Skip to main content

Management of Endocrine Dysfunction Following Brain Tumor Treatment

  • Chapter
Book cover Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 255 Accesses

Abstract

Advances in modalities of treatment and improvements in long-term survival in children with brain tumors have resulted in a need to evaluate the late effects of cancer therapy on endocrine function in children. Long-term impairment of growth and sexual development are well-known complications of brain tumors and their treatments, although multiple endocrine systems may be altered following surgery, radiotherapy, and chemotherapy. In addition, co-morbidities of cancer therapy, such as nutritional deficiencies, psychosocial dysfunction, and the disease process itself, may amplify the deleterious effects of cancer treatment on the endocrine system. The aims of this review are to summarize the effects of brain tumors and their treatments on the endocrine system and to outline the management of endocrinopathies in survivors of childhood brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed SR, Shalet SM. Hypothalamic growth hormone releasing factor deficiency following cranial irradiation. Clin Endocrinol 1984; 21; 483–488.

    Article  CAS  Google Scholar 

  2. Blacklay A, Grossman A, Ross RJM, et al. Cranial irradiation for cerebral and nasopharyngeal tumours in children: evidence for the production of a hypothalamic defect in growth hormone release. J Endocrinol 1986; 108: 25–29.

    Article  PubMed  CAS  Google Scholar 

  3. Rappaport R, Brauner R. Growth and endocrine disorders secondary to cranial irradiation. Pediatr Res 1989; 25: 561–567.

    Article  PubMed  CAS  Google Scholar 

  4. Shalet SM. Radiation and pituitary dysfunction. N Engl J Med 1993; 328: 131–133.

    Article  PubMed  CAS  Google Scholar 

  5. Sklar CA. Neuroendocrine complication of cancer therapy. In Schwartz CL, Constine LS, Hobbie WI, Ruccione KS, eds. Survivors of Childhood Cancer: Assessment and Management. Mosby, St. Louis, MO, 1994, pp. 97–110.

    Google Scholar 

  6. Withers HR. Biologic basis for altered fractionation schemes. Cancer 1985; 55: 2086–2091.

    Article  PubMed  CAS  Google Scholar 

  7. Shalet SM, Price DA, Beardwell CG, et al. Normal growth despite abnormalities in growth hormone secretion in children treated for acute leukemia. J Pediatr 1979; 94: 719–722.

    Article  PubMed  CAS  Google Scholar 

  8. Kirk JA, Stevens MM, Menser MA, et al. Growth failure and growth hormone deficiency after treatment for acute lymphoblastic leukemia. Lancet 1987; 1: 190–193.

    Article  PubMed  CAS  Google Scholar 

  9. Sklar CA. Growth and pubertal development in survivors of childhood cancer. Pediatrics 1991; 18: 53–60.

    CAS  Google Scholar 

  10. Duffner PK, Cohen ME, Vorhees ML, et al. Long-term effects of cranial irradiation on endocrine function in children with brain tumors, a prospective study. Cancer 1985; 56: 2189–2193.

    Article  PubMed  CAS  Google Scholar 

  11. Chapman RM. Effect of cytotoxic therapy on sexuality and gonadal function. Semin Oncol 1982; 9: 84–94.

    PubMed  CAS  Google Scholar 

  12. Oberfield SE, Sklar C, Allen J, et al. Thyroid and gonadal function and growth of long-term survivors of medulloblastoma/PNET. In Green DM, D’Angio GJ (eds): Late Effects of Treatment for Childhood Cancer. New York, Wiley-Liss, 1992, p. 55.

    Google Scholar 

  13. Rappaport R, Brauner R, Czernichow P, et al. Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab 1982; 54: 1164–1168.

    Article  PubMed  CAS  Google Scholar 

  14. Constine LS, Woolf PD, Cann D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med 1993; 328: 87–94.

    Article  PubMed  CAS  Google Scholar 

  15. Lam KSL, Tse VKC, Wang C, et al. Effects of irradiation on hypothalamic-pituitary function: a 5 year longitudinal study in patients with nasopharyngeal carcinoma. Q J Med 1991; 78: 165–176.

    PubMed  CAS  Google Scholar 

  16. Livesey EA, Brook CG. Thyroid dysfunction after radiotherapy and chemotherapy of brain tumours. Arch Dis Child 1987; 64: 593–595.

    Article  Google Scholar 

  17. Oberfield SE, Nirenberg A, Allen JC, et al. Hypothalamic-pituitary-adrenal function following cranial irradiation. Horm Res 1997; 47: 9–16.

    Article  PubMed  CAS  Google Scholar 

  18. Clayton PE, Shalet SM, Price DA. Growth response to growth hormone therapy following craniospinal irradiation. Eur J Pediatr 1988; 147: 597–601.

    Article  PubMed  CAS  Google Scholar 

  19. Willi SM, Cooke K, Goldwein J, et al. Growth in children after bone marrow transplantation for advanced neuroblastoma compared with growth after transplantation for leukemia or aplastic anemia. J Pediatr 1992; 120: 726–732.

    Article  PubMed  CAS  Google Scholar 

  20. Fuks Z, Glatstein E, Marsa GW, et al. Long-term effects of external irradiation on the pituitary and thyroid glands. Cancer 1976; 37: 1151–1161.

    Article  Google Scholar 

  21. Schimpff SC. Radiation-related thyroid dysfunction: implications for the treatment of Hodgkin’s disease. Ann Intern Med 1980; 92: 91–98

    PubMed  CAS  Google Scholar 

  22. Shalet SM, Rosenstock JD, Beardwell CG, et al. Thyroid dysfunction following external irradiation to the neck for Hodgkin’s disease in childhood. Radiology 1977; 28: 511–515.

    CAS  Google Scholar 

  23. Kapalan MM, Garnick MB, Gelber R, et al. Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am J Med 1983; 74: 272–280.

    Article  Google Scholar 

  24. Devney RB, Sklar CA, Nesbit ME, et al. Serial thyroid function measurements in children with Hodgkin’s disease. J Pediatr 1984; 105: 223–227.

    Article  PubMed  CAS  Google Scholar 

  25. Hancock SL, Cox RS, McDougall JR. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 1991; 325: 599–605.

    Article  PubMed  CAS  Google Scholar 

  26. Oglivy-Stuart AL, Shalet SM, Gattamaneni HR. Thyroid function after treatment of brain tumors in children. J Pediatr 1991; 119: 733–737.

    Article  Google Scholar 

  27. Rowley MJ, Leach DR, Warner GA, et al. Effect of graded doses of ionizing radiation on the human testis. Radiat Res 1974; 59: 665–678.

    Article  PubMed  CAS  Google Scholar 

  28. Sanders JE, Pritchard S, Mahoney P, et al. Growth and development following marrow transplantation for leukemia. Blood 1986; 68: 1129–1135.

    PubMed  CAS  Google Scholar 

  29. Shalet SM, Beardwell CG, Jacobs HS, et al. Testicular function following irradiation of the human prepubertal testis. Clin Endocrinol 1978; 9: 483–490.

    Article  CAS  Google Scholar 

  30. Stillman RJ, Schinfield JS, Schiff I, et al. Ovarian failure in long-term survivors of childhood malignancy. Am J Obstet Gynecol 1981; 139: 62–66.

    PubMed  CAS  Google Scholar 

  31. Leiper AD, Stanhope R, Kitching P, Chessels JM. Precocious and premature puberty associated with treatment of acute leukemia. Arch Dis Chil 1987; 62: 1107–1112.

    Article  CAS  Google Scholar 

  32. Sklar CA. Growth and pubertal development in survivors of childhood cancer. Pediatrics 1991; 18: 53–60.

    CAS  Google Scholar 

  33. Oglivy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab 1994; 78: 1282–1286.

    Article  Google Scholar 

  34. Collett-Solberg PF, Sernyak H, Satin-Smith M, et al. Endocrine outcome in long-term survivors of low-grade hypothalamic/chiasmatic glioma. Clin Endocrinol 1997; 47: 79–85.

    Article  Google Scholar 

  35. Constine LS, Rubin P, Woolf PD, Daane K, Lush C. Hyperprolactinemia and hypothyroidism following cytotoxic therapy for central nervous system malignancies. J Clin Oncol 1987; 5: 1841–1851.

    PubMed  CAS  Google Scholar 

  36. Goldwein JW. Effects of radiation therapy on skeletal growth in childhood. Clin Orthop 1991; 262: 101–107.

    PubMed  Google Scholar 

  37. Oberfield SE, Allen JC, Pollack J, et al. Long-term endocrine sequelae after treatment of medulloblastoma: prospective study of growth and thyroid function. J Pediatr 1986; 108: 219–223.

    Article  PubMed  CAS  Google Scholar 

  38. Pasqualini T, Diez B, Domene H, et al. Long-term endocrine sequelae after surgery, radiotherapy, and chemotherapy in children with medulloblastoma. Cancer 1987; 59: 801–806.

    Article  PubMed  CAS  Google Scholar 

  39. Clayton PE, Shalet SM. The evolution of spine growth after irradiation. Clin Oncol 1991; 3: 220–222.

    Article  CAS  Google Scholar 

  40. Hasle H, Helgestad J, Christensen JK, et al. Prolonged intrathecal chemotherapy replacing cranial irradiation in high-risk acute lymphatic leukemia: long-term follow-up with cerebral computed tomography scans and endocrinological studies. Eur J Pediatr 1995; 154: 24–29.

    Article  PubMed  CAS  Google Scholar 

  41. Tamminga RY, Zweens M, Kamps W, et al. Longitudinal study of bone age in acute lymphoblastic leukemia. Med Pediatr Oncol 1993; 21: 14–18.

    Article  PubMed  CAS  Google Scholar 

  42. Thun-Hohenstein L, Frisch H, Schuster E. Growth after radiotherapy and chemotherapy in children with leukemia or lymphoma. Horm Res 1992; 37: 91–95.

    Article  PubMed  CAS  Google Scholar 

  43. Olshan JS, Gubernick J, Packer RJ, et al. The effects of adjuvant chemotherapy on growth in children with medulloblastoma. Cancer 1992; 70: 2013–2017.

    Article  PubMed  CAS  Google Scholar 

  44. Moshang T, Grimberg A. The effects of irradiation and chemotherapy on growth. Endocrinol Metab Clin North Am 1996; 25: 731–741.

    Article  PubMed  CAS  Google Scholar 

  45. Counts DR, Gwirtsman H, Carlsson LMS, et al. The effects of anorexia nervosa and refeeding on growth-hormone binding protein, the insulin-like growth factors (IGFs) and the IGF-binding proteins. J Clin Endocrinol Metab 1992; 75: 762–767.

    Article  PubMed  CAS  Google Scholar 

  46. Nivot S, Benelli C, Clot JP, et al. Nonparallel changes of growth hormone (GH) and insulin-like growth factor-1, insulin-like growth factor binding protein-3, and growth hormone binding protein, after craniospinal irradiation and chemotherapy. J Clin Endocrinol Metab 1994; 78: 597–601.

    Article  PubMed  CAS  Google Scholar 

  47. Price DA, Morris MJ, Rowsell KV, et al. The effects of antileukaemic drugs on somatomedic production and cartilage responsiveness to somatomedin in vitro. Pediatr Res 1981; 15: 1553.

    Article  Google Scholar 

  48. Baron J, Oerter Klein K, Colli MJ, et al. Catch-up growth after glucocorticoid excess: a mechanism intrinsic to the growth plate. Endocrinol 1994; 135: 1367–1371.

    Article  CAS  Google Scholar 

  49. Chapman RM. Effect of cytotoxic therapy on sexuality and gonadal function. Semin Oncol 1982; 9: 84–94.

    PubMed  CAS  Google Scholar 

  50. Jaffe N, Sullivan MP, Reid H, et al. Male reproductive function in long-term survivors of childhood cancer. Med Pediatr Oncol 1988; 16: 241–247.

    Article  PubMed  CAS  Google Scholar 

  51. Byrne J, Fears TR, Gail MH, et al. Early menopause in long term survivors of cancer during adolescence. Am J Obstet Gynecol 1992; 166: 788–793.

    PubMed  CAS  Google Scholar 

  52. Siris ES, Leventhal BG, Vaitukaitis JL. Effects of childhood leukemia and chemotherapy on puberty and reproductive function in girls. N Engl J Med 1976; 294: 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  53. Meacham LR, Ghim TT, Crocker IR, et al. Systematic approach for detection of endocrine disorders in children treated for brain tumors. Med Pediatr Oncol 1997; 29: 86–91.

    Article  PubMed  CAS  Google Scholar 

  54. Shalet SM, Gibson B, Swindell R, Pearson D. Effect of spinal irradiation on growth. Arch Dis Child 1987; 62: 461–464.

    Article  PubMed  CAS  Google Scholar 

  55. Neely EK, Hintz RL, Wilson DM, et al. Normal ranges for immunochemiluminometric gonadotropin assays. J Pediatr 1995; 127: 40–46.

    Article  PubMed  CAS  Google Scholar 

  56. Rosenfeld RG, Albertsson-Wikland K, Cassorla R, et al. Diagnostic controversy: the diagnosis of growth hormone deficiency revisited. J Clin Endocrinol Metab 1995; 80: 1532–1540.

    Article  PubMed  CAS  Google Scholar 

  57. Marin G, Domene HM, Blackwell BJ. The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. J Clin Endocrinol Metab 1994; 79: 537–541.

    Article  PubMed  CAS  Google Scholar 

  58. Tassori P, Cacciari E, Cau M, et al. Variability of growth hormone reponse to pharmacological and sleep tests performed twice in short children. J Clin Endocrinol Metab 1990; 71: 230–234.

    Article  Google Scholar 

  59. Zadik Z, Chalew SA, Gilula Z, Kowarski AA. Reproducibility of growth hormone testing procedures: a comparison between 24-hour integrated concentration and pharmacological stimulation. J Clin Endocrinol Metab 1990; 71: 1127–1130.

    Article  PubMed  CAS  Google Scholar 

  60. Frasier D. A review of growth hormone stimulation tests in children. Pediatrics 1974; 53: 929–937.

    PubMed  CAS  Google Scholar 

  61. Blum WF, Ranke MR, Kietzman K, Gauggel E, Zeisel HJ, Bierich JR. A specific radioimmunoassay for the growth hormone (GH)-dependent somatomedin-binding protein: its use for diagnosis of GH deficiency. J Clin Endocrinol Metab 1990; 70: 1292–1298.

    Article  PubMed  CAS  Google Scholar 

  62. Blum WF, Albertsson-Wikland K, Rosberg S, Ranke MB. Serum levels of insulin-like growth factor I (IGF-I) and IGF binding protein 3 reflect spontaneous growth hormone secretion. J Clin Endocrinol Metab 1990; 76: 1610–1616.

    Article  Google Scholar 

  63. Weinzimer SA, Homan SA, Ferry RJ, Moshang T. Serum IGF-I and IGFBP-3 concentrations do not accurately predict growth hormone deficiency in children with brain tumors. Clin Endocrinol 1999; 51: 339–345.

    Article  CAS  Google Scholar 

  64. Sklar C, Sarafoglou K, Whittam E. Efficacy of insulin-like growth factor binding protein-3 in predicting the growth hormone response to provocative testing in children treated with cranial irradiation. Acta Endocrinol 1993; 129: 511–515.

    PubMed  CAS  Google Scholar 

  65. Tillmann V, Buckler JMH, Kibirige MS, et al. Biochemical tests in the diagnosis of childhood growth hormone deficiency. J Clin Endocrinol Metab 1997; 82: 531–535.

    Article  PubMed  CAS  Google Scholar 

  66. Rosenfield RL, Furlanetto R, Bock D. Relationship of somatomedin-C concentrations to pubertal changes. J Pediatr 1983; 10: 723–728.

    Google Scholar 

  67. Pescovity OH, Rosenfeld RG, Hintz RL, et al. Somatomedin-C in accelerated growth of children with precocious puberty. J Pediatr 1985; 107: 20–25.

    Article  Google Scholar 

  68. Rosenfield RL, Furlanetto R. Physiologic testosterone or estradiol induction of puberty increases somatomedin-C. J Pediatr 1985; 107: 415–417.

    Article  PubMed  CAS  Google Scholar 

  69. Rosenfeld RG, Wilson DM, Lee PDK, Hintz RL. Insulin-like growth factors I and II in evaluation of growth retardation. J Pediatr 1986; 109: 428–433.

    Article  PubMed  CAS  Google Scholar 

  70. Juul A, Bang P, Hertel NT, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab 1990; 78: 744–752.

    Article  Google Scholar 

  71. Silverman B. Clinical trial results: sustained-release growth hormone given once or twice monthly in children with GH deficiency. National Cooperative Growth Study Thirteenth Annual Investigators Meeting, 1999, Charleston, SC.

    Google Scholar 

  72. Vassilopoulou-Sellin R, Klein MJ, Moore BD III, et al. Efficacy of growth hormone replacement therapy in children with organic growth hormone deficiency after cranial irradiation. Horm Res 1995; 43: 188–193.

    Article  PubMed  CAS  Google Scholar 

  73. Clayton PE, Shalet SM, Price DA. Response to growth hormone treatment in children with central nervous system malignancy. In: Ranke MB, Gunnarson R, eds. Progress in Growth Hormone Therapy–5 Years of KIGS. J 00000 J Verlag, Mannheim, 1994, pp. 173–189.

    Google Scholar 

  74. Oglivy-Stuart AL, Shalet S. Growth and puberty after growth hormone treatment after irradiation for brain tumours. Arch Dis Child 1995; 73: 141–146.

    Article  Google Scholar 

  75. Moshang Jr T. Is brain tumor recurrence increased following growth hormone therapy? Trends Endocrinol Metab 1995; 6: 205–209.

    Article  PubMed  CAS  Google Scholar 

  76. Clayton PE, Shalet SM, Gattamaneni HR, Price DA. Does growth hormone cause relapse of brain tumors? Lancet 1987; 1: 711–713.

    Article  PubMed  CAS  Google Scholar 

  77. Oglivy-Stuart AL, Ryder WDJ, Gattamaneni HR, Clayton PE, Shalet SM. Growth hormone and tumour recurrence. BMJ 1992; 304: 1601–1605.

    Article  Google Scholar 

  78. Moshang Jr T, Chen Rundle A, Graves DA, Nickas J, Johanson A, Meadows A. Brain tumor recurrence in children treated with growth hormone: The National Cooperative Growth Study experience. J Pediatr 1996; 128 (Supp): S4–S7.

    Google Scholar 

  79. Wilton P. Adverse events during growth hormone treatment: 5 years experience in the Kabi International Growth Study. In: Ranke MB, Gunnarsson R, eds. Progress in Growth Hormone Therapy: 5 Years of KIGS. J 00000 J Verlag, Mannheim, 1994, pp. 291–307.

    Google Scholar 

  80. Watanabe S, Tsunematsu Y, Fumimoto J, et al. Leukemia in patients treated with growth hormone. Lancet 1988; 1: 1159–1160.

    Article  Google Scholar 

  81. Fradkin JE, Mills JL, Schonberger LB, et al. Risk of leukemia after treatment with pituitary growth hormone. JAMA 1993; 270: 2829–2832.

    Article  PubMed  CAS  Google Scholar 

  82. Maneatis T, Baptista J, Connelly K, Blethen S. Growth hormone safety update from the National Cooperative Growth Study. J Pediatr Endocrinol Metab 2000; 13: 1035–1044.

    PubMed  Google Scholar 

  83. Mauras N, Attie KM, Reiter EO, Saenger P, Baptista J. High dose recombinant human growth hormone (GH) treatment of GH-deficient patients in puberty increases near-final height: a randomized, multicenter trial. J Clin Endocrinol Metab 2000; 85: 3653–3660.

    Article  PubMed  CAS  Google Scholar 

  84. Oberfield SE, Soranno D, Niremberg A, et al. Age at onset of puberty following high dose central nervous system radiation therapy. Arch Pediatr Adolesc Med 1996; 150: 589–592.

    Article  PubMed  CAS  Google Scholar 

  85. Paul D, Conte FA, Grumbach MM, Kaplan SL. Long term effect of gonadotropin-releasing hormone agonist therapy on final and near-final height in 26 children with true precocious puberty treated at a median age of less than 5 years. J Clin Endocrinol Metab 1995; 80: 546–551.

    Article  PubMed  CAS  Google Scholar 

  86. Leiper AD, Stanhope R, Preece MA, Grant DB, Chessels JM. Precocious or early puberty and growth failure in girls treated for acute lymphoblastic leukaemia. Horm Res 1988; 30: 72–76.

    Article  PubMed  CAS  Google Scholar 

  87. Thomas BC, Stanhope R, Leiper AD. Gonadotropin releasing hormone analogue and growth hormone therapy in precocious and premature puberty following cranial irradiation for acute lymphoblastic leukaemia. Horm Res 1993; 39: 25–29.

    Article  PubMed  CAS  Google Scholar 

  88. Neely EK, Wilson DM, Lee PA, Stene M, Hintz RL. Spontaneous serum gonadotropin concentrations in the evaluation of precocious puberty. J Pediatr 1995; 127: 47–52.

    Article  PubMed  CAS  Google Scholar 

  89. Fass B. Glucocorticoid therapy for nonendocrine disorders: withdrawal and “coverage.” Pediatr Clin North Am 1979; 26: 251–256.

    CAS  Google Scholar 

  90. Grinspoon SK, Biller BMK. Laboratory assessment of adrenal insufficiency. J Clin Endocrinol Metab 1994; 79: 923–931.

    Article  PubMed  CAS  Google Scholar 

  91. Oelkers W. Adrenal insufficiency. N Engl J Med 1996; 335: 1206–1212.

    Article  PubMed  CAS  Google Scholar 

  92. Thornton PS, Alter CA, Katz LE, Gruccio DA, Winyard PJ, Moshang T Jr. The new highly sensitive adrenocorticotropin assay improves detection of patients with partial adrenocorticotropin deficiency in a short-term metyrapone test. J Pediatr Endocrinol Metab 1994; 7: 317–324.

    Article  CAS  Google Scholar 

  93. Tordjman K, Jaffe A Grazas N, Apter C, Stern N. The role of the low-dose (1 µg) adrenocorticotropin test in the evaluation of patients with pituitary disease. J Clin Endocrinol Metab 1995; 80: 1301–1305.

    Article  PubMed  CAS  Google Scholar 

  94. Broide J, Soferman R, Kivity S, et al. Low-dose adrenocorticotropin test reveals impaired adrenal function in patients taking inhaled corticosteroids. J Clin Endocrinol Metab 1995; 80: 1243–1246.

    Article  PubMed  CAS  Google Scholar 

  95. Schlagecke R, Kornely E, Santen RT, Ridderskamp P. The effect of long-term glucocorticoid therapy on pituitary-adrenal responses to exogenous corticotropin-releasing hormone. N Engl J Med 326; 226–230.

    Google Scholar 

  96. Linder BL, Esteban NV, Yergey AL, Winterer JC, Loriaux DL, Cassorla F. Cortisol production rate in childhood and adolescence. J Pediatr 1990; 117: 892–896.

    Article  PubMed  CAS  Google Scholar 

  97. Perheentupa J, Czernichow P. Water regulation and its disorders. In: Kappy MS, Blizzard RM, Migeon CJ, eds. Wilkins Diagnosis and Treatment of Endocrine Disorders in Childhood and Adolescence, 4th ed. 1994, pp. 1139–1140.

    Google Scholar 

  98. Blevins LS, Wand GS. Diabetes insipidus. Crit Care Med 1992; 20: 69–79.

    Article  PubMed  Google Scholar 

  99. Ganong CA, Kappy MS. Cerebral salt wasting in children: the need for recognition and treatment. Am J Dis Child 1993; 147: 167–169.

    PubMed  CAS  Google Scholar 

  100. Kappy MS, Ganong CA. Cerebral salt wasting in children: the role of atrial natriuretic hormone. Adv Pediatr 1996; 43: 271–308.

    PubMed  CAS  Google Scholar 

  101. Ferry Jr RJ, Katz LEL, Weinzimer SA, and Moshang Jr T. Co-existent central diabetes insipidus and salt wasting in a child. National Cooperative Growth Study, Thirteenth Annual Investigators Meeting, 1999, Charleston, SC.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinzimer, S.A., Moshang, T. (2003). Management of Endocrine Dysfunction Following Brain Tumor Treatment. In: Radovick, S., MacGillivray, M.H. (eds) Pediatric Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-336-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-336-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-268-1

  • Online ISBN: 978-1-59259-336-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics