Skip to main content

Toxic Neuromuscular Transmission Disorders

  • Chapter
Myasthenia Gravis and Related Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The neuromuscular junction (NMJ) is uniquely sensitive to the effects of neurotoxins. Unlike the blood-brain barrier, which protects the brain and spinal cord, and the blood-nerve barrier, which protects peripheral nerve, there are no barriers to protect the NMJ from the deleterious effects of these agents. Several forms of neurotoxins are directed against the NMJ. Many occur as natural substances of plants or animals, other result from the actions of widely prescribed pharmaceutical compounds, and still others are environmental hazards. In nearly all instances of NMJ neurotoxicity, there is a reduction in the safety factor of neuromuscular transmission by one of several mechanisms. These neurotoxins may affect either the presynaptic or the postsynaptic elements of the NMJ. The clinical features of these neurotoxins are quite varied; many have associated toxicity of other parts of the central, peripheral, or autonomic nervous systems. Many will have other systemic effects as well. While feared as the purveyor of morbidity and mortality, many of these neurotoxins have led to significant advances in our understanding of the molecular mechanisms of pharmacology and physiology and their associated diseases. For example, the recognition that α-bungarotoxin binds to the acetylcholine receptor (AChR) advanced our knowledge of the diagnosis and treatment of myasthenia gravis (MG) (1). Worldwide, the most common neurotoxicity of the NMJ results from envenomation. Of more concern to the clinical neurologist are those situations that result from the direct effects of various pharmacologic agents routinely used in the practice of medicine that produce significant aberrations of neuromuscular transmission in susceptible individuals. The potential for environmental intoxication has been limited by the stringent regulation of federal and international regulatory agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fambrough DM, Drachman DB, Satymurti S. Neuromuscular function in myasthenia gravis: decreased acetycholine receptors. Science 1973; 182: 293–295.

    Article  PubMed  CAS  Google Scholar 

  2. Barrons RW. Drug-induced neuromuscular blockade and myasthenia gravis. Pharmacotherapy 1977; 17: 1220–1232.

    Google Scholar 

  3. Howard JF. Adverse drug effects on neuromuscular transmission. Semin Neurol 1990; 10: 89–102.

    Article  PubMed  Google Scholar 

  4. Kaeser HE. Drug-induced myasthenic syndromes. Acta Neurol Scand 1984; 70: 39–37.

    Google Scholar 

  5. Swift TR. Disorders of neuromuscular transmission other than myasthenia gravis. Muscle Nerve 1981; 4: 334–353.

    Article  PubMed  CAS  Google Scholar 

  6. Argov Z, Mastaglia FL. Disorders of neuromuscular transmission caused by drugs. N Engl J Med 1979; 301: 409–413.

    Article  PubMed  CAS  Google Scholar 

  7. Pittinger C, Adamson R. Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol 1972; 12: 109–184.

    Article  Google Scholar 

  8. Singh YN, Marshall IG, Harvey AL. Reversal of antibiotic-induced muscle paralysis by 3,4-diaminopyridine. J Pharm Pharmacol 1978; 30: 249–250.

    Article  PubMed  CAS  Google Scholar 

  9. Caputy AJ, Kim YI, Sanders DB. The neuromuscular blocking effects of therapeutic concentrations of various antibiotics on normal rat skeletal muscle: a quantitative comparison. J Pharmacol Exp Ther 1981; 217: 369–378.

    PubMed  CAS  Google Scholar 

  10. Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents [Review] [293 refs]. Ann Intern Med 1984; 101: 92–104.

    Article  PubMed  CAS  Google Scholar 

  11. Cadisch R, Streit E, Hartmann K. [Exacerbation of pseudoparalytic myasthenia gravis following azithromycin (Zithromax)] [German]. Schw Med Wochenschr J Suisse Med 1996; 126: 308–310.

    CAS  Google Scholar 

  12. Roquer J, Cano A, Seoane JL, Pou SA. Myasthenia gravis and ciprofloxacin [Letter]. Acta Neurol Scand 1996; 94: 419–420.

    Article  PubMed  CAS  Google Scholar 

  13. Samuelson RJ, Giesecke AH Jr, Kallus FT, Stanley VF. Lincomycin-curare interaction. Anesth Analg 1975; 54: 103–105.

    Article  PubMed  CAS  Google Scholar 

  14. Fogdall RP, Miller RD. Prolongation of a pancuronium-induced neuromuscular blockade by clindamycin. Anesthesiology 1974; 41: 407–408.

    Article  PubMed  CAS  Google Scholar 

  15. McQuillen MP, Engbaek L. Mechanism of colistin-induced neuromuscular depression. Arch Neurol 1975; 32: 235–238.

    Article  PubMed  CAS  Google Scholar 

  16. Moore B, Safani M, Keesey J. Possible exacerbation of myasthenia gravis by ciprofloxacin [Letter]. Lancet 1988; 1: 882.

    Article  PubMed  CAS  Google Scholar 

  17. Decker DA, Fincham RW. Respiratory arrest in myasthenia gravis with colistimethate therapy. Arch Neurol 1971; 25: 141–144.

    Article  PubMed  CAS  Google Scholar 

  18. Argov Z, Brenner T, Abramsky O. Ampicillin may aggravate clinical and experimental myasthenia gravis. Arch Neurol 1986; 43: 255–256.

    Article  PubMed  CAS  Google Scholar 

  19. Howard JF Jr. Adverse drug interactions in disorders of neuromuscular transmission. J Neurol Orthop Med Surg 1991; 12: 26–34.

    Google Scholar 

  20. Howard JF, Johnson BR, Quint SR. The effects of beta-adrenergic antagonists on neuromuscular transmission in rat skeletal muscle. Society for Neuroscience Abstracts 1987; 13: 147.

    Google Scholar 

  21. Coppeto JR. Timolol-associated myasthenia gravis. Am J Ophthalmol 1984; 98: 244–245.

    PubMed  CAS  Google Scholar 

  22. Verkijk A. Worsening of myasthenia gravis with timolol maleate eyedrops. Ann Neurol 1985; 17: 211–212.

    Article  PubMed  CAS  Google Scholar 

  23. Bikhazi GB, Leung I, Foldes FF. Interaction of neuromuscular blocking agents with calcium channel blockers. Anesthesiology 1982; 57: A268.

    Article  Google Scholar 

  24. Van der Kloot W, Kita H. The effects of verapamil on muscle action potentials in the frog and crayfish and on neuromuscular transmission in the crayfish. Comp Biochem Physiol 1975; 50C: 121–125.

    Article  Google Scholar 

  25. Ribera AB, Nastuk WL. The actions of verapamil at the neuromuscular junction. Comp Biochem Physiol C: Comp Pharm Toxicol 1989; 93C: 137–141.

    Article  CAS  Google Scholar 

  26. Adams RJ, Rivner MH, Salazar J, Swift TR. Effects of oral calcium antagonists on neuromuscular transmission. Neurology 1984; 34 (Suppl 1): 132–133.

    Google Scholar 

  27. Krendel DA, Hopkins LC. Adverse effect of verapamil in a patient with the Lambert-Eaton syndrome. Muscle Nerve 1986; 9: 519–522.

    Article  PubMed  CAS  Google Scholar 

  28. Kornfeld P, Horowitz SH, Genkins G, Papatestas AE. Myasthenia gravis unmasked by antiarrhythmic agents. Mt Sinai J Med 1976; 43: 10–14.

    PubMed  CAS  Google Scholar 

  29. Weisman SJ. Masked myasthenia gravis. JAMA 1949; 141: 917–918.

    Article  CAS  Google Scholar 

  30. Shy ME, Lange DJ, Howard JF, et al. Quinidine exacerbating myasthenia gravis: a case report and intracellular recordings. Ann Neurol 1985; 18: 120.

    Google Scholar 

  31. Stoffer SS, Chandler JH. Quinidine-induced exacerbation of myasthenia gravis in patient with myasthenia gravis. Arch nItern Med 1980; 140: 283–284.

    Article  CAS  Google Scholar 

  32. Miller RD, Way WL, Katzung BG. The neuromuscular effects of quinidine. Proc Soc Exp Biol Med 1968; 129: 215–218.

    PubMed  CAS  Google Scholar 

  33. Balint G, Szobor A, Temesvari P, Zahumenszky Z, Bozsoky S. Myasthenia gravis developed under D-penicillamine treatment. Scand J Rheumatol 1975;(Suppl 8 ): 12–21.

    Google Scholar 

  34. Bucknall RC, Balint G, Dawkins RL. Myasthenia gravis associated with penicillamine treatment for rheumatoid arthritis. BMJ 1975; 1: 600–602.

    Article  PubMed  CAS  Google Scholar 

  35. Czlonskowska A. Myasthenia syndrome during penicillamine treatment. BMJ 1975; 2: 726–727.

    Article  Google Scholar 

  36. Masters CL, Dawkins RL, Zilko PJ, Simpson JA, Leedman RJ. Penicillamineassociated myasthenia gravis, antiacetylcholine receptor and antistriational antibodies. Am J Med 1977; 63: 689–694.

    Article  PubMed  CAS  Google Scholar 

  37. Albers JW, Beals CA, Levine SP. Neuromuscular transmission in rheumatoid arthritis, with and without penicillamine treatment. Neurology 1981; 31: 1562–1564.

    Article  PubMed  CAS  Google Scholar 

  38. Sghirlanzoni A, Mantegazza R, Mora M, Pareyson D, Cornelio F. Chloroquine myopathy and myasthenia-like syndrome. Muscle Nerve 1988; 11: 114–119.

    Article  PubMed  CAS  Google Scholar 

  39. Schumm F, Wietholter H, Fateh-Moghadam A. Myasthenie-syndrom unter chloroquin-therapie. Deutsc Med Wochenschr 1981; 25: 1745–1747.

    Article  Google Scholar 

  40. Robberecht W, Bednarik J, Bourgeois P, Van Hees J, Carton H. Myasthenic syndrome caused by direct effect of chloroquine on neuromuscular junction. Arch Neurol 1989; 46: 464–468.

    Article  PubMed  CAS  Google Scholar 

  41. Perez A, Perella M, Pastor E, Cano M, Escudero J. Myasthenia gravis induced by alpha-interferon therapy. Am J Hematol 1995; 49: 365–366.

    Article  PubMed  CAS  Google Scholar 

  42. Batocchi AP, Evoli A, Servidei S, et al. Myasthenia gravis during interferon alpha therapy. Neurology 1995; 45: 382–383.

    Article  PubMed  CAS  Google Scholar 

  43. Lensch E, Faust J, Nix WA, Wandel E. Myasthenia gravis after interferon alpha treatment. Muscle Nerve 1996; 19: 927–928.

    PubMed  CAS  Google Scholar 

  44. Piccolo G, Franciotta D, Versino M, et al. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-alpha treatment [Letter]. J Neurol Neurosurg Psychiatry 1996; 60: 348.

    Article  PubMed  CAS  Google Scholar 

  45. Mase G, Zorzon M, Biasutti E, et al. Development of myasthenia gravis during interferon-alpha treatment for anti-HCV positive chronic hepatitis [Letter]. J Neurol Neurosurg Psychiatry 1996; 60: 348–349.

    Article  PubMed  CAS  Google Scholar 

  46. Konishi T. [A case of myasthenia gravis which developed myasthenic crisis after alpha-interferon therapy for chronic hepatitis C] [Review] [14 refs] [Japanese]. Rinsho Shinkeigaku Clin Neurol 1996; 36: 980–985.

    CAS  Google Scholar 

  47. Gu D, Wogensen L, Calcutt N, et al. Myasthenia gravis-like syndrome induced by expression of interferon in the neuromuscular junction. J Exp Med 1995; 18: 547–557.

    Article  Google Scholar 

  48. Cherington M. Clinical spectrum of botulism. Muscle Nerve 1998; 21: 701–710.

    Article  PubMed  CAS  Google Scholar 

  49. Pickett J, Berg B, Chaplin E, Brunstetter-Shafer M. Syndrome of botulism in infancy: clinical and electrophysiologic study. N Engl J Med 1976; 295: 770–792.

    Article  PubMed  CAS  Google Scholar 

  50. MacDonald KL, Rutherford SM, Friedman SM, et al. Botulism and botulism-like illness in chronic drug users. Ann Intern Med 1985; 102: 616–618.

    Article  PubMed  CAS  Google Scholar 

  51. McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P. Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol 1991; 29: 2618–2620.

    PubMed  CAS  Google Scholar 

  52. Maretic Z. Epidemiology of envenomation. In: Bettini S, ed. Arthropod Venoms. Berlin, Springer-Verlag, 1978, pp. 185–212.

    Google Scholar 

  53. Rosenthal L. Alpha-lathrotoxin and related toxins. Pharmacol Ther 1989; 42: 115–134.

    Article  PubMed  CAS  Google Scholar 

  54. Hurlbut WP, Iezzi N, Fesce R, Ceccarelli B. Correlation between quantal secretion and vesicle loss at the frog neuromuscular junction. J Physiol (Lond) 1990; 424: 501–526.

    Google Scholar 

  55. Henkel AW, Sankaranarayanan S. Mechanisms of a-lathrotoxin action. Cell Tissue Res 1999; 296: 229–233.

    Article  PubMed  CAS  Google Scholar 

  56. Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC. Neurexins: synaptic cell surface proteins related to the a-lathrotoxin receptor and laminin. Science 1992; 257: 50–56.

    Article  PubMed  CAS  Google Scholar 

  57. Longenecker HE, Hurlbut WP, Mauro A, Clark AW. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature 1970; 225: 701–703.

    Article  PubMed  Google Scholar 

  58. Clark AW, Hurlbut WP, Mauro A. Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom. J Cell Biol 1972; 52: 1–14.

    Article  PubMed  CAS  Google Scholar 

  59. Clark AW, Mauro A, Longenecker HE, Hurlbut WP. Effects of black widow spider venom on the frog neuromuscular junction. Effects on the fine structure of the frog neuromuscular junction. Nature 1970; 225: 703–705.

    Article  PubMed  CAS  Google Scholar 

  60. Ceccarelli B, Grohovaz F, Hurlbut WP. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone. J Cell Biol 1979; 81: 163–177.

    Article  PubMed  CAS  Google Scholar 

  61. Pumplin DW, Reese TS. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. J Physiol 1977; 273: 443–457.

    PubMed  CAS  Google Scholar 

  62. Gorio A, Rubin LL, Mauro A. Double mode of action of black widow spider venom on frog neuromuscular junction. J Neurocytol 1978; 7: 193–202.

    Article  PubMed  CAS  Google Scholar 

  63. Howard BD. Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu Rev Pharmacol Toxicol 1980; 20: 307–336.

    Article  PubMed  CAS  Google Scholar 

  64. Gilbert WW, Stewart CM. Effective treatment of arachiodism by calcium salts. Am J Med Sci 1935; 189: 532–536.

    Google Scholar 

  65. Miller TA. Bite of the black widow spider. Am Fam Physician 1992; 45: 181–187.

    PubMed  CAS  Google Scholar 

  66. D’Amour EF, Becker FE, Van Riper W. The black widow spider. Q Rev Biol 1936; 11: 123–160.

    Article  Google Scholar 

  67. Temple IU. Acute ascending paralysis, or tick paralysis. Med Sentinel 1912; 20: 507–514.

    Google Scholar 

  68. Todd JL. Tick bite in British Columbia. Can Med Assoc J 1912; 2: 1118–1119.

    PubMed  CAS  Google Scholar 

  69. Cleland JB. Injuries and diseases of man in Australia attributable to animals (except insects). Australas Med Gaz 1912; 32: 295–299.

    Google Scholar 

  70. Gregson JD. Tick Paraylsis —An Appraisal of Natural and Experimental Data. Report 6–23. Ottawa, Canada Department of Agriculture, 1973, pp. 1–109.

    Google Scholar 

  71. Anonymous. Tick paralysisWash—ington, 1995. From the Centers for Disease Control and Prevention. JAMA 1996;275:1470.

    Google Scholar 

  72. Gothe R, Kunze K, Hoogstraal H. The mechanisms of pathogenicity in the tick paralyses. J Med Entomol 1979; 16: 357–369.

    PubMed  CAS  Google Scholar 

  73. Weingart JL. Tick paralysis. Minn Med 1967; 50: 383–386.

    PubMed  CAS  Google Scholar 

  74. Brown AF, Hamilton DL. Tick bite anaphylaxis in Australia. J Assoc Emerg Med 1998; 15: 111–113.

    Article  CAS  Google Scholar 

  75. Felz MW, Smith CD, Swift TR. A six-year-old girl with tick paralysis [see comments]. N Engl J Med 2000; 342: 90–94.

    Article  PubMed  CAS  Google Scholar 

  76. Cherington M, Synder RD. Tick paralysis. Neurophysiologic studies. N Engl J Med 1968; 278: 95–97.

    Article  PubMed  CAS  Google Scholar 

  77. Swift TR, Ignacio OJ. Tick paralysis: electrophysiologic studies. Neurology 1975; 25: 1130–1133.

    Article  PubMed  CAS  Google Scholar 

  78. Grattan-Smith PJ, Morris JG, Johnston HM, et al. Clinical and neurophysiological features of tick paralysis. Brain 1997; 120: 1975–1987.

    Article  PubMed  Google Scholar 

  79. Donat JR, Donat JF. Tick paralysis with persistent weakness and electromyographic abnormalities. Arch Neurol 1981; 38: 59–61.

    Article  PubMed  CAS  Google Scholar 

  80. Lagos JC, Thies RE. Tick paralysis without muscle weakness. Arch Neurol 1969; 21: 471–474.

    Article  PubMed  CAS  Google Scholar 

  81. Rose I. A review of tick paralysis. Can Med Assoc J 1954; 70: 175–176.

    PubMed  CAS  Google Scholar 

  82. Dworkin MS, Shoemaker PC, Anderson DE. Tick paralysis: 33 human cases in Washington State, 1946–1996. Clin Infect Dis 1999; 29: 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  83. Jones HR Jr. Guillain-Barrésyndrome in children. Current Opin Pediatr 1995; 7: 663–668.

    Google Scholar 

  84. Stanbury JB, Huyck JH. Tick paralysis: critical review. Medicine 1945; 24: 219–242.

    Article  Google Scholar 

  85. Stone BF, Aylward JH. Holocyclotoxinthe — paralysing toxin of the Australian paralysis tick Ixodus holocyclus; chemical and immunological characterization. Toxicon 1992; 30: 552–553.

    Google Scholar 

  86. Rose I, Gregson JD. Evidence of neuromuscular block in tick paralysis. Nature 1959; 178: 95–96.

    Article  Google Scholar 

  87. Gothe R, Neitz AWH. Tick paralyses: pathogenesis and etiology. In: Harris KF, ed. Adv Dis Vector Res 1991; 8: 177–204.

    Google Scholar 

  88. Stone BF. Tick paralysis, particularly involving Ixodes holocyclus and other Ixodes species. Adv Dis Vector Res 1988; 5: 61–85.

    Google Scholar 

  89. Esplin DW, Phillip CB, Hughes LE. Impairment of muscle stretch reflexes in tick paralysis. Science 1960; 132: 958–959.

    Article  PubMed  CAS  Google Scholar 

  90. Cherington M, Snyder RD. Tick paralysis: neurophysiological studies. N Engl J Med 1968; 278: 95–97.

    Article  PubMed  CAS  Google Scholar 

  91. DeBusk FL, O’Connor S. Tick toxicosis. Pediatrics 1972; 50: 328–329.

    PubMed  CAS  Google Scholar 

  92. Haller JS, Fabara JA. Tick paralysis. Case report with emphasis on neurological toxicity. Am J Dis Child 1972; 124: 915–917.

    PubMed  CAS  Google Scholar 

  93. Warnick JE, Albuquerque EX, Diniz CR. Electrophysiological observations on the action of the purified scorpion venom, tityustoxin, on nerve and skeletal muscle of the rat. J Pharmacol Exp Ther 1976; 198: 155–167.

    PubMed  CAS  Google Scholar 

  94. Belghith M, Boussarsar M, Haguiga H, et al. Efficacy of serotherapy in scorpion sting: a matched-pair study. J Toxicol Clin Toxicol 1999; 37: 51–57.

    Article  PubMed  CAS  Google Scholar 

  95. Sofer S, Shahak E, Gueron M. Scorpion envenomation and antivenom therapy. Pediatrics 1994; 124: 973–978.

    Article  CAS  Google Scholar 

  96. Campbell CH. The effects of snake venoms and their neurotoxins on the nervous system of man and animals. Contemp Neurol Ser 1975; 12: 259–293.

    PubMed  CAS  Google Scholar 

  97. Vital-Brazil O. Venoms: their inhibitory action on neuromuscular transmission. In: Cheymol J, ed. Neuromuscular Blocking and Stimulating Agents. New York, Pergamon, 1972, pp. 145–167.

    Google Scholar 

  98. Lee CY. Elapid neurotoxins and their mode of action. Clin Toxicol 1970; 3: 457–472.

    Article  PubMed  CAS  Google Scholar 

  99. Karlsson E, Arnberg H, Eaker D. Isolation of the principal neurotoxin of two Naja naja subspecies. Eur J Biochem 1971; 21: 1–16.

    Article  PubMed  CAS  Google Scholar 

  100. Lee CY, Chang SL, Kau ST, Luh SH. Chromatographic separation of the venon of Bungarus multicinctus and characteristics of its components. J Chromatogr 1972; 72: 71–82.

    Article  PubMed  CAS  Google Scholar 

  101. Tu AT, Tu T. Sea snakes from southeast Asia and Far East and their venoms. In: Halstead BW, ed. Poisonous and Venomous Marine Animals of the World. Washington, DC, US Government Printing Office, 1970, pp. 885–903.

    Google Scholar 

  102. Barme M. Venomous sea snakes of Vietnam and their venoms. In: Keegan HL, MacFarlane W, eds. Venomous and Poisonous Animals and Noxious Plants of the Pacific Region. Oxford, Oxford University Press, 1963, pp. 373–378.

    Google Scholar 

  103. Karlsson E. Chemistry of protein toxins in snake venoms. In: Lee CY, ed. Snake Venoms. New York, Springer-Verlag, 1979, pp. 159–212.

    Chapter  Google Scholar 

  104. Chang CC, Su MJ. Mutual potentiation at nerve terminals, between toxins from snake venoms that contain phospholipase A activity: ß bungarotoxin, crotoxin, taipoxin. Toxicon 1980; 18: 641–648.

    Article  PubMed  CAS  Google Scholar 

  105. Rowlands JB, Mastaglia FL, Kakulas BA, Hainsworth D. Clinical and pathological aspects of a fatal case of mulga (Pseudechis australis) snakebite. Med J Aust 1969; 1: 226–230.

    PubMed  CAS  Google Scholar 

  106. Kellaway CH. The peripheral action of the Australian snake venoms. 2. The curarilike action in mammals. Aust J Exp Biol Med Sci 1932; 10: 181–194.

    Article  CAS  Google Scholar 

  107. Bouquier JJ, Guibert J, Dupont C, Umdenstock R. Les piqures de vipreè chez l’enfant. Arch Fr Pediatr 1974; 31: 285–296.

    PubMed  CAS  Google Scholar 

  108. Mitrakul C, Dhamkrong-At A, Futrakul P, et al. Clinical features of neurotoxic snake bite and response to antivenom in 47 children. Am J Trop Med Hyg 1984; 33: 1258–1266.

    PubMed  CAS  Google Scholar 

  109. Reid HA. Cobra-bites. BMJ 1964; 2: 540–545.

    Article  PubMed  CAS  Google Scholar 

  110. Warrell DA, Barnes HJ, Piburn MF. Neurotoxic effects of bites by the Egyptian cobra (Naja haje) in Nigeria. Trans R Soc Trop Med Hyg 1976; 70: 78–79.

    Article  PubMed  CAS  Google Scholar 

  111. Kerrigan KR. Venomous snake bites in Eastern Ecuador. Am J Trop Med Hyg 1991; 44: 93–99.

    PubMed  CAS  Google Scholar 

  112. Ouyang C, Teng C-M, Huang T-F. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon 1992; 30: 945–966.

    Article  PubMed  CAS  Google Scholar 

  113. Reid HA. Antivenom in sea-snake bite poisoning. Lancet 1975; 1: 622–623.

    Article  PubMed  CAS  Google Scholar 

  114. Theakston RDG, Phillips RE, Warrell DA, et al. Envenoming by the common krait (Bungarus caeruleus) and Sri Lankan cobra (Naja naja naja): efficacy and complications with Haffkine antivenom. Trans R Soc Trop Med Hyg 1990; 84: 301–308.

    Article  PubMed  CAS  Google Scholar 

  115. Kumar S, Usgaonkar RS. Myasthenia gravis like picture resulting from snake bite. J Ind Med Assoc 1968; 50: 428–429.

    CAS  Google Scholar 

  116. Pettigrew LC, Glass JP. Neurologic complications of coral snake bite. Neurology 1985; 35: 589–592.

    Article  PubMed  CAS  Google Scholar 

  117. Southcott RV. The neurologic effects of noxious marine creatures. In: Hornabrook RW, ed. Topics on Tropical Neurology. Philadelphia, FA Davis, 1975, pp. 165–258.

    Google Scholar 

  118. Steidinger KA, Steinfield HJ. Toxic marine dinoflagellates. In: Spector DL, ed. Dinoflagellates. New York, Academic, 1984, pp. 201–206.

    Chapter  Google Scholar 

  119. Olivera BM, Gray WR, Zeikus R, et al. Peptide neruotoxins from fish-hunting cone snails. Science 1985; 230: 1338–1343.

    Article  PubMed  CAS  Google Scholar 

  120. Kohn AJ. Venomous marine snails of the genus Conus. In: Keegan HC, McFarlane WV, eds. Venomous and Poisonous Animals and Noxious Plants of the Pacific Region. Oxford, Pergamon, 1963, p. 83.

    Google Scholar 

  121. Kohn AJ. Recent cases of human injury due to venomous marine snails of the genus Conus. Hawaii Med J 1958; 17: 528–532.

    PubMed  CAS  Google Scholar 

  122. Cruz LJ, White J. Clinical toxicology of Conus snail stings. In: Meier J, White J, eds. CRC Handbook on Clinical Toxicology of Animal Venoms and Poisons. Boca Raton, FL, CRC, 1995, pp. 177–128.

    Google Scholar 

  123. Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ. Peptide toxins from Conus geographus venom. J Biol Chem 1981; 256: 4734–4740.

    PubMed  CAS  Google Scholar 

  124. Hopkins C, Grilley M, Miller C, et al. A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J Biol Chem 1995; 270: 22361–22367.

    Article  PubMed  CAS  Google Scholar 

  125. McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM. Isolation and structure of a peptide toxin from the marine snail Conus magnus. Arch Bioch Biophys1982; 218: 329–334.

    Google Scholar 

  126. McCleskey EW, Fox AP, Feldman D, et al. Calcium channel blockade by a peptide from Conus: specificity and mechanism. Proc Nat Acad Sci USA 1987; 84: 4327–4331.

    Article  PubMed  CAS  Google Scholar 

  127. Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ. Conotoxins and their potential pharmaceutical applications. Drug Dev Res 1999; 46: 219–234.

    Article  CAS  Google Scholar 

  128. De Aizpurua HJ, Lambert EH, Griesmann GE, Olivera M, Lennon VA. Antagonism of voltage-gated calcium channels in small cell carcinomas of patients with and without Lambert-Eaton myasthenic syndrome by autoantibodies omega-conotoxin and adenosine. Cancer Res 1988; 48: 4719–4724.

    PubMed  Google Scholar 

  129. Yoshiba S. [An estimation of the most dangerous species of cone shell, Conus (Gastridium) geographus Linne, 1758, venom’s lethal dose in humans]. Jpn J ygH 1984; 39: 565–572.

    CAS  Google Scholar 

  130. Halstead BW. Poisonous and Venomous Marine Animals of the World. Washington, DC, US Government Printing Office, 1970, pp. 1–1006.

    Google Scholar 

  131. Gwee MC, Gopalakrishnakone P, Yuen R, Khoo HE, Low KS. A review of stone-fish venoms and toxins. Pharmacol Ther 1994; 64: 509–528.

    Article  PubMed  CAS  Google Scholar 

  132. Kreger AS, Molgo J, Comella JX, Hansson B, Thesleff S. Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions. Toxicon 1993; 31: 307–317.

    Article  PubMed  CAS  Google Scholar 

  133. Hardin JW, Arena JW. Human Poisoning from Native and Cultivated Plants, 1st ed. Durham, NC, Duke University Press, 1974, pp. 1–174.

    Google Scholar 

  134. Davies Ml, Davies TA. Hemlock: murder before the Lord. Med Sci Law 1994; 34: 331–333.

    Google Scholar 

  135. Panter KE, Keeler RF. Piperidine alkaloids of poison hemlock (Conium maculatum). In: Cheeke P, ed. Toxicants of Plant Origin, vol 1. Alkaloids. Boca Raton, FL, CRC, 1989, pp. 109–130.

    Google Scholar 

  136. Silinsky EM. On the role of barium in supporting the asynchronous release of acetylcholine quanta by moter nerve impulses. J Physiol (Lond) 1978; 274: 157–171.

    CAS  Google Scholar 

  137. Silinsky EM. Can barium support the release of acetylcholine by nerve impulses? Br J Pharmacol 1977; 59: 215–217.

    Article  PubMed  CAS  Google Scholar 

  138. Metral S, Bonneton C, Hort-Legrand C, Reynes J. Dual action of erbium on transmitter release at the neuromuscular synapse. Nature 1978; 271: 773–775.

    Article  PubMed  CAS  Google Scholar 

  139. Cooper GP, Manalis RS. Cadmium: effects on transmitter release at the frog neuromuscular junction. Eur J Pharmacol 1984; 99: 251–256.

    Article  PubMed  CAS  Google Scholar 

  140. Forshaw PJ. The inhibitory effect of cadmium on neuromuscular transmission in the rat. Eur J Pharmacol 1977; 42: 371–377.

    Article  PubMed  CAS  Google Scholar 

  141. Weakly JN. The action of cobalt ions on neuromuscular transmission in the frog. J Physiol (Lond) 1973; 234: 597–612.

    CAS  Google Scholar 

  142. Molgo J, del Pozo E, Banos JE, Angaut-Petit D. Changes in quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction. Br J Pharmacol 1991; 104: 133–138.

    Article  PubMed  CAS  Google Scholar 

  143. Kajimoto N, Kirpekar SM. Effects of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nature 1972; 235: 29–30.

    CAS  Google Scholar 

  144. Balnave RJ, Gage PW. The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Br J Pharmacol 1973; 47: 339–352.

    Article  PubMed  CAS  Google Scholar 

  145. Kita H, Van der Kloot W. Action of Co and Ni at the frog neuromuscular junction. Nature 1973; 245: 52–53.

    Article  CAS  Google Scholar 

  146. Alnaes E, Rahaminoff R. Dual action of praseodymium (Pr3+) on transmitter release at the frog neuromuscular synapse. Nature 1975; 247: 478–479.

    Article  Google Scholar 

  147. Allen JE, Gage PW, Leaver DD, Leow ACT. Triethyltin decreases evoked transmitter release at the mouse neuromuscular junction. Chem Biol Interact 1980; 31: 227–231.

    Article  PubMed  CAS  Google Scholar 

  148. Benoit PR, Mambrini J. Modification of transmitter release by ions which prolong the presynaptic action potential. J Physiol (Lond) 1970; 210: 681–695.

    CAS  Google Scholar 

  149. Cooper GP, Manalis RS. Influence of heavy metals on synaptic transmission. Neuro-toxicology 2001; 4: 69–84.

    Google Scholar 

  150. Rustam H, Hamdi T. Methylmercury poisoning in Iraq; a neurological study. Brain 1974; 97: 499–510.

    Article  Google Scholar 

  151. Bakir F, Damluji SF, Amin-Saki L, et al. Methylmercury poisoning in Iraq. Science 1973; 181: 230–241.

    Article  PubMed  CAS  Google Scholar 

  152. Igata A. Neurological aspects of methlmercury poisoning in Minamata. In: Tsubaki T, Takahashi H, eds. Recent Advances in Minamata Disease Studies. Tokyo, Kodansha, 1986, pp. 41–57.

    Google Scholar 

  153. LeQuense P, Damluji SF, Berlin M. Electrophysiological studies of peripheral nerves in patients with organic mercury poisoning. J Neurol Neurosurg Psychiatry 1974; 37: 333–339.

    Article  Google Scholar 

  154. Rustam H, von Burg R, Amin-Saki L, Elhassani S. Evidence of a neuromuscular disorder in methymercury poisoning. Arch Environ Health 1975; 30: 190–195.

    Article  PubMed  CAS  Google Scholar 

  155. Atchinson WD, Narahashi T. Methylmercury induced depression of neuromuscular transmission in the rat. Neurotoxicology 1982; 3: 37–50.

    Google Scholar 

  156. Taylor P. Anticholinesterase agents. In: Gilman AG, Goodman LS, Rall TW, Murad F, eds. The Pharmacological Basis of Therapeutics. New York, MacMillan, 1985, pp. 110–129.

    Google Scholar 

  157. Edmundson RS. Dictionary of Organophosphorous Compounds. London, Chapman and Hall, 1988 (electronic resource).

    Google Scholar 

  158. Gunderson CH, Lehmann CR, Sidell FR, Jabari B. Nerve agents: a review. Neurology 1992; 42: 946–950.

    Article  PubMed  CAS  Google Scholar 

  159. Fernando R. Pesticides in Sri Lanka. Colombo, Friedrich-Ebert-Stiftung, 1989, pp. 1–255.

    Google Scholar 

  160. Besser R, Gutmann L, Dilimann U, Weilemann LS, Hopf HC. End plate dysfunction in acute organophosphate intoxication. Neurology 1989; 39: 561–567.

    Article  PubMed  CAS  Google Scholar 

  161. Gutmann L, Besser R. Organophosphate intoxication: pharmacologic, neurophysiologic, clinical, and therapeutic considerations. Semin Neurol 1990; 10: 46–51.

    Article  PubMed  CAS  Google Scholar 

  162. Jeyaratnam J. Acute pesticide poisoning: a major health problem. World Health Stat Q 1990; 43: 139–145.

    PubMed  CAS  Google Scholar 

  163. Aldridge WN, Reiner E. Enzyme Inhibitors as Substrates. Amsterdam, North-Holland, 1972, pp. 1–328.

    Google Scholar 

  164. Marrs TC. Organophosphate poisoning. Pharmacol Ther 1993; 58: 51–66.

    Article  PubMed  CAS  Google Scholar 

  165. Namba T, Nolte CT, Jackrel J, Grob D. Poisoning due to organophosphorous insecticides. Am J Med 2001; 50: 475–492.

    Article  Google Scholar 

  166. Karalliedde L, Senanayake N. Organophosphorous insecticide poisoning. Br J Anaesth 1989; 63: 736–750.

    Article  PubMed  CAS  Google Scholar 

  167. De Wilde V, Vogblaers D, Colarddyn F, et al. Postsynaptic neuromuscular dysfunction in organophosphate induced intermediate syndrome. Klin Wochenschr 1991; 69: 177–183.

    Article  PubMed  Google Scholar 

  168. Good JL, Khurana RK, Mayer RF, Cintra WM, Albuquerque EX. Pathophysiological studies of neuromuscular function in subacute organophosphate poisoning induced by phosmet. J Neurol Neurosurg Psychiatry 1993; 56: 290–294.

    Article  PubMed  CAS  Google Scholar 

  169. Maselli RA, Soliven BC. Analysis of the organophosphate-induced electromyographic response to repetitive nerve stimulation: paradoxical response to edrophonium and D-tubocurarine. Muscle Nerve 1991; 14: 1182–1188.

    Article  PubMed  CAS  Google Scholar 

  170. Tsao TC, Juang Y, Lan R, Shieh W, Lee C. Respiratory failure of acute organo-phosphate and carbamate poisoning. Chest 1990; 98: 631–636.

    Article  PubMed  CAS  Google Scholar 

  171. WHO/UNEP. Public Health Impact of Pesticides Used in Agriculture. Geneva, World Heath Organization, 1990, pp. 1–128.

    Google Scholar 

  172. Haddad LM. Organophosphate poisoningintermed—iate syndrome. J Toxicol Clin Toxicol 1992; 30: 331–332.

    Article  Google Scholar 

  173. De Bleecker J, Willems J, Van Den Neucker K, De Reuck J, Vogelaers D. Prolonged toxicity with intermediate syndrome after combined parathion and methyl parathion poisoning. Clin Toxicol 1992; 30: 333–345.

    Article  Google Scholar 

  174. Glerü K, Tascioglu C, Özbey N. Organophosphate poisoning. Isr J Med Sci 1996; 32: 791–792.

    Google Scholar 

  175. Chaudhry R, Lall SB, Mishra B, Dhawan B. Lesson of the week—foodborne outbreak of organophosphate poisoning. BMJ 1998; 317: 268–269.

    Article  PubMed  CAS  Google Scholar 

  176. Cranmer MF. Carbaryl. A toxicological review and risk analysis. Neurotoxicology 1986; 7: 247–328.

    PubMed  CAS  Google Scholar 

  177. Goldman LR, Smith DF, Neutra RR, et al. Pesticide food poisoning from contaminated watermelons in California. Arch Environ Health 1990; 45: 229–236.

    Article  PubMed  CAS  Google Scholar 

  178. Freslew KE, Hagardorn AN, McCormick WF. Poisoning from oral ingestion of carbofuran (Furandan 4F), a cholinesterase-inhibiting carbamate insecticide, and its effects on cholinesterase activity in various biological fluids. J Forens Sci 1992; 37: 337–344.

    Google Scholar 

  179. Jenis EH, Payne RJ, Goldbaum LR. Acute meprobamate poisoning: a fatal case following a lucid interval. JAMA 1969; 207: 361–362.

    Article  PubMed  CAS  Google Scholar 

  180. Klys M, Kosnú J, Pach J, Kamenczak A. Carbofuran poisoning of pregnant women and fetus per ingestion. J Forens Sci 1989; 34: 1413–1416.

    CAS  Google Scholar 

  181. Maddock RK, Bloomer HA. Meprobamate overdosage. Evaluation of its severity and methods of treatment. JAMA 1967; 201: 123–127.

    Article  Google Scholar 

  182. Ecobichon DJ. Carbamates. In: Spencer PS, Schaumburg HH, eds. Experimental Clinical Neurotoxicology. New York, Oxford University Press, 2000, pp. 289–298.

    Google Scholar 

  183. Maynard RL. Toxicology of chemical warfare agents. In: Ballantyne B, Marrs T, Turner T, ed. General and Applied Toxicology. New York, Stockton Press, 1993, p. 1253.

    Google Scholar 

  184. Spencer PS, Wilson BW, Albuquerque EX. Sarin, other “nerve agents”and their antidotes. In: Spencer PS, Schaumburg HH, eds. Experimental Clinical Neuro-toxicology. New York, Oxford University Press, 2000, pp. 1073–1093.

    Google Scholar 

  185. Meselson M, Perry Robinson J. Chemical warefare and disarmament. Sci Am 1980; 242 (4): 34.

    Article  Google Scholar 

  186. Nozaki H, Aikawa N, Fujishima S, et al. A case of VX poisoning and the difference from sarin. Lancet 1995; 346: 698–699.

    Article  PubMed  CAS  Google Scholar 

  187. Nozaki H, Aikawa N, Shinozawa Y, et al. Sarin poisoning in Tokyo subway. Lancet 1995; 345: 980–981.

    Article  PubMed  CAS  Google Scholar 

  188. Morita H, Yanagisawa N, Nakajima T, et al. Sarin poisoning in Matsumoto, Japan. Lancet 1995; 346: 290–293.

    Article  PubMed  CAS  Google Scholar 

  189. Nakajima T, Saro S, Morita H, Yanagisawa N. Sarin poisoning of a rescue team in the Matsumoto sarin incident in Japan. Occup Environ Med 1997; 54: 697–701.

    Article  PubMed  CAS  Google Scholar 

  190. Woodall J. Tokyo subway gas attack. Lancet 1997; 350: 296.

    Article  PubMed  CAS  Google Scholar 

  191. Holstege CP, Kirk M, Sidell FR. Chemical warfare. Nerve agent poisoning. Crit Care Med 1997; 13: 923–942.

    CAS  Google Scholar 

  192. Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol 1994; 14: 317–331.

    Article  PubMed  CAS  Google Scholar 

  193. Becker G, Kawan A, Szinicz L. Direct reaction of oximes with sarin, soman or tabun in vitro. Arch Toxicol 1997; 71: 714–718.

    Article  PubMed  CAS  Google Scholar 

  194. Ecobichon DJ. Carbamic acid ester insecticids. In: Ecobichon DJ, Joy RM, eds. Pesticides and Neurological Disease. Boca Raton, FL, CRC, 1994, pp. 251–289.

    Google Scholar 

  195. Rotenberg M, Shefi M, Dany S, et al. Differentiation between organophosphate and carbamate poisoning. Clin Chim Acta 1995; 234: 11–21.

    Article  PubMed  CAS  Google Scholar 

  196. Besser R, Vogt T, Gutmann L. High pancuronium sensitivity of axonal nicotinic-acetylcholine receptors in humans during organophosphate intoxication. Muscle Nerve 1991; 14: 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  197. Miller SA, Blick DW, Kerenyi SZ, Murphy MR. Efficacy of physostigmine as a pretreatment for organophosphate poisoning. Pharmacol Biochem Behav 1993; 44: 343–347.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Howard, J.F. (2003). Toxic Neuromuscular Transmission Disorders. In: Kaminski, H.J. (eds) Myasthenia Gravis and Related Disorders. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-341-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-341-5_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5942-6

  • Online ISBN: 978-1-59259-341-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics