Skip to main content

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Nicotinic acetylcholine receptors (AChRs) are acetylcholine-gated cation channels. They play a critical postsynaptic role in transmission between motor nerves and skeletal muscles and in autonomic ganglia (1,2). In the central nervous system, they also act presynaptically and extrasynaptically to modulate transmission by facilitating the release of many transmitters (3,4). In the skin (5), bronchial and vascular epithelia (6,7), and other nonneuronal tissues (8), they also mediate intercellular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindstrom J. The structures of neuronal nicotinic receptors. In: Clementi F, Gotti C, Fornasari D, eds. Neuronal Nicotinic Receptors Handbook. Experimental Pharmacology, vol. 144. New York, Springer, 2000, pp. 101–162.

    Chapter  Google Scholar 

  2. Berg D, Shoop R, Chang K, et al. Nicotinic acetylcholine receptors in ganglionic transmission. In: Clementi F, Gotti C, Fornasari D, eds. Neuronal Nicotinic Receptors Handbook. Experimental Pharmacology, vol. 144. New York, Springer, 2000, pp. 247–270.

    Chapter  Google Scholar 

  3. Zoli M. Distribution of cholinergic neurons in the mammalian brain with special reference to their relationship with neuronal nicotinic receptors. In: Clementi F, Gotti C, Fornasari D, eds. Neuronal Nicotinic Receptors Handbook. Experimental Pharmacology, vol. 144. New York, Springer, 2000, pp. 13–30.

    Chapter  Google Scholar 

  4. Kaiser S, Soliokov L, Wonnacott S. Presynaptic neuronal nicotinic receptors: pharmacology, heterogeneity, and cellular mechanisms. In: Clementi F, Gotti C, Fornasari D, eds. Neuronal Nicotinic Receptors Handbook. Experimental Pharmacology, vol. 144. New York, Springer, 2000, pp. 193–212.

    Chapter  Google Scholar 

  5. Grando S, Horton R. The keratinocyte cholinergic system with acetylcholine as an epidermal cytotransmitter. Curr Opin Dermatol 1997; 4: 262–268.

    Google Scholar 

  6. Maus A, Pereira E, Karachunski P, et al. Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 1998; 54: 779–788.

    PubMed  CAS  Google Scholar 

  7. Macklin K, Maus A, Pereira E, et al. Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1998; 287: 435–439.

    PubMed  CAS  Google Scholar 

  8. Sekhon HS, Jia YB, Raab R, et al. Prenatal nicotine increases pulmonary alpha 7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin I nvest 1999; 103: 637–647.

    Article  PubMed  CAS  Google Scholar 

  9. Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes—recent advances. Arch Neurol 1999; 56: 163–157.

    Article  PubMed  CAS  Google Scholar 

  10. Steinlein OK. Neuronal nicotinic receptors in human epilepsy. Eur J Pharmacol 2000; 393: 243–247.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2001; 68: 225–231.

    Article  PubMed  CAS  Google Scholar 

  12. De Fusco M, Becchetti A, Patrignani A, et al. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000; 26: 275–276.

    Article  PubMed  Google Scholar 

  13. Lindstrom J. Acetylcholine receptors and myasthenia. Muscle Nerve 2000; 23: 453–477.

    Article  PubMed  CAS  Google Scholar 

  14. Vernino S, Low PA, Fealey RD, et al. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med 2000;343:847– 855.

    Google Scholar 

  15. Grando SA. Autoimmunity to keratinocyte acetylcholine receptors in pemphigus. Der matology 2000; 201: 290–295.

    Article  PubMed  CAS  Google Scholar 

  16. Dani J, Ji D, Zhou F-M. Synaptic plasticity and nicotine addiction. Neuron 2001; 31: 349–352.

    Article  PubMed  CAS  Google Scholar 

  17. Epping-Jordan M, Watkins S, Koob G, et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature 1998; 393: 76–79.

    Article  PubMed  CAS  Google Scholar 

  18. Peto R, Lopez AD, Boreham J, et al. Mortality from tobacco in developed countries —indirect estimation from national vital statistics. Lancet 1992; 339: 1268–1278.

    Article  PubMed  CAS  Google Scholar 

  19. Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 2000; 292: 461–467.

    PubMed  CAS  Google Scholar 

  20. Heeschen C, Jang J, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 2001; 7: 833–839.

    Article  PubMed  CAS  Google Scholar 

  21. Karlin A, Akabas MH. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins Neuron 1995; 15: 1231–1244.

    Article  PubMed  CAS  Google Scholar 

  22. Galzi J-L, Devillers-Thiery A, Hussy N, et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 1992; 359: 500–505.

    CAS  Google Scholar 

  23. Eisele JL, Bertrand S, Galzi J-L, et al. Chimeric nicotinic serotonergic receptor combines distinct ligand-binding and channel speciifcities. Nature 1993; 366: 479–483.

    Article  PubMed  CAS  Google Scholar 

  24. Lindstrom J. Puriifcation and cloning of nicotinic acetylcholine receptors. In: Arneric S, Brioni D, eds. Neuronal Nicotinic Receptors: Pharmacology and Therape utic Opportunities. New York, John Wiley & Sons, 1999, pp. 3–23.

    Google Scholar 

  25. Jackson MB. Perfection of a synaptic receptor—kinetics and energetics of the acetylcholine-receptor. Proc. Natl Acad Sci USA 1989; 86: 2199–2203.

    Article  PubMed  CAS  Google Scholar 

  26. Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 1999; 22: 389–442.

    Article  PubMed  CAS  Google Scholar 

  27. Corringer PJ, LeNovere N, Changeux J-P. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 2000; 40; 431–458.

    Article  PubMed  CAS  Google Scholar 

  28. Unwin N. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Philos Tran R Soc Lond B 2000; 1404: 1813–1829.

    Article  Google Scholar 

  29. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science 1973; 180: 871–872.

    Article  PubMed  CAS  Google Scholar 

  30. Tzartos SJ. Lindstrom JM. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl Acad Sci USA 1980; 77: 755–759.

    Article  PubMed  CAS  Google Scholar 

  31. Tzartos SJ, Barkas T, Cung MT, et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 1998; 163: 89–120.

    Article  PubMed  CAS  Google Scholar 

  32. Smit AB, Syed NI, Schaap D, et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 2001; 411: 261–268.

    Article  PubMed  CAS  Google Scholar 

  33. Brejc K, van Dijk WJ, Klaassen, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 2001;411: 269–276.

    Google Scholar 

  34. Wells GB, Anand R, Wang F, Lindstrom J. Water-soluble nicotinic acetylcholine receptor formed by α7 subunit extracellular domains. J Biol Chem 1998;273:964– 973.

    Google Scholar 

  35. Grutter T, Changeux J-P. Nicotinic receptors in wonderland. Trends Biochem Sci 2001; 26: 459–463.

    Article  PubMed  CAS  Google Scholar 

  36. Fu DX, Sine SM. Asymmetric contribution of the conserved disulfide loop to subunit oligomerization and assembly of the nicotinic acetylcholine receptor. J Biol Chem 1996;271:31, 479–31, 484.

    Google Scholar 

  37. Wilson GG, Karlin A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc. Natl Acad Sci USA 2001; 98: 1241–1248.

    Article  CAS  Google Scholar 

  38. Das MK, Lindstrom J. Epitope mapping of antibodies to acetylcholine receptor-alpha subunits using peptides synthesized on polypropylene pegs. Biochemist ry 1991; 30: 2470–2477.

    Article  PubMed  CAS  Google Scholar 

  39. Maimone MM, Merlie JP. Interaction of the 43 kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine-receptor. Neuron 1993; 11: 53–66.

    Article  PubMed  CAS  Google Scholar 

  40. Conroy WG, Berg DK. Rapsyn variants in ciliary ganglia and their possible effects on clustering of nicotinic receptors. J Neurochem 1999; 73: 1399–1408.

    Article  PubMed  CAS  Google Scholar 

  41. Jeanclos E, Lin L, Trevel M, Rao J, DeCoster M, Anand R. The chaperone protein 14–3–3 rl interacts with the nicotinic receptor a4 subunit. J Biol Chem 2001;276: 28, 281–28, 290.

    Google Scholar 

  42. Keller S, Lindstrom J, Taylor P. Involvement of the chaperone protein calnexin and the acetylcholine receptor ß subunit in the assembly and cell surface expression of the receptor. J Biol Chem 1996;271:22, 871–22, 877.

    Google Scholar 

  43. Keller D, Taylor P. Determinants responsible for assembly of the nicotinic acetylcholine receptor. J Gen Physiol 1999; 113: 171–176.

    Article  PubMed  CAS  Google Scholar 

  44. Keller SH, Lindstrom J, Taylor P. Adjacent basic amino acid residues recognized by the COPI complex and ubiquitination govern endoplasmic reticulum to cell surface trafficking of the nicotinic acetylcholine receptor alpha-subunit. J Biol Chem 2001;276:18, 384–18, 391.

    Google Scholar 

  45. Miles K, Huganir RL. Regulation of nicotinic acetylcholine-receptors by proteinphosphorylation. Mol Neurobiol 1988; 2: 91–124.

    Article  PubMed  CAS  Google Scholar 

  46. Fenster CP, Beckman ML, Parker JC, et al. Regulation of alpha 4 beta 2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 1999; 55: 432–443.

    PubMed  CAS  Google Scholar 

  47. Williams BM, Temburni MK, Levy MS, et al. The long internal loop of the á3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci 1998; 1: 557–562.

    Article  PubMed  CAS  Google Scholar 

  48. Bougat C, Bren N, Sine SM. Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors. Neuron 1994; 13: 1395–1402.

    Article  Google Scholar 

  49. Paradiso K, Zhang J, Steinbach J. The C terminus of the human nicotinic á4â2 receptor forms a binding site required for potentiation by an estrogenic steroid. J Neurosci 2001; 21: 6561–6568.

    PubMed  CAS  Google Scholar 

  50. Curtis L, Buisson B, Bertrand S, Bertrand D. Allosteric potentiation of the á4â2 neuronal nicotinic acetylcholine receptor by estradiol. Neurosciences Socie ty Meeting 2000; abstract 235. 13.

    Google Scholar 

  51. LeNovere N, Changeux JP. Molecular evolution of the nicotinic acetylcholinereceptor—an example of a multigene family in excitable cells. J Mol Evol 1995; 40: 155–172.

    Article  CAS  Google Scholar 

  52. Duvoisin R, Deneris E, Patrick J, Heinemann S. The functional diversity of the neu-ronal nicotinic receptors is increased by a novel subunit: β4. Neuron 1989; 3: 487–496.

    Article  PubMed  CAS  Google Scholar 

  53. Schoepfer R, Conroy W, Whiting P, Gore M, Lindstrom J. Brain α-bungarotoxin binding-protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 1990; 5: 35–48.

    Article  PubMed  CAS  Google Scholar 

  54. Elgoyhen A, Vetter D, Katz E, et al. Alpha 10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl Acad Sci USA 2001; 98: 3501–3506.

    Article  PubMed  CAS  Google Scholar 

  55. Lustig LR, Peng H, Hiel H, Yamamoto T, Fuchs P. Molecular cloning and mapping of the human nicotinic acetylcholine receptor alpha 10 (CHRNA10). Genomics 2001; 73: 272–283.

    Article  PubMed  CAS  Google Scholar 

  56. Wang F, Gerzanich V, Wells GB, et al. Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and â4 subunits. J Biol Chem 1996;271:17,656– 17, 665.

    Google Scholar 

  57. Forsayeth JR, Kobrin E. Formation of oligomers containing the β3 and β4 subunits of the rat nicotinic receptor. J Neurosci 1997; 17: 1531–1538.

    PubMed  CAS  Google Scholar 

  58. Fucile S, Barabino B, Palma E, et al. α5 subunit forms functional á3â4á5 nAChRs in transfected human cells. Neuroreport 1997; 8: 2433–2436.

    Article  PubMed  CAS  Google Scholar 

  59. Vailati S, Hanke W, Bejan A, et al. Functional α6-containing nicotinic receptors are present in chick retina. Mol Pharmacol 1999; 56: 11–19.

    PubMed  CAS  Google Scholar 

  60. Kuryatov A, Olale F, Cooper J, Choi C, Lindstrom J. Human á6 AChR subtypes: subunit composition, assembly, and pharmacological responses. Neuropharmacology 2000; 39: 2570–2590.

    Article  PubMed  CAS  Google Scholar 

  61. Groot-Kormelink P, Luyten W, Colquhoun D, Silviotti L. A reporter mutation approach shows incorporation of the “orphan” subunit β3 into a functional nicotinic receptor. J Biol Chem 1998;273:15, 317–15, 320.

    Google Scholar 

  62. Boorman J, Groot-Kormelink P, Silviotti L. Stoichiometry of human recombinant neuronal nicotinic receptors containing the â3 subunit expressed in Xenopus oocytes. J Physiol 2000; 529: 565–577.

    Article  PubMed  CAS  Google Scholar 

  63. Conroy WG, Berg DK. Neurons can maintain multiple classes of nicotinic acetylcholine-receptors distinguished by different subunit compositions. J Biol Chem 1995; 270: 4424–4431.

    Article  PubMed  CAS  Google Scholar 

  64. Lena C, deKerchove d’Exaerde AD, et al. Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc. Natl Acad Sci USA 1999;96:12,126–12,131.

    Google Scholar 

  65. Shoop RD, Chang KT, Ellisman MH, Berg D. Synaptically driven calcium transients via nicotinic receptors on somatic spines. J Neurosci 2001; 21: 771–781.

    PubMed  CAS  Google Scholar 

  66. Nelson M, Wang F, Kuryatov A, et al. Functional properties of human nicotinic AChRs expressed in IMR-32 neuroblastoma cells resemble those of á3â4 AChRs expressed in permanently transfected HEK cells. J Gen Physiol 2001; 118: 563–582.

    Article  PubMed  CAS  Google Scholar 

  67. Klink R, deKerchove d’Exaerde A, Zoli M, Changeux J-P. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 2001; 21: 1452–1463.

    PubMed  CAS  Google Scholar 

  68. Ramirez-Latorre J, Yu C, Qu X, et al. Functional contributions of á5 subunit to neuronal acetylcholine receptor channels. Nature 1996; 380: 347–351.

    Article  PubMed  CAS  Google Scholar 

  69. Gerzanich V, Wang F, Kuryatov, A, Lindstrom J. α5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal á3 nicotinic receptors. J Pharmacol Exp Ther 1998; 286: 311–320.

    PubMed  CAS  Google Scholar 

  70. Sussman JL, Harel M, Frolow F, et al. Atomic-structure of acetylcholinesterase from Torpedo calfor inica—a prototypic acetylcholine-binding protein. Science 1991; 253: 872–879.

    Article  PubMed  CAS  Google Scholar 

  71. Bohler S, Gay S, Bertrand S, et al. Desensitization of neuronal nicotinic receptors conferred by N-terminal segments of the â2 subunit. Biochemist ry 2001;40:2066– 2074.

    Google Scholar 

  72. Prince RJ, Sine SM. Acetylcholine and epibatidine binding to muscle acetylcholine receptors distinguish between concerted and uncoupled models. J Biol Chem 1999;274:19, 623–19, 629.

    Google Scholar 

  73. Kuffler S, Yoshikami D. The number of transmitter molecules in a quantum. J Physiol 1975; 251: 465–482.

    PubMed  CAS  Google Scholar 

  74. Steinbach J, Chen Q. Antagonist and partial agonist actions of d-tubocurarine at mammalian muscle acetylcholine-receptors. J Neurosci 1995; 15: 230–240.

    PubMed  CAS  Google Scholar 

  75. Malany S, Osaka H, Sine SM, Taylor P. Orientation of áneurotoxin at the subunit interfaces of the nicotinic acetylcholine receptor. Biochemist ry 2000;39:15,388– 15, 398.

    Google Scholar 

  76. Magleby K. Neuromuscular transmission. In: Engel A, Franzini-Arm strong C, eds. Myology: Basic and Clinical, 2nd ed, vol. 1. New York, McGraw Hill, 1994, pp. 442–463.

    Google Scholar 

  77. Gunderson CH, Lehmann CR, Sidell FR, Gabbari B. Nerve agents—a review. Neurology 1992; 42: 946–950.

    Article  PubMed  CAS  Google Scholar 

  78. Benowitz N. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pha rmacol Toxicol 1996; 36: 597–613.

    Article  PubMed  CAS  Google Scholar 

  79. Kopta C, Steinbach J. Comparison of mammalian adult and fetal nicotinic acetylcholine receptors stably expressed in fibroblasts. J Neurosci 1994; 14: 3922–3933.

    PubMed  CAS  Google Scholar 

  80. Papke RL, Meyer E, Nutter T, Uteshev V. α7 receptor-selective agonists and modes of á7 receptor activation. Eur J Pharmacol 2000; 393: 179–195.

    Article  PubMed  CAS  Google Scholar 

  81. Froehner SC. Identification of exposed and buried determinants of the membrane-bound acetylcholine receptor from Torpedo calforinica. Biochemist ry 1981; 20: 4905–4915.

    Article  PubMed  CAS  Google Scholar 

  82. Tzartos SJ, Seybold ME, Lindstrom JM. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl Acad Sci USA 1982; 79: 188–192.

    Article  PubMed  CAS  Google Scholar 

  83. Kontou M, Leonidas D, Vatzaki E, et al. The crystal structure of the Fab fragment of a rat monoclonal antibody against the main immunogenic region of the human muscle acetylcholine receptor. Eur J Biochem 2000; 267: 2389–2396.

    Article  PubMed  CAS  Google Scholar 

  84. Poulas K, Eliopoulas E, Vatzoki E, et al. Crystal structure of Fab 198, an efficient protector of the acetylcholine receptor agonist myasthenogenic antibodies. Eur J Biochem 2001; 268: 3685–3693.

    Article  PubMed  CAS  Google Scholar 

  85. Saedi MS, Anand R, Conroy WG, Lindstrom J. Determination of amino-acids critical to the main immunogenic region of intact acetylcholine-receptors by in vitro mutagenesis. FEBS Lett 1990; 267: 55–59.

    Article  PubMed  CAS  Google Scholar 

  86. Lindstrom J, Shelton GD, Fujii Y. Myasthenia gravis. Adv Immunol 1988;42:233– 284.

    Google Scholar 

  87. Beroukhim R, Unwin N. 3-Dimensional location of the main immunogenic region of the acetylcholine receptor. Neuron 1995; 15: 323–331.

    CAS  Google Scholar 

  88. Lindstrom J. An assay for antibodies to human acetylcholine receptor in serum from patients with myasthenia gravis. Clin Immunol Immunopathol 1977; 7: 36–43.

    Article  PubMed  CAS  Google Scholar 

  89. Engel A, ed. Myasthenia Gravis and Myasthenic Disorders. Contemporary Neurology Series. New York, Oxford University Press, 1999.

    Google Scholar 

  90. Heinemann S, Bevan S, Kullberg R, Lindstrom J, Rice J. Modulation of the acetylcholine receptor by anti-receptor antibody. Proc. Natl Acad Sci USA 1977; 74: 3090–3094.

    Article  PubMed  CAS  Google Scholar 

  91. Drachman DB, Angus CW, Adams RN, Michelson J, Hoffman G. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 1978; 298: 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  92. Drachman D. The biology of myasthenia gravis. Annu Rev Neurosci 1981;4:195– 225.

    Google Scholar 

  93. Blatt Y, Montal MS, Lindstrom J, Montal M. Monoclonal antibodies specific to the O-subunit and y-subunit of the Torpedo acetylcholine receptor inhibit single-channel activity. J Neurosci 1986; 6: 481–486.

    PubMed  CAS  Google Scholar 

  94. Shelton GD, Cardinet GH, Lindstrom JM. Canine and human myasthenia gravis autoantibodies recognize similar regions on the acetylcholine receptor. Neurology 1988; 38: 1417–1423.

    Article  PubMed  CAS  Google Scholar 

  95. Weinberg CB, Hall ZW. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc. Natl Acad Sci USA 1979; 76: 504–508.

    Article  PubMed  CAS  Google Scholar 

  96. Burges J, Wray DW, Pizzighella S, Hall Z, Vincent A. A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro. Muscle Nerve 1990; 13: 407–413.

    Article  PubMed  CAS  Google Scholar 

  97. Vincent A, Newland C, Brueton L, et al. Arthrogryposis multiplex congenita with maternal autoantibodies specific for a fetal antigen. Lancet 1995; 346: 24–25.

    Article  PubMed  CAS  Google Scholar 

  98. Conti-Fine BM, Navaneetham D, Karachunski PI, et al. T cell recognition of the acetylcholine receptor in myasthenia gravis. Ann NY Acad Sci 1998;841:283– 308.

    Google Scholar 

  99. Beeson D, Bond AP, Corlett L, et al. Thymus, thymoma, and specific T cells in myasthenia gravis. Ann NY Acad Sci 1998; 841: 371–387.

    Article  PubMed  CAS  Google Scholar 

  100. Fujii Y, Lindstrom J. Specificity of the T-cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis—response to subunits and synthetic peptides. J Immunol 1988; 140: 1830–1837.

    PubMed  CAS  Google Scholar 

  101. Hohlfeld R, Wekerle H. The immunopathogenesis of myasthenia gravis. In: Engel A, ed. Myasthenia Gravis and Myasthenic Disorders. Contemporary Neurology Series, vol. 56. New York, Oxford University Press, 1999, pp. 87–110.

    Google Scholar 

  102. Raju R, Spack E, David C. Acetylcholine receptor peptide recognition in HLA DR3- transgenic mice: in vivo responses correlate with MHC-peptide binding. J Immunol2001;167:1118–1124.

    Google Scholar 

  103. Ong B, Willcox N, Wordsworth P, et al. Critical role for the val/gly86 HLA-DR-ß dimorphism in autoantigen presentation to human T-cells. Proc. Natl Acad Sci USA 1991; 88: 7343–7347.

    Article  PubMed  CAS  Google Scholar 

  104. Christadoss P, Lindstrom JM, Melvold RW, Talal N. IA subregion mutation prevents experimental autoimmune myasthenia gravis. Immunogenetics 1985; 21: 33–38.

    Article  PubMed  CAS  Google Scholar 

  105. Christadoss P, Poussin M, Deng CS. Animal models of myasthenia gravis. Clin Immun ol 2000; 94: 75–87.

    Article  CAS  Google Scholar 

  106. Shelton D, Lindstrom J. Spontaneous remission in canine myasthenia gravis: implications for assessing human therapies. Neurology 2001; 57: 2139–2141.

    Article  PubMed  CAS  Google Scholar 

  107. Russell A, Lindstrom J. Penicillamine induced myasthenia gravis associated with antibodies to the acetylcholine receptor. Neurology 1989; 28: 847–849.

    Article  Google Scholar 

  108. Vincent A, Newsom-Davis J, Martin V. Anti-acetylcholine receptor antibodies in D-penicillamine associated myasthenia gravis. Lancet 1978; I: 1254.

    Article  Google Scholar 

  109. Penn AS, Low BW, Jaffe IA, Luo L, Jacques J. Drug-induced autoimmune myasthenia gravis. Ann NY Acad Sci 1998; 841: 433–449.

    Article  PubMed  CAS  Google Scholar 

  110. Keesey J, Lindstrom J, Cokely A. Anti-acetylcholine receptor antibody in neonatal myasthenia gravis. N Engl J Med 1977; 296: 55.

    PubMed  CAS  Google Scholar 

  111. Vernet der Garabedian B, Lacokova M, Eymard B, et al. Association of neonatal myasthenia gravis with antibodies against the fetal acetylcholine receptor. J Clin Invest 1994; 94: 555–559.

    Article  Google Scholar 

  112. Willcox H. Thymic tumors with myasthenia gravis or bone marrow dyscrasias. In: Peckham M, ed. Oxford Textbook of Oncology. New York, Oxford University Press, 1995, pp. 1562–1568.

    Google Scholar 

  113. Vincent A, Newsom-Davis J. Acetylcholine receptor antibody characteristics in myasthenia gravis. I: patients with generalized myasthenia or disease restricted to ocular muscles. Clin Exp Immunol 1982; 49: 257–265.

    CAS  Google Scholar 

  114. Baggi F, Andreetta F, Antozzi C, et al. Anti-titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma. Ann NY Acad Sci 1998; 841: 538–541.

    Article  PubMed  CAS  Google Scholar 

  115. Cikes N, Momoi M, Williams C, et al. Striational autoantibodies: quantitative detection by enzyme immunoassay in myasthenia gravis, thymoma and recipients of D-penicillamine or allogenic bone marrow. Mayo Clin Proc 1998; 63: 474–481.

    Article  Google Scholar 

  116. Wakkach A, Guyon T, Bruand C, et al. Expression of acetylcholine receptor genes in human thymic epithelial cells. Implications for myasthenia gravis. J Immunol 1996; 157: 3752–3760.

    PubMed  CAS  Google Scholar 

  117. Zheng Y, Whatly L, Liu T, Levinson A. Acetylcholine receptor a subunit in mRNA expression in human thymus: augmented expression in myasthenia gravis and upregulation by interferon-S. Clin Immunol 1999; 91: 170–177.

    Article  PubMed  CAS  Google Scholar 

  118. Vincent A, Lang B, Newsom-Davis. Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder. TI. N.S 1989; 12: 496–502.

    PubMed  CAS  Google Scholar 

  119. Vincent A, Willcox N, Hill M, et al. Determinant spreading and immunoresponses to acetylcholine receptors in myasthenia gravis. Immunol Rev 1998; 164: 157–168.

    Article  PubMed  CAS  Google Scholar 

  120. Bartfeld D, Fuchs S. Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. Proc. Natl Acad Sci USA 1978; 75: 4006–4010.

    Article  PubMed  CAS  Google Scholar 

  121. Lindstrom J, Einarson B, Merlie J. Immunization of rats with polypeptide chains from Torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle. Proc. Natl Acad Sci USA 1978; 75: 769–773.

    Article  PubMed  CAS  Google Scholar 

  122. Lindstrom J, Peng X, Kuryatov A, et al. Molecular and antigenic structure of nicotinic acetylcholine receptors. Ann NY Acad Sci 1998; 841: 71–86.

    Article  PubMed  CAS  Google Scholar 

  123. Bachmaier K, Nen N, de la Maza L, et al. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283: 1335–1339.

    Article  PubMed  CAS  Google Scholar 

  124. Nachamkin I, Allos B, Ho T. Campylobacter species and Guillain Barré syndrome. Clin Microbiol Rev 1998; 11: 555–567.

    PubMed  CAS  Google Scholar 

  125. Faller G, Steininger H, Kranzlein J, et al. Antigastric autoantibodies in Helicobacter pylori infection: implications of histological and clinical parameters of gastritis. Gut 1997; 41: 619–623.

    Article  PubMed  CAS  Google Scholar 

  126. Lindstrom J, Einarson B, Lennon V, Seybold M. Pathological mechanisms in EAMG. I: Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental autoimmune myasthenia gravis. J Exp Med 1976; 144: 726–738.

    Article  PubMed  CAS  Google Scholar 

  127. Jermy A, Beeson D, Vincent A. Pathogenic autoimmunity to affinity-purified mouse acetylcholine receptor induced without adjuvant in BALB/c mice. Eur J Immunol 1993; 23: 973–976.

    Article  PubMed  CAS  Google Scholar 

  128. Lindstrom J. Experimental induction and treatment of myasthenia gravis. In: Engel A, ed. Myasthenia Gravis and Myasthenic Disorders. Contemporary Neurology Series, New York, Oxford University Press, 1999, pp. 111–130.

    Google Scholar 

  129. Zoda T, Krolick K. Antigen presentation and T cell specificity repertoire in determining responsiveness to an epitope important in experimental autoimmune myasthenia gravis. J Neuroimmunol 1993; 43: 131–138.

    Article  PubMed  CAS  Google Scholar 

  130. Lindstrom J, Seybold M, Lennon V, Whittingham S, Duane D. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value. Neurology 1976; 26: 1054–1059.

    Article  PubMed  CAS  Google Scholar 

  131. Vincent A, Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2,967 diagnostic assays. J Neurol Neurosu rg Psychiatry 1985; 48: 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  132. Seybold M, Lindstrom J. Patterns of acetylcholine receptor antibody fluctuation in myasthenia gravis. Ann NY Acad Sci 1981; 377: 292–306.

    Article  PubMed  CAS  Google Scholar 

  133. Lindstrom J, Engel A, Seybold M, Lennon V, Lambert E. Pathological mechanisms in EAMG. II: Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J Exp Med 1976; 144: 739–753.

    Article  PubMed  CAS  Google Scholar 

  134. Tzartos S, Hochschwender S, Vasquez P, Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main

    Google Scholar 

  135. immunogenic region of the acetylcholine receptor. J Neuroimmunol 1987; 15: 185–194.

    Article  Google Scholar 

  136. Toyka KV, Drachman DB, Pestronk A, Kao I. Myasthenia gravis: passive transfer from man to mouse. Science 1975; 190: 397–399.

    Article  PubMed  CAS  Google Scholar 

  137. Toyka KV, Birmberger KL, Anzil AP, et al. Myasthenia gravis: further electrophysiological and ultrastructural analysis of transmission failure in the mouse passive transfer model. J Neurol Neurosu rg Psychiatry 1978; 41: 746–753.

    Article  PubMed  CAS  Google Scholar 

  138. Engel A, Tsujihata M, Lambert E, Lindstrom J, Lennon V. Experimental autoimmune myasthenia gravis: a sequential and quantitative study of the neuromuscular junction ultrastructure and electrophysiologic correlation. J Neuropathol Exp Neurol 1976; 35: 569–587.

    Article  PubMed  CAS  Google Scholar 

  139. Engel A, Tsujihata M, Lindstrom J, Lennon V. End-plate fine structure in myasthenia gravis and in experimental autoimmune myasthenia gravis. Ann NY Acad Sci 1976; 274: 60–79.

    Article  PubMed  CAS  Google Scholar 

  140. Engel A, Sakakibara H, Sahashi K, et al. Passively transferred experimental autoimmune myasthenia gravis. Neurology 1979; 29: 179–188.

    Article  PubMed  CAS  Google Scholar 

  141. Bevan S, Heinemann S, Lennon V, Lindstrom J. Reduced muscle acetylcholine sensitivity in rats immunized with acetylcholine receptor. Nature 1976;260:438– 439.

    Google Scholar 

  142. Lambert E, Lindstrom J, Lennon V. End-plate potentials in experimental autoimmune myasthenia gravis in rats. Ann NY Acad Sci 1976; 274: 300–318.

    Article  PubMed  CAS  Google Scholar 

  143. Lindstrom J, Lambert E. Content of acetylcholine receptor and antibodies bound to receptor in myasthenia gravis, experimental autoimmune myasthenia gravis, and in Eaton-Lambert syndrome. Neurology 1978; 28: 130–138.

    Article  PubMed  CAS  Google Scholar 

  144. Sahashi K, Engel A, Lindstrom J, Lambert EH, Lennon V. Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J Neuropathol Exp Neurol 1978; 37: 212–223.

    Article  PubMed  CAS  Google Scholar 

  145. Sahashi K, Engel A, Lambert E, Howard F. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 1980; 39: 160–172.

    Article  PubMed  CAS  Google Scholar 

  146. Appel S, Anwyl R, McAdams M, Elias S. Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globulins. Proc Natl Acad Sci USA 1977; 74: 2130–2134.

    Article  PubMed  CAS  Google Scholar 

  147. Bufler J, Pitz R, Czep M, Wick M, Franke C. Purified IgG from seropositive and seronegative patients with myasthenia gravis reversibly blocks currents through nicotinic acetylcholine receptor channels. Ann Neurol 1998; 43: 458–464.

    Article  PubMed  CAS  Google Scholar 

  148. Burges J, Vincent A, Molenaar P, et al. Passive transfer of seronegative myasthenia gravis to mice. Muscle Nerve 1994; 17: 1393–1400.

    Article  PubMed  CAS  Google Scholar 

  149. Donnelly D, Mihovilovic M, Gonzalez-Ros J, et al. A noncholinergic site-directed monoclonal antibody can impair agonist-induced ion flux in Torpedo calfor I nica acetylcholine receptor. Proc. Natl Acad Sci USA 1984; 81: 7999–8003.

    Article  PubMed  CAS  Google Scholar 

  150. Fels G, Plumer-Wilk R, Schreiber M, Maelicke A. A monoclonal antibody interfering with binding and response of the acetylcholine receptor. J Biol Chem 1986; 261:15, 746–15, 754.

    Google Scholar 

  151. Gomez G, Richman D. Anti-acetylcholine receptor antibodies directed against the a bungarotoxin binding site induce a unique form of experimental myasthenia. Proc. Natl Acad Sci USA 1983; 80: 4089–4093.

    Article  PubMed  CAS  Google Scholar 

  152. Lang B, Richardson G, Rees J, Vincent A, Newsom-Davis J. Plasma from myasthenia gravis patients reduces acetylcholine receptor agonist-induced Na+ flux into TE671 cell line. J Neuroimmunol 1988; 19: 141–148.

    Article  PubMed  CAS  Google Scholar 

  153. Lennon V, Seybold M, Lindstrom J, Cochrane C, Yulevitch R. Role of complement in pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 1978; 147: 973–983.

    Article  PubMed  CAS  Google Scholar 

  154. Engel A, Ohno K, Sine S. Congenital myasthenic syndromes. Arch Neurol 1999; 56: 163–167.

    Article  PubMed  CAS  Google Scholar 

  155. Sine SM, Ohno K, Bougat C, et al. Mutation of the acetylcholine-receptor alpha-subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding-affinity. Neuron 1995; 15: 229–239.

    Article  PubMed  CAS  Google Scholar 

  156. Ohno K, Wang HL, Milone M, et al. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit. Neuron 1996; 17: 157–170.

    Article  PubMed  CAS  Google Scholar 

  157. Ohno K, Hutchinson DO, Milone M, et al. Congenital myasthenic syndrome caused by prolonged acetylcholine-receptor channel openings due to a mutation in the M2 domain of the epsilon-subunit. Proc. Natl Acad Sci USA 1995; 92: 758–762.

    Article  PubMed  CAS  Google Scholar 

  158. Engel A, Uchitel O, Walls T, et al. Newly recognized congenital myasthenic syndrome associated with high conductance and fast closure of the acetylcholine receptor channel. Ann Neurol 1993; 34: 38–47.

    Article  PubMed  CAS  Google Scholar 

  159. Engel A, Ohno K, Milone M, Sine S. Congenital myasthenic syndromes caused by mutations in acetylcholine receptor genes. Neurology 1997;48(Suppl 5):S28– S35.

    Google Scholar 

  160. Engel A, Ohno K, Wang H-L, Milone M, Sine S. The molecular basis of congenital myasthenic syndromes: mutations in the acetylcholine receptor. Neuroscientist 1998; 4: 185–194.

    Article  CAS  Google Scholar 

  161. Ohno K, Anlar B, Engel A. Congenital myasthenic syndrome caused by a mutation in the Ets-binding site of the promoter region of the acetylcholine receptor E subunit gene. Neuromusc Dis 1999; 9: 131–135.

    Article  CAS  Google Scholar 

  162. Ohno K, Anlar B, Ozdirim E, et al. Myasthenic syndromes in Turkish kinships due to mutations in the acetylcholine receptor. Ann Neurol 1998; 44: 234–241.

    Article  PubMed  CAS  Google Scholar 

  163. Ohno K, Quiram P, Milone M, et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missence mutations in the acetylcholine receptor s subunit gene: identiifcation and functional characterization of six new mutations. Hum Mol Gene 1997; 6: 753–766.

    Article  CAS  Google Scholar 

  164. Engel A, Ohno K, Milone M, et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow channel congenital myasthenic syndrome. Hum Mol Genet 1996; 5: 1217–1227.

    Article  PubMed  CAS  Google Scholar 

  165. Missias A, Mudd J, Cunningham J, et al. Deficient development and maintenance of postsynaptic specializations in mutant mice locking an “adult” acetylcholine receptor subunit. Development 1997; 124: 5075–5086.

    PubMed  CAS  Google Scholar 

  166. Milone M, Wang H-L, Ohno, et al. Slow channel syndrome caused by enhanced activation, desensitization, and agonist binding affinity due to mutation in the M2 domain of the acetylcholine receptor a subunit. J Neurosci 1997;17:5651– 5665.

    Google Scholar 

  167. Wang H-L, Auerbach A, Bren N, et al. Mutation in the M1 domain of the acetylcholine receptor a subunit decreases the rate of agonist dissociation. J Gen Physiol 1997; 109: 757–766.

    Article  PubMed  CAS  Google Scholar 

  168. Lo D, Pinkham J, Stevens C. Role of a key cystein residue in the gating of the acetylcholine receptor. Neuron 1991; 6: 31–40.

    Article  PubMed  CAS  Google Scholar 

  169. Zhou M, Engel A, Auerbach A. Serum choline activates mutant acetylcholine receptors that cause slow channel congenital myasthenic syndromes. Proc Natl Acad Sci USA 1999;96:10, 466–10, 471.

    Google Scholar 

  170. Bertrand D, Devillers-Thiery A, Revah F, et al. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl Acad Sci USA 1992; 89: 1261–1265.

    Article  CAS  Google Scholar 

  171. Alkondon M, Pereira E, Eisenberg H, Albuquerque E. Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CAI interneurons in rat hippocampal slices. J Neurosci 1999; 19: 2693–2705.

    PubMed  CAS  Google Scholar 

  172. Milone M, Wang H-L, Ohno K, et al. Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor ε subunit. Neuron 1998; 20: 575–588.

    Article  PubMed  CAS  Google Scholar 

  173. Han Z-Y, LeNovere N, Zoli M, et al. Localization of Nachr subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 2000; 12: 3664–3674.

    Article  PubMed  CAS  Google Scholar 

  174. Vailati S, Moretti M, Balestra B, et al. β3 subunit is present in different nicotinic receptor subtypes in chick retina. Eur J Pharmacol 2000; 393: 23–30.

    Article  PubMed  CAS  Google Scholar 

  175. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997; 20: 92–98.

    Article  PubMed  CAS  Google Scholar 

  176. Xu W, Gelber S, Orr-Urtreger A, et al. Megacystis, mydriasis, and ion channel defect in mice lacking the α3 neuronal nicotinic receptor. Proc. Natl Acad Sci USA 1999; 96: 5746–5751.

    Article  CAS  Google Scholar 

  177. Marubio L, del Mar Arroyo-Jiminez M, Cordero-Erausquin M, et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 1999; 398: 805–810.

    Article  PubMed  CAS  Google Scholar 

  178. Ross S, Wong J, Clifford J, et al. Phenotypic characterization of an á4 neuronal nicotinic acetylcholine receptor subunit knockout mouse. J Neurosci 2000;20:6431– 6441.

    Google Scholar 

  179. Labarca C, Schwarz J, Deshpande P, et al. Point mutant mice with hypersensitive á4 nicotinic receptors show dopaminergic defects and increased anxiety. Proc. Natl Acad Sci USA 2001; 98: 2786–2791.

    Article  CAS  Google Scholar 

  180. Berger F, Gage F, Vijayaraghavan S. Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J Neurosci 1998; 18: 6871–6881.

    PubMed  CAS  Google Scholar 

  181. Orr-Urtreger A, Göldner F, Saeki M, et al. Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack á bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci 1997; 17: 9165–9171.

    PubMed  CAS  Google Scholar 

  182. Franceschine D, Orr-Urtreger A, Yu W, et al. Altered baroreflex responses in á7 deficient mice. Behav Brain Res 2000; 113: 3–10.

    Article  Google Scholar 

  183. Orr-Urtreger A, Broide R, Kasten M, et al. Mice homozygous for the L250T mutation in the α7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth. J Neurochem 2000; 74: 2154–2166.

    Article  PubMed  CAS  Google Scholar 

  184. Vetter D, Liberman M, Mann J, et al. Role of á9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 1999; 23: 91–103.

    Article  Google Scholar 

  185. Picciotto M, Caldarone B, King S, Zachariou V. Nicotinic receptors in the brain: links between molecular biology and behavior. Neuropsychopha rmacology 2000; 22: 451–465.

    Article  PubMed  CAS  Google Scholar 

  186. Xu W, Orr-Urtreger A, Nigro F, et al. Multiorgan autonomic dys function in mice lacking the 02 and 04 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 1999; 19: 9298–9305.

    PubMed  CAS  Google Scholar 

  187. Allen R, Cui C, Heinemann S. Gene targeted knockout of the 03 neuronal nicotinic acetylcholine receptor subunit. Soc Neurosci Abstr 1998; 24: 1341.

    Google Scholar 

  188. Vailati S, Moretti M, Balestra M, et al. 03 subunit is present in different nicotinic receptor subtypes in chick retina. Eur J Pharmacol 2000; 393: 23–30.

    Article  PubMed  CAS  Google Scholar 

  189. Balestra B, Moretti M, Longhi R, et al. Antibodies against neuronal nicotinic receptor subtypes in neurological disorders. J Neuroimmunol 2000; 102: 89–97.

    Article  PubMed  CAS  Google Scholar 

  190. Nguyen V, Ndoye A, Grando S. Pemphigus vulgaris antibody identifies pemphaxin—a novel keratinocyte annexin-like molecule binding acetylcholine. J Biol Chem 2000;275:29, 466–29, 476.

    Google Scholar 

  191. Rogers S, Andrews J, Gahring L, et al. Autoantibodies to glutamate receptor in GluR3 in Rasmussen’s encephalitis. Science 1994; 265: 648–651.

    Article  PubMed  CAS  Google Scholar 

  192. Rogers S, Twyman R, Gahring L. The role of autoimmunity to glutamate receptors in neurological disease. Mod Med Today 1996; 2: 76–81.

    Article  CAS  Google Scholar 

  193. Gahring L, Rogers S. Autoimmunity to glutamate receptors in Rasmussen’s encephalitis: a rare finding or the tip of an iceberg? Neuroscientist 1998; 4: 373–379.

    Article  Google Scholar 

  194. Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca++ permeability, conductance, and gating of human a402 nicotinic acetylcholine receptors. J Neurosci 1997; 17: 9035–9047.

    PubMed  CAS  Google Scholar 

  195. Alkondon M, Periera E, Eisenberg H, Albuquerque E. Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and dis-inhibition of neuronal networks. J Neurosci 2000; 20: 66–75.

    PubMed  CAS  Google Scholar 

  196. Lev-Lehman E, Bercovich D, Xu W, Stockton D, Beaudit A. Characterization of the human 04 nAChR gene and polymorphisms in CHRNA3 and CHRNB4. J Hum Genet 2001; 46: 362–366.

    PubMed  CAS  Google Scholar 

  197. Anand R, Conroy WG, Schoepfer R, Whiting P, Lindstrom J. Chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 1991;266:11, 192–11, 198.

    Google Scholar 

  198. Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 1991; 350: 235–238.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindstrom, J.M. (2003). Acetylcholine Receptor Structure. In: Kaminski, H.J. (eds) Myasthenia Gravis and Related Disorders. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-341-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-341-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5942-6

  • Online ISBN: 978-1-59259-341-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics