Skip to main content

Noninvasive Studies of Fluoropyrimidines

  • Chapter
Fluoropyrimidines in Cancer Therapy

Abstract

Fluoropyrimidines occupy a unique niche in the noninvasive studies of drugs. For one, 5fluorouracil (5-FU), which was introduced by Heidelberger in the late 1950s as an anticancer agent, continues to be used widely for chemotherapy of colorectal and other cancers. And the physical properties of the fluorine atom make fluorinated drugs highly suitable for studies by two of the key imaging technologies. The 2-h 18F isotope allows fluorinated drugs to be studied using positron emission tomography (PET) methods, whereas the natural, 100% abundant 19F nuclide allows the use of nuclear magnetic resonance methods, including NMR spectroscopy (MRS) and imaging (MRI). Such noninvasive studies have been providing a unique insight into the fate of fluoropyrimidines at their target sites and are allowing us to gain a much better understanding of their mechanism of action. These noninvasive methods will allow, when properly used in clinical settings, objective assessments of whether the fluoropyrimidine chosen is likely to be effective in a given patient, as well as the development of a proper strategy for individualizing the dose and the dose regimen that is required to optimize chemotherapy for a given patient. Furthermore, these same methods can also provide an evidence-based evaluation of fluorinated pyrimidines in development, as well as assess the potential effect of any modulators. And finally, the noninvasive methods and techniques developed for the study of fluoropyrimidines are likely to document the potential of these methodologies for other noninvasive studies that can monitor and assist in the development of other drugs in oncology as well as in other areas of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kamen MD, Isotopic Tracers in Biology, Academic Press, New York, 1957.

    Google Scholar 

  2. Ansfield FJ, Ramirez G, Madman S, Bryan GT, Curreri AR. Cancer Res 1969; 29: 1062–1066.

    PubMed  CAS  Google Scholar 

  3. Duschinsky R, Pleven E, Heidelberger C. The synthesis of 5- Fluoropyrimidines. J Am Chem Soc 1959; 79: 4559–4560.

    Article  Google Scholar 

  4. Fowler JS, Finn RD, Lambrecht RM, Wolf AP. The synthesis of 18F-5-Fluorouracil J Nucl Med 1973; 14: 63–64.

    PubMed  CAS  Google Scholar 

  5. Vine EN, Young D, Vine WH, Wolf W. An Improved Synthesis of 18F-5-Fluorouracil. Int JAppl Radn Isotop 1979; 30: 401–405.

    Article  CAS  Google Scholar 

  6. Shani J, Wolf W. A Model of Prediction of Chemotherapy Response to 5-FU in Sensitive versus Resistant Lymphocytic Leukemia in Mice. Cancer Res 1977; 37: 2306–2308.

    PubMed  CAS  Google Scholar 

  7. Shani J, Wolf W, Schlesinger T, et al. Distribution of 18F-5-Fluorouracil in Tumor Bearing Mice and Rats. Int. J Nucl Med Biol 1978; 5: 19–28.

    Article  PubMed  CAS  Google Scholar 

  8. Young D, Vine E, Ghanbarpour A, Shanti J, Siemsen JK, Wolf W, et al. Metabolic and Distribution Studies with Radiolabeled 5-Fluorouracil. Nucl Med 1982; 21: 1–7.

    CAS  Google Scholar 

  9. Lieberman LM, Wessels BW, Wiley AL, Jr et al. 18F-5-fluorouracil studies in human’s and animals. International Journal of Radiation Oncology, Biology, Physics 1980; 6: 505–509.

    CAS  Google Scholar 

  10. Young D. Radiopharmacokinetic Model Development and Structural Identification Ph.D. Dissertation, University of Southern California, Los Angeles, CA. 1983.

    Google Scholar 

  11. Shani J, Young D, Siemsen JK, et al. (1982) Dosimetry and Preliminary Human Studies of 18F–5FU. Int J Nucl Med Biol 1982; 9: 25–35.

    Article  Google Scholar 

  12. Port RE, Strauss LG, Clorius JH. Positron emission tomography following brief infusion of 5418F]uracil: linear model for the kinetics of 18F radioactivity in tumors. Onkologie 1989;12 Suppl 1: 51–52.

    Google Scholar 

  13. Dimitrakopoulou A, Strauss LG, Clorius JH, et al. Studies with positron emission tomography after systemic administration of fluorine-l8-uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1993; 34: 1075–1081.

    PubMed  CAS  Google Scholar 

  14. Kissel J, Brix G, Bellemann ME, et al. Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 1997; 57: 3415–3423.

    PubMed  CAS  Google Scholar 

  15. Harte RJ, Matthews JC, O’Reilly, SM, et al. Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with N-phosphonacetyl-L-aspartate, folinic acid, and interferon alfa. J Clin Oncol 1999; 17: 1580–1588.

    PubMed  CAS  Google Scholar 

  16. Saleem A, Yap J, Osman S, et al. Modulation of fluorouracil tissue pharmacokinetics by eniluracil: in-vivo imaging of drug action. Lancet 2000; 355: 2125–2131.

    Article  PubMed  CAS  Google Scholar 

  17. Saleem A, Aboagye EO, Price PM. In Vivo Monitoring of Drugs Using Radiotracer Techniques. Adv Drug Deliv Revs 2000; 41: 21–39.

    Article  CAS  Google Scholar 

  18. Stevens, AN, Morris, PG, Iles, RA, Sheldon, PW, Griffiths, JR 5-Fluorouracil metabolism monitored in vivo by 19F NMR Br J Cancer 1984; 50: 113–117.

    CAS  Google Scholar 

  19. Wolf W, Griffiths JR, Silver MS Bruckner H Can NMR Contribute to the Radiopharmacokinetics of 5-Fluorouracil (5-FU) in Man?. J Nucl Med 1986; 27: 737.

    Google Scholar 

  20. Wolf W, Albright MJ, Silver MS, et al. Fluorine-19 NMR Spectroscopic Studies of the Metabolism of 5-Fluorouracil in the Liver of Patients Undergoing Chemotherapy Mag Reson Imaging, 1987; 5: 165–169.

    CAS  Google Scholar 

  21. Wolf W, Presant CA, Servis KL, et al. Tumor Trapping of 5-Fluorouracil: in vivo 19F-NMR Spectroscopic Pharmacokinetics in Tumor-bearing Humans and rabbits.. Proc Natl Acad Sci 1990; 87: 492–496.

    Article  PubMed  CAS  Google Scholar 

  22. Findlay MPN, Leach MO, Cunningham D, et al. The noninvasive monitoring of low-dose, infusional 5-Fluorouracil and its modulation by interferon-alpha using in vivo F-19 Magnetic Resonance Spectroscopy in Patients with Colorectal Cancer. A Pilot study. Ann Oncol, 1993; 4: 597–602.

    PubMed  CAS  Google Scholar 

  23. Schlemmer HP, Bachert P, Semmler W, et al. Drug monitoring of 5-fluorouracil: in vivo 19F NMR study during 5-FU chemotherapy in patients with metastases of colorectal adenocarcinoma. Magn Reson Imaging 1994; 12: 497–511.

    Article  PubMed  CAS  Google Scholar 

  24. Wolf W, Presant CA, Waluch V. 19F-MRS Studies of Fluorinated Drugs in Humans. Adv Drug Deliv Revs 2000; 41: 55–74.

    Article  CAS  Google Scholar 

  25. El-Tahtawy A, Wolf W. Tumor Pharmacokinetics of 5-Fluorouracil (5FU) in rats using noninvasive 19F NMR spectroscopy (NMRS). Proc AACR 1990; 31: 383 (#2273).

    Google Scholar 

  26. Cohen J, Irwin LE, Marshall JG. et al. Clinical Pharmacology of Oral and Intravenous 5-Fluorouracil (NSC 19893). Cancer Chemo Repts 1974; 58: 723–731.

    CAS  Google Scholar 

  27. Li CW, Negendank WG, Padavic-Shaller KA, et al. Quantitation of 5-fluorouracil catabolism in human liver in vivo by three-dimensional localized 19F magnetic resonance spectroscopy. Clin Cancer Res 1996; 2: 339–345.

    PubMed  CAS  Google Scholar 

  28. Dzik-Jurasz ASK, Collins DJ, Leach MO, et al. Gallbladder localization of 19F MRS Catabolite Signals in Patients Receiving Bolus and Protracted Venous Infusional 5-Fluorouracil. Mag Reson Med 2000; 44: 516–520.

    Article  CAS  Google Scholar 

  29. Adams ER, Leffert JJ, Craig DJ, Spector T, Pizzorno G. In vivo effect of 5-ethynyluracil on 5-fluorouracil metabolism determined by 19F nuclear magnetic resonance spectroscopy. Cancer Res 1999; 59: 122–127.

    PubMed  CAS  Google Scholar 

  30. Leu AJ, Berk DA, Lymboussaki A, et al. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Research 2000; 60: 4324327.

    Google Scholar 

  31. Stohrer M, Boucher Y, Stangassinger M, et al. Oncotic pressure in solid tumors is elevated. Cancer Research 2000; 60: 4251–4255.

    PubMed  CAS  Google Scholar 

  32. Swartz MA, Kaipainen A, Netti PA, et al. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech 1999; 32: 1297–1307.

    Article  PubMed  CAS  Google Scholar 

  33. Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Nat Acad Sci 1998; 95: 4607–4612.

    Article  PubMed  CAS  Google Scholar 

  34. Vallabhajosula S, Harwig JF, Wolf W. Effect of pH on Tumor Uptake of Gallium in vitro and in vivo. European J Nucl Med 1982; 7: 462–468.

    CAS  Google Scholar 

  35. Gerweck LE. Tumor pH: implications for treatment and novel drug design. Seminars Radiat Oncol 1998; 8: 176–182.

    Article  CAS  Google Scholar 

  36. McCoy CL, Parkins CS, Chaplin DJ, Griffiths JR, Rodrigues LM, Stubbs M. The effect of blood flow modification on infra-and extracellular pH measured by 31P magnetic resonance spectroscopy in murine tumours. Brit J Cancer 1995; 72: 905–911.

    Article  PubMed  CAS  Google Scholar 

  37. Wohlhuetter RM, Mclvor RS, Plagemann PGW. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J. Cell. Phys. 1980; 104: 309–319.

    Article  Google Scholar 

  38. Yamamoto S, Kawasaki T. Active Transport of 5-Fluorouracil and Its Energy Coupling in Ehrlich Ascites Tumor Cells. J Biochem 1981; 90: 635–642.

    PubMed  CAS  Google Scholar 

  39. AS, McSheehy PM, Stubbs M, Alder G, et al. Influence of pH on the uptake of 5-fluorouracil into isolated tumour cells. Brit J Cancer 1998; 77: 873–879.

    Article  PubMed  Google Scholar 

  40. Ikonte C, Wolf W. The transport of 5-Fluorouracil (5-FU) into tumor cells as an active process: studies with Walker 256 tumor cells. Proc Am Assoc Cancer Res 2000; 41: 492.

    Google Scholar 

  41. Ikonte C, Wolf W. Mechanism of the active transport of 5-Fluorouracil (5-FU) into Walker 256 tumor cells. Proceeding AACR: 294 (#1585), 2001.

    Google Scholar 

  42. Harte RJ, Matthews JC, O’Reilly SM Price PM. Sources of error in tissue and tumor measurements of 5[18F]fluorouracil. J Nucl Med 1998; 39: 1370–1376.

    PubMed  CAS  Google Scholar 

  43. Kissel J, Brix G, Bellemann ME, et al. Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 1997; 57: 3415–3423.

    PubMed  CAS  Google Scholar 

  44. Schnall M. Probes tuned to multiple frequencies for in-vivo NMR. In In-Vivo Magnetic Resonance Spectroscopy I. Probeheads and Radiofrequency Spectrum Analysis. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  45. Green SJ, Weiss GR. Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Investigational New Drugs 1992; 10: 239–253.

    Article  PubMed  CAS  Google Scholar 

  46. AE Maxwell, “Analysing Quantitative Data”, Methuen & Co., London, 1971.

    Google Scholar 

  47. Taylor JS, Reddick WE. Evolution from Empirical Dyamic Contrast-Enhanced Magnetic Resonance Imaging to Pharmacokinetic MRI. Adv Drug Deliv Revs 2000; 41: 91–110.

    Article  CAS  Google Scholar 

  48. Wolf W, Waluch V, Kim HK, Presant CA, Dowell JA, Sancho AR. DEMRI and Pharmacokinetic Analysis in the Study of Blood Flow/ Perfusion: its Potential for Measuring Drug Targeting and Angiogenesis/Antiangiogenesis. Proc Am Assoc Cancer Res 1999; 40: 419 (#2769).

    Google Scholar 

  49. Machov D. The pharmacological modulation of 5-FU with folinic acid methotrexate trimetrexate and mphosphonacetyl- 1-aspartic acid (PALA) mechanisms of the interactions and clinical data. Bull Cancer 9 Supp 1994; 2: 74s - 78s.

    Google Scholar 

  50. Cadman E, Heimer R, Davis L. Enhanced 5-FU nucleotide formation after MTX administration: explanation for drug synergism. Science 1979; 205: 1135–1137.

    Article  PubMed  CAS  Google Scholar 

  51. El-Tahtawy A, Wolf W. In Vivo Measurements of the Intratumoral Metabolism, Modulation and Pharmacokinetics of 5-Fluorouracil, using 19F-Nuclear Magnetic Resonance Spectroscopy. Cancer Research 1991; 51: 5806–5812.

    PubMed  CAS  Google Scholar 

  52. Presant CA, Wolf W, Waluch V, Wiseman CL, Weitz I, Shani J. Enhancement of 5-Fluorouracil Uptake in Human Colorectal and Gastric Cancers, by Interferon or by High-Dose Methotrexate — An In Vivo Human Study Using Noninvasive 19F-Magnetic Resonance Spectroscopy. J Clin Oncol 2000; 18: 255–261.

    PubMed  CAS  Google Scholar 

  53. Presant CA, Jacobson J, Wolf W, Waluch V, Weitz I, Macdonald J. Does leucovorin alter the intratumoral pharmacokinetics of 5-Fluorouracil (5-FU)? A Southwest Oncology Group Study. Submitted for publication.

    Google Scholar 

  54. van der Wilt CL, Smid K, Aherne GW, Noordhuis P, Peters GJ. Biochemical mechanisms of interferon modulation of 5-fluorouracil activity in colon cancer cells. Europ J Cancer 1997; 33: 471–478.

    Article  Google Scholar 

  55. Wolf W, Waluch V, Kim HK, et al. Noninvasive 19F Magnetic Resonance Spectroscopy to Evaluate Tumoral Pharmacokinetics of AccuSiteTM (Fluorouracil/ Epinephrine) Injectable Gel for Treatment of Human Basal Cell Carcinoma. AACR Proceedings 1995; 36: 365 (#2174).

    Google Scholar 

  56. Menei P, Venier M-C, Gamelin E, et al. Local and Sustained Delivery of 5-Fluorouracil from Biodegradable Microspheres for the Radiosensitization of Glioblastoma A Pilot Study Cancer 1999; 86: 325–330.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolf, W., Presant, C.A., Waluch, V. (2003). Noninvasive Studies of Fluoropyrimidines. In: Rustum, Y.M. (eds) Fluoropyrimidines in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-337-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-337-8_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-274-2

  • Online ISBN: 978-1-59259-337-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics