Skip to main content

Comparative Antitumor Activity of 5-Fluorouracil (5-FU) Prodrugs in Preclinical Model Systems

Role of Leucovorin and Dihydropyrimidine Dehydrogenase Inhibitors

  • Chapter
Fluoropyrimidines in Cancer Therapy

Abstract

Over the last two decades, attempts have been made to improve the efficacy of 5-fluorouracil (5-FU) by either schedule or biochemical modulation. Among the changes of particular importance in schedule of administration has been the use of prolonged infusion (1). Several studies have investigated different schedules for 5-FU administration including bolus administration up to 5 d, protracted infusion over weeks, continuous infusion over a period of 24 h, or a combination of both continuous and bolus administration (2). A meta-analysis was carried out on all randomized trials and have shown that if 5-FU is used alone, continuous infusion induces more tumor regression than bolus regimens, prolongs the time to disease progression, but the difference on the impact on survival is not significant (3). Clinical data, however, demonstrated similar results when protracted infusion of 5-FU was compared (historically) with 5-FU modulated by leucovorin (LV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Gramont A, Bosset JF, Milan C, et al. Randomized trial comparing monthly low dose leucovorin and 5-FU bolus with biomonthly high dose leucovorin and 5-FU bolus plus continuous infusion for advanced colorectal cancer. J Clin Oncol 1997; 15: 808–815.

    PubMed  Google Scholar 

  2. Meta-analysis Group in Cancer. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group in Cancer. J Clin Oncol 1998; 16: 301–308.

    Google Scholar 

  3. Borner MM, Castiglione M, Bacchi M. The impact of adding low dose leucovorin to monthly 5-FU in advanced colorectal cancer: results of phase III randomized trial. Ann Oncol 1998; 9: 535–541.

    Article  PubMed  CAS  Google Scholar 

  4. Advanced Colorectal Cancer: meta-analysis project. Meta-analysis of randomized trials testing the biochemical modulation of 5-FU by methotrexate in metastatic colorectal cancer. J Clin Oncol 1994;12:960–969.

    Google Scholar 

  5. Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 1997; 15: 3223–3229.

    PubMed  CAS  Google Scholar 

  6. Johnston PG, Fisher ER, Rockette HE, et al. The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol 1994; 12: 2640–2647.

    PubMed  CAS  Google Scholar 

  7. Twelves C, Harper P, Custem EV. A phase III trial of xeloda (capecitabine) in previously untreated advanced metastatic colorectal cancer. Proc Am Soc Clin Oncol 1999; 18: 1010.

    Google Scholar 

  8. Daher GC, Harris BE, Diasio RB. Metabolism of pyrimidine anologues and their nucleotides in metabolism and reaction of anticancer drugs, volume 1: the international encyclopedia of pharmacology and therapeutics, chapter 2. 1994.

    Google Scholar 

  9. Grem JL. Biochemical modulation of 5-FU in systematic treatment of advanced colorectal cancer. Oncology 2001; 15: 13–19.

    PubMed  CAS  Google Scholar 

  10. Takimoto CH, Lu Z-H, Zhang R. Severe neurotoxicity following 5-Fu based chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res 1996; 2: 477–481.

    PubMed  CAS  Google Scholar 

  11. Harris BE, Carpenter JT, Diasio RB. Severe 5-FU toxicity secondary to dihydropyrimidine dehydrogenase deficiency: a potentially more common pharmacogenetic syndrome. Cancer 1991; 68: 499–501.

    Article  PubMed  CAS  Google Scholar 

  12. Diasio RB. Oral administration of 5-FU: a new approach utilizing modulators of dihydropyrimidine dehydrogenase. Cancer Therapeutics 1999; 2: 97–106.

    Google Scholar 

  13. Friedkin M, Roberts D. The enzymatic synthesis of nucleosides. Thymidine and related pyrimidines neucleosides. J Biol Chem 1954; 207: 257–266.

    PubMed  CAS  Google Scholar 

  14. Luccioni C, Beaumatin J, Bardot V. Pyrimidine nucleotide metabolism in human colon carcinomas. Comparison of normal tissue, primary tumors and xenografts. Int J Cancer 1994; 58: 517.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz EL, Baptiste N, Wadler S, Makower D. Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J Biol Chem 1995; 270: 19073–19077.

    Article  PubMed  CAS  Google Scholar 

  16. Moghaddam A, Zhang HT, Fan T, et al. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Nat Acad Sci 1995; 92: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  17. Toi M, Hoshina S, Taniguchi T. Vascular endothelial growth factor and platelet derived endothelial cell growth factor are frequently co-expressed in highly vascularized human breast cancer. Clin Cancer Res 1995; 1: 961–964.

    PubMed  CAS  Google Scholar 

  18. Moertel CG. Chemotherapy of gastrointestinal cancer. N Engl J Med 1978; 229: 1049–1052.

    Article  Google Scholar 

  19. Davis HL. Chemotherapy of large bowel cancer. Cancer 1982; 50: 2638–2646.

    Article  PubMed  CAS  Google Scholar 

  20. Kemeny N, Daly J, Reichman B, et al. Intrahepatic or systemic infusion of fluorodeoxyuridine in patients with liver metastases from colorectal carcinoma. Ann Intern Med 1987; 107: 459–465.

    PubMed  CAS  Google Scholar 

  21. Lokich JJ, Ahlgren JD, Gullo JJ, et al. A prospective randomized comparison of continuous infusion fluorouracil with a conventional bolus schedule in metastatic colorectal carcinoma: a Mid-Atlantic Oncolology Program Study. J Clin Oncol 1989; 7: 425–432.

    PubMed  CAS  Google Scholar 

  22. Buroker TR, O’Connell MJ, Wieand HS, et al. Randomized comparison of two schedules of fluorouracil and leucovorin in the treatment of advanced colorectal cancer. J Clin Oncol 1994; 12: 14–20.

    PubMed  CAS  Google Scholar 

  23. Nobile MT, Rosso R, Sertoli MR, et al. Randomized comparison of weekly bolus 5-fluorouracil with or without and leucovorin in metastatic colorectal carcinoma. Eur J Cancer 1992; 28A: 1823–1827.

    Article  Google Scholar 

  24. Creaven PJ, Rustum YM, Petrelli NJ, et al. Phase I and pharmacokinetic evaluation of floxuridine/leucovorin given on the Roswell Park weekly regimen. Cancer Chemo Pharm. 1994; 34: 261–265.

    Article  CAS  Google Scholar 

  25. Loffler TM, Weber FW, Hausamen TU. Protracted continuous infusion 5-fluorouracil with intermittent high-dose leucovorin in advanced and metastatic colorectal cancer: a pilot study. London Royal Society of Medicine Services Ltd 1989; 65–77.

    Google Scholar 

  26. Di Costanzo F, Bartolucci R, Calabresi F, et al. Fluorouracil-alone versus high-dose folinic acid and fluorouracil in advanced colorectal cancer: a randomized trial of the Italian Oncology Group for Clinical Research (GOIRC). Ann Oncol 1992; 3: 371–376.

    PubMed  Google Scholar 

  27. Petrelli N, et al. The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized Phase III trial. J Clin Oncol 1989; 7: 1419–1426.

    PubMed  CAS  Google Scholar 

  28. Piedbois P, Buyse M, Rustum Y, et al. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer:evidence in terms of response rate. J Clin Oncol 1992; 10: 896–903.

    Google Scholar 

  29. Poon MA, O’Connell MJ, Wieand HS, et al. Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer. J Clin Oncol 1991; 9: 1967–1972.

    PubMed  CAS  Google Scholar 

  30. Mansoni S. Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. Lancet 1995; 345: 939–949.

    Article  Google Scholar 

  31. Cao S, Frank C, Rustum YM. Role of fluoropyrimidine Schedule and (6R,S)leucovorin dose in a preclinical animal model of colorectal carcinoma J Natl Cancer Inst 1996; 88 (7): 430–436.

    Article  PubMed  CAS  Google Scholar 

  32. Porter DJT, Chestnut WG, Merrill BM, Spector T. Mechanism-based inactivation of dihydropyrimidine dehydrogenase by 5-ethynyluracil. J Biol Chem 1992; 267: 5236–5242.

    PubMed  CAS  Google Scholar 

  33. Beck A, Etienne MC, Cheradame JL, et al. A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumor sensitivity to fluorouracil. Europ J Cancer 1994; 10: 1517–1522.

    Article  Google Scholar 

  34. Cao S, Rustum YM Spector T. 5-Ethynyluracil (776C85): modulation of 5-fluorouracil efficacy and therapeutic index in rats bearing advanced colorectal carcinoma. Cancer Res 1994; 54 (6): 1507–1510.

    PubMed  CAS  Google Scholar 

  35. Fischel JL, Formento P, Etienne MC, et al. Dual modulation of 5-fluorouracil cytotoxicity using folic acid with a dihydropyrimidine dehydrogenase inhibitor. Biochem Pharm 1997; 53: 1703–1709.

    Article  PubMed  CAS  Google Scholar 

  36. Conti JA, Kemeny NE, Saltz LB, et al. Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol 1996; 14: 709–715.

    PubMed  CAS  Google Scholar 

  37. Rougier P, Bugat R, Douillard JY, et al. Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapy-naive patients and patients pretreated with fluorouracil-based chemotherapy. J Clin Oncol 1997; 15: 251–260.

    PubMed  CAS  Google Scholar 

  38. Pitot HC, Wender DB, O’Connell MJ, et al. Phase II trial of irinotecan in patients with metastatic colorectal carcinoma. J Clin Oncol 1997; 15: 2910–2919.

    PubMed  CAS  Google Scholar 

  39. Rothenberg ML, Eckardt JR, Kuhn JG, et al. Phase II trial of irinotecan (CPT-11) in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol 1996; 14: 1128–1135.

    PubMed  CAS  Google Scholar 

  40. Saltz LB, Kanowitz J, Kemeny NE, et al. Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol 1996; 14 (11): 2959–2967.

    PubMed  CAS  Google Scholar 

  41. Vanhoefer U, Harstrick A, Kohne CH, et al. Phase I study of a weekly schedule of irinotecan, high-dose leucovorin, and infusional fluorouracil as first-line chemotherapy in patients with advanced colorectal cancer. J Clin Oncol 1999; 17 (3): 907–913.

    PubMed  CAS  Google Scholar 

  42. Cao S Rustum YM. Synergistic antitumor activity of irinotecan in combination with 5-fluorouracil in rats bearing advanced colorectal cancer: role of drug sequence and dose. Cancer Res 2000; 60 (14): 3717–3721.

    PubMed  Google Scholar 

  43. Fujii S, Kitano S, Ikenaka K, Shirasaka T. Effect of coadministration of uracil or cytosine on the antitumor activity of clinical dose of 1-(2-tetrahydrofuryl)-5-fluorouracil and levelof 5-fluorouracil in rodents. Gann 1979; 70: 209–214.

    PubMed  CAS  Google Scholar 

  44. Malik STA, Talbot D, Clarke PI, et al. Phase II trial of UFT in advanced colorectal and gastric cancer. Br J Cancer 1990; 62: 1023–1025.

    Article  PubMed  CAS  Google Scholar 

  45. Shirasaka T, Nakano K, Takechi T, et al. Antitumor activity of 1M tegafur-0.4 M 5-chloro-2–4-dihydroxypyrimidine-1M potassium oxonate (S-1) against human colon carcinoma orthotopically implanted into nude rats. Cancer Res 1996; 56: 2602–2606.

    PubMed  CAS  Google Scholar 

  46. Cao S, Lu K, Ishitsuka H, Rustum YM. Antitumor efficacy of capecitabine against fluorouracil-sensitive and-resistant tumors. Proc Am Soc Clin Oncol 1997; 16: 226.

    Google Scholar 

  47. Ishikawa T, Utoh M, Sawada N, et al. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem Pharmacol 1998; 55: 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  48. Ishikawa T, Utoh M, Sawada N, Sekiguchi F, Ishitsuka H. Zeloda (capecitabine): an orally available tumorsensitive fluoropyrimidine carbamate. Proc Am Soc Clin Oncol 1997; 16: 208.

    Google Scholar 

  49. Petrellli N. The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized Phase III trial. J Clin Oncol 1989; 7: 1419–1426.

    Google Scholar 

  50. Fraile RJ, Baker LH, Buroker TR, et al. Pharmacokinetics of 5-fluorouracil administered orally, by rapid intravenous and by slow infusion. Cancer Res 1980; 40: 2223–2228.

    PubMed  CAS  Google Scholar 

  51. Hegie GD, Sommadoss JP, Gross DS, et al. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 1987; 47: 2203–2206.

    Google Scholar 

  52. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 1989; 16: 215–237.

    Article  PubMed  CAS  Google Scholar 

  53. Nord LD, Stolfi RL Martin DS. Biochemical modulation of 5-fluorouracil with leucovorin or delayed uridine rescure: correlation of antitumor activity with dosage and FUra incorporation into RNA. Biochem Pharmacol 1992; 43: 2543–2549.

    Article  PubMed  CAS  Google Scholar 

  54. Saltz LB, Locker PK, Pirotta N, et al. Weekly irinotecan (CPT-11), leucovorin (LV), and fluorouracil (FU) is superior to daily x 5 LV/FU in patients with previously untreated metastatic colorectal cancer. Proc Am Soc Clin Oncol Abstr 1999; 18: 1999.

    Google Scholar 

  55. Ducreux M, Ychou M, Seitz JF, et al. Irinotecan combined with bolus fluorouracil, continuous infusion fluorouracil, and high-dose leucovorin every two weeks (LV5FU regimen): a clinical dose-finding and pharmacokinetic study in patients with pretreated metastatic colorectal cancer. J Clin Oncol 1999; 17: 2901–2901.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cao, S., Hapke, G., Rustum, Y.M. (2003). Comparative Antitumor Activity of 5-Fluorouracil (5-FU) Prodrugs in Preclinical Model Systems. In: Rustum, Y.M. (eds) Fluoropyrimidines in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-337-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-337-8_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-274-2

  • Online ISBN: 978-1-59259-337-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics