300–304.

    Article  PubMed  CAS  Google Scholar 

  47. Koob, G. F. (1995) Animal models of drug addiction, in Pschopharmacology, The Fourth Generation of Progress. (Bloom, F. E. and Kupfler, D. J., eds.), Raven Press, New York, pp. 759–772.

    Google Scholar 

  48. Goldberg, S. R. and Gardner, M. L. (1981) Second-order schedules, extended sequences of behavior controlled by brief environmental stimuli associated with drug self-administration. NIDA Res. Monogr. Ser. 37, 241–270.

    CAS  Google Scholar 

  49. Rasmussen, T. and Swedberg, M. D. B. (1998) Reinforcing effects of nicotine compounds, intravenous self-administration in drug-naïve mice. Pharmacol. Biochem. Behay. 60, 567–573.

    Article  CAS  Google Scholar 

  50. Stolerman, I. P., Naylor, C., Elmer, G. I., and Goldberg, S. R. (1999) Discrimination and selfadministration of nicotine by inbred strains of mice. Psychopharmacology 141, 297–306.

    Article  PubMed  CAS  Google Scholar 

  51. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L., Merlo Pich, E., Fuxe, K., and Changeux, J. P. (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177.

    Article  PubMed  CAS  Google Scholar 

  52. Merlo-Pich, E. and Epping-Jordan, M. P. (1998) Transgenic mice in drug dependence research. Ann. Med. 30, 390–396.

    Article  Google Scholar 

  53. Changeux, J.-P., Bertrand, D., Corringer, P. J., Dehaene, S., Edelstein, S., Lena, C., Le Novere, N., Marubio, L., Picciotto, M., and Zoli, M. (1998) Brain nicotinic receptors, structure and regulation, role in learning and reinforcement. Brain Res. Rev. 26, 198–216.

    Article  PubMed  CAS  Google Scholar 

  54. Colquhoun, L. M. and Patrick, J. W. (1997) Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv. Pharmacol. 39,191–220.

    Article  PubMed  CAS  Google Scholar 

  55. Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B., and Pert, A. (1985) Nicotine binding in rat brain, autoradiography comparison of 3H-acetylcholine, 3H-nicotine and 125I-αbungarotoxine. J. Neurosci. 5, 1307–1315.

    PubMed  CAS  Google Scholar 

  56. Orr-Uteger, A., Galdner, F. M., Saeki, M., Lorenzo, I., Goldberg, L., De Blasi, M., Dani, J. A., Patrick, J. K., and Beaudet, A. L. (1997) Mice deficent of the a7 neuronal nicotinic acethylcoline receptor lack a—bungarotoxin binding sites and hippocampal fast nicotinic currents. J. Neurosci. 17, 9165–9171.

    Google Scholar 

  57. Zoli, M., Lena, C., Picciotto, M., and Changeux, J.-P. (1998) Identification of four classes of brain nicotinic receptors using β2 mutant mice. J. Neurosci. 18, 4461–4472.

    PubMed  CAS  Google Scholar 

  58. Marubio, L. M., Arroyo-Jimenez, M. M., Cordero-Erausquin, M., Lena, C., Le Novere, N., de Kerchove d’Exaert, A., Huchet, M., Damaj, M. I., and Changeux, J.-P. (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398, 805–809.

    Article  PubMed  CAS  Google Scholar 

  59. Mulle, C., Vidal, C., Benoit, P., and Changeux, J.-P. (1991) Exsitence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo—interpeduncular system. J. Neurosci. 11, 2588–2597.

    PubMed  CAS  Google Scholar 

  60. Benwell, M. E. M., Balfour, D. J. K., and Anderson, J. M. (1988) Evidence that tobacco smoking increases the density of (-)3H-nicotine binding site in human brain. J. Neurochem. 50, 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  61. Breese, C. R., Marks, M. J., Logel, J., Adams, C. E., Sullivan, B., Collins, A. C., and Leonard, S. (1997) Effects of smoking history on 3H—nicotine binding in human post—mortem brain. J. Pharmacol. Exp. Ther. 255, 187–196.

    Google Scholar 

  62. Court, J. A., Lloyd, S., Thomas, N., Piggot, M. A., Marshall, E. F., Morris, C. M., Lamb, H., Perry, R. H., Johnson, M., and Perry, E. K. (1998) Dopamine and nicotinic receptor binding and the level of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience 87, 63–78.

    Article  PubMed  CAS  Google Scholar 

  63. Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B., and Kellar, K. J. (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up— regulated by chronic nicotine treatment. Mol. Pharmacol. 41, 31–37.

    PubMed  CAS  Google Scholar 

  64. Flores, C. M., Davila-Garcia, M. I., Ulrich, Y. M., and Kellar, K. J. (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. J.. Neurochem. 69, 2216–2219.

    Article  PubMed  CAS  Google Scholar 

  65. Marks, M. J., Pauly, J. R., Gross, S. D., Deneris, E. S., Hermans-Borgmeyer, I., and Collins, A. C. (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784.

    PubMed  CAS  Google Scholar 

  66. Marks, M. J., Grady, S. R., Yang, J. M., Lippiello, P. M., and Collins A. C. (1983) Desensitisation of nicotine-stimulated 86RB efflux from mouse brain synaptosome. J. Neurochem. 63, 2125–2135.

    Article  Google Scholar 

  67. Wang, F., Nelson, M. E., Kuryatov, A., Olale, F., Cooper, J., Keyser, K., and Lindstrom, J. (1998) Chronic nicotine treatment up—regulated human 0β4 but not acetylcholine receptors stably transfected in human embryonic kidney cells. J. Biol. Chem. 273, 28731–28732.

    Google Scholar 

  68. Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving, an incentivesensitisation theory of addiction. Brain Res. Rev. 18, 247–291.

    Article  PubMed  CAS  Google Scholar 

  69. Nestler, E. J. (1996) Under siege, the brain on opiates. Neuron 16, 897–900.

    Article  PubMed  CAS  Google Scholar 

  70. LeNovere, N., Zoli, M., and Changeux, J. P. (1996) Neuronal nicotinic receptors alpha-6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur. J. Neurosci. 8, 2428–2433.

    Article  CAS  Google Scholar 

  71. Arroyo-Jimenez, M. M., Bourgeois, J.-P., Marubio, L. M., Le Sourd, A. M., Ottersenn, O. P., Rinvik, P., Faire, A., and Changeux, J.-P., (1999) Ultrastructural localization of the α4-subunit of the neuronal acetylcholine nicotinic receptor in the rat substantia nigra. J. Neurosci. 19, 6475–6487.

    CAS  Google Scholar 

  72. Calabresi, P., Lacey, M. G., and North, R. A. (1989) Nicotine excitation of rat ventral tegmental neurons in vitro studied by intracellular recording. Br. J. Pharmacol. 98, 135–140.

    Article  PubMed  CAS  Google Scholar 

  73. Pidoplichko, V. I., DeBiasi, M., Williams, J. T., and Dani J. D. (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390, 401–404.

    Article  PubMed  CAS  Google Scholar 

  74. Mereu, G., Yoon, K. W. P., Boi, V., Gessa, G. L., Naes, L., and Wesfall, T. C. (1987) Preferential stimulation of ventral tegmental areas dopaminergic neurons by nicotine. Eur. J. Pharmacol. 141, 395–399.

    Article  PubMed  CAS  Google Scholar 

  75. Anderson, K., Fuxe, K., and Agnati, L. F. (1981) Effects of single injection of nicotine on the ascending dopaminergic pathways in the rats. Evidence for increase dopamine turnover in the mesostriatal and mesolimbic dopamine neurones. Acta Physiol. Scand. 112, 345–347.

    Article  Google Scholar 

  76. Fuxe, K., Andersson, K., Harfstrand, A., and Agnati, L. F. (1986) Increase dopamine utilisation in certain limbic dopamine terminal populations after short period of intermittent exposure to male rats to cigarette smoke. J. Neural. Transm. 67, 15–29.

    Article  PubMed  CAS  Google Scholar 

  77. Imperato, A., Mulas, A., and Di Chiara, G. (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur. J. Pharmacol. 132, 337–338.

    Article  PubMed  CAS  Google Scholar 

  78. Balfour, D. J. K., Benwell, M. E. M., Birrel, C. E., Kelly, R. J., and Al-Aloul M. (1998) Sensitisation of measoaccumbens dopamine response to nicotine. Pharmacol. Biochem. Behay. 59, 1021–1030.

    Article  CAS  Google Scholar 

  79. Pontieri, F. E., Tanda, G., Orzi, F., and Di Chiara, G. (1997) Effects of nicotine on the nucleus accumbens and similarities to those of addictive drugs. Nature 382, 255–257.

    Article  Google Scholar 

  80. Nisell, M., Nomikos, G. G., and Svensson T. H. (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16, 36–44.

    Article  PubMed  CAS  Google Scholar 

  81. Chergui, K., Charlety, P. J., Akaoka, H., Saunier, C. F., Brunet, J. L., Buda, M., Svensson, T. H., and Chovet, G. (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur. J. Neurosci. 5, 137–144.

    Article  PubMed  CAS  Google Scholar 

  82. Gonon, F. G. (1988) Nonlinear relationship between impulse flow and dopamine released by rats midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24, 19–28.

    Article  PubMed  CAS  Google Scholar 

  83. Benwell, M. E. M., Balfour, D. J. K., and Birrel, C. E. (1995) Desensitisation of nicotineinduced dopamine response during constant infusion with nicotine. Br. J. Pharmacol. 114, 211–217.

    Article  Google Scholar 

  84. Hildebrand, B. E., Nomikos, G. G., Hertel, P., Schilstrom, B., Swensson, T. H. (1997) Reduced dopamine output in nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine—precipitated withdrawal syndrome. Brain Res. 779, 214–225.

    Article  Google Scholar 

  85. Carboni, E., Bortone, L., Giva, C., and Di Chiara, G. (2000) Dissociation of physical abstinence sign from changes in extracellular dopamine in the nucleus accumbens and in the prefronatal cortex of nicotine dependent rats. Drug Alcohol Dep. 58, 93–102.

    Article  CAS  Google Scholar 

  86. Marshall, D. L., Redfern, P. H., and Wonnacott, S. (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdalysis, comparison of naive and chronic nicotine-treated rats. J. Neurochem. 68, 1511–1519.

    Article  PubMed  CAS  Google Scholar 

  87. Wonnacott, S., Soliakov, L., Wilke, G., Redfern, P., and Marshall, D. (1996) Presynaptic nicotine acetylcholine receptors in the brain. Drug Develop. Res. 38, 149–159.

    Article  CAS  Google Scholar 

  88. Grady, S. R., Marks, M. J., and Collins, A. C. (1994) Desensitisation of nicotine-stimulated 3H-dopamine release from mouse striatal synaptosomes. J. Neurochem. 62, 1390–1398.

    Article  PubMed  CAS  Google Scholar 

  89. Yu, Y. J. and Wecker, L. (1994) Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J. Neurochem, 63, 186–194.

    Article  PubMed  CAS  Google Scholar 

  90. Schilstrom, B., Svensson, H. M., Svensson, T. H., and Nomikos, G. G. (1998) Nicotine and food induced dopamine release in the nucleus accumbens of the rat, putative role of a7 nicotinic receptors in the ventral tegmental area. Neuroscience 85, 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  91. Nomikos, G. G., Schilstrom, B., Hildebrand, B. E., Panagis, G., Grenhoff, J., and Svensson, T. H. (2000) Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behay. Brain Res. 113, 97–103.

    Article  CAS  Google Scholar 

  92. Brioni, J. D., Kim, D. J., and O’Neill, A. B. (1996) Nicotine cue, lack of the effect of a7 nicotinic receptor antagonist methyllycaconitine. Eur. J. Pharmacol. 301, 1–5.

    Article  PubMed  CAS  Google Scholar 

  93. Carr, L. A., Rowell, P. P., and Pierce, W. M., Jr. (1989) Effects of subchronic nicotine administration on central dopaminergic mechanisms in the rat. Neurochem. Res. 14, 511–515.

    Article  PubMed  CAS  Google Scholar 

  94. Smith, K. M., Mitchell, S. N., and Joseph, M. H. (1991) Effects of chronic and subchronic nicotine on tyrosine-hydroxylase activity in noradrenergic and dopaminergic neurones in the rat brain. J. Neurochem. 57, 1750–1756.

    Article  PubMed  CAS  Google Scholar 

  95. Corrigall, W. A. and Coen, K. M. (1991) Selective dopamine antagonists reduce nicotine selfadministration. Psychopharmacology 104, 171–176.

    Article  PubMed  CAS  Google Scholar 

  96. Corrigal, W. A., Franklin, K. B. J., Coen, K. M., and Clarke, P. B. S. (1992) The mesolimbic dopamine system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107, 285–289.

    Article  Google Scholar 

  97. Dawe, S., Giarada, C., Russel, M. A. H., and Gray, J. A. (1995) Nicotine intake in smokers increases following single dose of haloperidol. Psychopharmacology 117, 110–116.

    Article  PubMed  CAS  Google Scholar 

  98. Hurt, R. D., Sachs, D. P. L., and Glover, E. D. (1997) A comparison of sustained-release bupropion and placebo for smoking cessation. N. Engl. J. Med. 337, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  99. Corrigall, W. A., Coen, K. M., and Adamson, K. L. (1994) Self-administration of nicotine activates the mesolimbic nicotine system through the ventral tegmental area. Brain Res. 653, 278–284.

    Article  PubMed  CAS  Google Scholar 

  100. Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, M. J., Nakabeppu, Y., Duman, R. S., and Nestler, E. J. (1994) Induction of a long-lating AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatment. Neuron 13, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  101. Harlan, R. E. and Garcia, M. M. (1998) Drug of abuse and immediate-early genes in the forebrain. Mol. Neurobiol. 16, 221–267.

    Article  PubMed  CAS  Google Scholar 

  102. Hughes, P. and Dragunow, M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47,133–178.

    PubMed  CAS  Google Scholar 

  103. Ren, T. and Segar, S. M. (1992) Induction of c-fos immunostaining in the rat brain after the systemic administration of nicotine. Brain Res. Bull. 29, 589–597.

    Article  PubMed  CAS  Google Scholar 

  104. Pang, Y., Kiba, H., and Jayaraman, A. (1993) Acute nicotine injections induced c-fos mostly in non-dopaminegic cells of the midbrain of the rat. Mol. Brain Res. 20, 162–170.

    Article  PubMed  CAS  Google Scholar 

  105. Mathieu-Kia, A. M., Pages, C., and Besson, M. J. (1998) Inducibility of c-Fos protein in visuomotor system and limbic structures after acute and repeated administration of nicotine in the rat. Synapse 29, 343–354.

    Article  PubMed  CAS  Google Scholar 

  106. Watanabe, K. I., Hashimoto, K., Nishimura, T., Tsunashima, K. I., and Minabe, Y. (1998) Expression of Fos protein in rat brain following administration of a nicotinic acetylcholine receptor agonist epibatidine. Brain Res. 797, 135–142.

    Article  PubMed  CAS  Google Scholar 

  107. Kiba, H. and Jayaraman, A. (1994) Nicotine induced c-fos expression in the striatum is mediated mostly by dopaminergic D1 receptor and is dependent on NMDA stimulation. Mol. Brain Res. 23, 1–13.

    Article  PubMed  CAS  Google Scholar 

  108. Nisell, M., Nomikos, G. G., Chergui, K., Grillner, P., Svesson, T. H. (1997) Chronic nicotine enhances basal and nicotine-induced Fos immunoreactivity preferentially in the medial prefrontal cortex of the rat. Neuropsychopharmacology 17,151–161.

    Article  PubMed  CAS  Google Scholar 

  109. Pagliusi, S. R., Tessari, M., DeVevey, S., Chiamulera, C., and Merlo Pich, E. (1996) The reinforcing properties of nicotine are associated with a specific patterning of c-fos expression in the rat brain. Eur. J. Neurosci. 8, 2247–2256.

    Article  PubMed  CAS  Google Scholar 

  110. Merlo Pich, E., Pagliusi, S. R., Tessari, M., Talabot-Ayer, D., Hooft van Huijsduijnen, R., and Chiamulera, C. (1997) Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 83–86.

    Article  Google Scholar 

  111. Dobranzki, P., Nouguchi, T., Kovary, K., Rizzo, C., Lazo, P. S., and Bravo, R. (1991) Both products of the fosB gene, fosB and its short form, FosB/SF, are transcriptional activator in fibroblasts. Mol Cell Biol. 11, 2063–2069.

    Google Scholar 

  112. Schena, M. (1995), Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270,467–470.

    Article  PubMed  CAS  Google Scholar 

  113. Konu, O., Kane, J. K., Barrett, T., Vawter, M. P., Chang, R. Y., Ma, J. Z., Donovan, D. M., Sharp, B., Becker, K. G., and Li, M. D. (2001) Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res. 909, 194–203.

    Article  PubMed  CAS  Google Scholar 

  114. Sacaan, A. L., Dunlop, J. L., and Loyd, G. K. (1995) Pharmacological characterisation of neuronal acetylcholine gated ion channel-receptors mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices. J. Pharmacol. Exp. Ther. 274, 224–230.

    PubMed  CAS  Google Scholar 

  115. Clarke, P. B. S. and Reuben, M. (1996) Release of [3H]-noradrenaline form rat hippocampal synaptosomes by nicotine, mediation from different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br. J. Pharmacol. 117, 595–606.

    Article  PubMed  CAS  Google Scholar 

  116. Brazel, M. P., Mitchell, S. N., and Gray, J. A. (1991) Effects of acute administration of nicotine on the in vivo release of noradrenaline in the hippocampus of freely moving rats, dose response and antagonism studies. Neuropharmacology 30, 823–833.

    Article  Google Scholar 

  117. Mitchell, S. N., Smith, K. M., Joseph, M. H., and Gray, G. A. (1993) Increases of thyrosine hydroxylase messenger RNA in the locus coeruleus after a single dose of nicotine are followed by time-dependent increases in enzyme activities and noradrenaline release. Neuroscience 56, 989–997.

    Article  PubMed  CAS  Google Scholar 

  118. Fu, Y., Matta, S. G., and Sharp, B. M. (1999) Local α-bungarotoxine-sensitive nicotinic receptors modulate hippocampal norepinephrine release by systemic nicotine. J. Pharmacol. Exp. Ther. 289,133–139.

    PubMed  CAS  Google Scholar 

  119. Rosencrans, J. A. and Meltzer, L. T. (1981) Central sites and mechanisms of action of nicotine. Neurosci. Biobehay. Rev. 5, 497–501.

    Article  Google Scholar 

  120. Holmes, K. J. and Spencer, C. M. (2000) Bupropion, a review of its use in the management of smoking cessation. Drugs 59,1007–1024.

    Article  Google Scholar 

  121. Amit, Z., Smith, B. R., and Gill, K. (1991) Serotonin uptake inhibitor, effects of motivated consummatory behavior. J. Clin. Psychiatr. 52(Suppl.), 55–61.

    Google Scholar 

  122. Parsons, L. H., Weiss, F., and Koob, G. F. (1998) Serotonin 1B receptor stimulation enhances cocaine reinforcement. J. Neurosci. 18, 10078–89.

    PubMed  CAS  Google Scholar 

  123. Corrigall, W. A. and Coen, K. M. (1994) Nicotine self-administration and locomotor activity are not modified by the 5-HT3 antagonist ICS205–930 and MDL722222. Pharmacol. Biochem. Behay. 49, 67–71.

    Article  CAS  Google Scholar 

  124. Sannerud, C. A., Prada, J., Goldberg, D. M., and Goldberg, S. M. (1994) The effects of sertraline on nicotine self-administrationand food-maintained responding in squirrel monkeys. Eur. J. Pharmacol. 271, 461–469.

    Article  PubMed  CAS  Google Scholar 

  125. Zacny, J. P., Apfelbaum, J. L., Lichtor, J. L., and Zacaroza, J. G. (1993) Effects of 5hydroxythriptamine-3 receptor antagonist, ondansetron, on cigarette smoking, smoke exposure, and mood in humans. Pharmacol. Biochem. Behay. 44, 387–391.

    Article  CAS  Google Scholar 

  126. Carboni, E., Aquas, E., Leone, P., and Di Chiara, G. (1989) 5-HT3 receptor antagonist ondansetron blocks morphine- and nicotine- but not amphetamine- induced reward. Psychopharmacology 97, 175–178.

    Article  PubMed  CAS  Google Scholar 

  127. Blondal, T., Gudmundsson, L. J., Tomasson, K., Jonsdottir, D., Hilmarsdottir, H., Kristjansson, F., Nilsson, F., and Bjornsdottir, U.S. (1999) The effects of fluoxetine combined with nicotine inhalers in smoking cessation, a randomized trial. Addiction 94,1007–1015.

    Article  PubMed  CAS  Google Scholar 

  128. Engberg, G. (1989) Nicotine induced excitation of locus coeruleus neurons is mediated via release of excitatory amino acids. Life Sci. 44, 1535–1540.

    Article  PubMed  CAS  Google Scholar 

  129. Shoaib, M., Benwell, M. E. M., Akbar, M. T., Stolerman, I. P., and Balfour, D. J. K. (1994) Behavioral and neurochemical adaptation to nicotine in rats: influence of NMDA antagonists. Br. J. Pharamcol. 111, 1073–1080.

    Article  CAS  Google Scholar 

  130. Rosenceans, J. A., Hendry, S. G., and Hong, J. S. (1985) Biphasic effects of chronic nicotine treatment on hypothalamic immunoreactive β-endorphins in the mouse. Pharmacol. Biochem. Behay. 23, 141–143.

    Article  Google Scholar 

  131. Houdi, A. A., Dasgupta, R., and Kindly, M. S. (1998) Effects of nicotine use and withdrawal on brain preproenkephalin A mRNA. Brain Res. 799, 257–263.

    Article  PubMed  CAS  Google Scholar 

  132. Dhatt, R. K., Gudehithlu, K. P., Wemlinger, T. A., Tewjani, G. A., Neff, N. H., and Hdjiconstantinou, M. (1995) Preproenkephalin mRNA and methionine-enkephalin contant are increased in mouse striatum after treatment with nicotine. J. Neurochm. 64, 1878–1883.

    Article  CAS  Google Scholar 

  133. Mathieu-Kia, A. M. and Besson, M. J. (1998) Repeated administration of cocaine, nicotine and ethanol, effects on preprodynorphin, preprotachynin A, and preproenkephalin nRNA expression in the dorsal and ventral striatum of the rat. Mol. Brain Res. 54, 141–151.

    Article  PubMed  CAS  Google Scholar 

  134. Gorelik, D. A., Rose, J. E., and Jarvik, M. E. (1989) Effects of naloxone on cigarette smoking. J. Subst. Abuse 1, 153–159.

    Article  Google Scholar 

  135. Karras, A. and Kane, J. M. (1980) Naloxone reduces cigarette smoking. Life Sci. 27, 1541–1545.

    Article  PubMed  CAS  Google Scholar 

  136. Nemeth-Coslett, R. and Griffith, R.R. (1986) Naloxone does not affect cigarette smoking. Psychopharmacology 89, 261–264.

    Article  PubMed  CAS  Google Scholar 

  137. Corrigal, W. A., Coen, K. M., Adamson, K. L., Chow, B. L., and Zhang, J. (2000) Response of nicotine self-administration in the rat to manipulations of mu-opioid and gamma-aminobutyric acid receptors in the ventral tegmental area. Psychopharmacologia 149, 107–114.

    Article  Google Scholar 

  138. Kayadjanian, N., Retaux, S., Menetrey, A., and Besson, M. J. (1994) Stimulation by nicotine of the spontaneous release of [3H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res. 649, 129–135.

    Article  PubMed  CAS  Google Scholar 

  139. Alkondon, M., Pereira, E. F., Barbosa C. T., and Albunquerque, E. X. (1997) Neuronal nicotinic acetylcholine receptor activation modulates amma-aminobutyric acid release from CA 1 neurons of rat hippocampal slices. J. Pharmacol. Exp. Ther. 283, 1396–1411.

    PubMed  CAS  Google Scholar 

  140. Lu, Y., Grady, S., Marks, M. J., Picciotto, M., Changeux, J. P., and Colins, A. C. (1998) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J. Pharmacol. Exp. Ther. 287, 648–657.

    PubMed  CAS  Google Scholar 

  141. Fattore, L., Cossu, G., Martellotta, M. C., Deiana, S., and Fratta, W. (2001) Baclofen antagonises intravenous self-administration of gammahydroxybutyric acid in mice. Neuroreport 12, 2243–2246.

    Article  PubMed  CAS  Google Scholar 

  142. Cousins, M. S., Stamat, H. M., and de Wit, H. (2001) Effects of a single dose of baclofen on self-reported subjective effects and tobacco smoking. Nicotine & Tobacco Res. 3, 23–129.

    Article  Google Scholar 

  143. Dewey, S. L., Brodie, J. D., Gerasimov, M., Horan, B., and Ashby, C. R., Jr. (1999) A pharmacologic strategy for the treatment of nicotine addiction. Synapse 31, 76–86.

    Article  PubMed  CAS  Google Scholar 

  144. Wickelgren, I. (1998) Drug may suppress the craving for nicotine. Science 282, 1797–1799.

    Article  PubMed  CAS  Google Scholar 

  145. Sullivan, P. F., Jiang, Y., Neale, M. C., Kendler, K. S., and Straub, R. E. (2001) Association of the tryptophan hydroxylase gene with smoking initiation but not progression to nicotine dependence. Am. J. Med. Gen. 105, 479–484.

    Article  CAS  Google Scholar 

  146. McKinney, E. F., Walton, R. T., Yudkin, P., Fuller, A., Haldar, N. A., Man, D., Murphy, M., Welsh, K. I., and Marshall, S. E. (2000) Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics 10, 483–491.

    Article  PubMed  CAS  Google Scholar 

  147. Comings, D. E. and Blum, D. E. (2000) Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog. Brain Res. 126, 325–341.

    Article  PubMed  CAS  Google Scholar 

  148. Stitzel, J. A., Lu, Y., Jimenez, M., Tritto, T., and Collins, A. C. (2000) Genetic and pharmacological strategies identify a behavioral function of neuronal nicotinic receptors. Behay. Brain Res. 113, 57–64.

    Article  CAS  Google Scholar 

  149. Mohammed, A. H. (2000) Genetic dissection of nicotine-related behavior: a review of animal studies. Behay. Brain Res. 113, 35–41.

    Article  CAS  Google Scholar 

  150. Heyser, C. J., McDonald, J. S., Beauchamp, V., Koob, G. F., and Gold, L. H. (1997) The effects of cocaine on operant responding for food in several strains of mice. Psychopharmacology 132, 202–208.

    Article  PubMed  CAS  Google Scholar 

  151. Deroche, V., Caine, S. B., Heyser, C. J., Polis, I., Koob, G. F., and Gold, L. H. (1997) Differences in the liability to self—administer intravenous cocaine between C57BL/6 x SJL and BALB/cByJ mice. Pharmacol. Biochem Behay. 57, 429–435.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pich, E.M., Heidbreder, C., Mugnaini, M., Teneggi, V. (2003). Molecular and Behavioral Aspects of Nicotine Dependence and Reward. In: Maldonado, R. (eds) Molecular Biology of Drug Addiction. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-343-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-343-9_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-330-5

  • Online ISBN: 978-1-59259-343-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics