Skip to main content

Allogeneic Stem Cell Transplantation for Breast Cancer

  • Chapter
Allogeneic Stem Cell Transplantation

Part of the book series: Current Clinical Oncology ((CCO))

  • 95 Accesses

Abstract

Breast cancer will affect about 192,200 women in the United States in 2001, and about 40,200 will die from their disease. While mortality has been decreasing steadily by 0.8% per year since 1989, breast cancer remains the leading cause of cancer deaths in women in the 20–59-yr-old age group (1). Although trends are towards diagnosis at an earlier stage of disease, 35% of Caucasian and 43% of African-American women still present with nonlocalized breast cancer. Furthermore, the mortality for those with 10 or more involved lymph nodes or inflammatory breast cancer still hovers in the 75% range at 10 yr with standard chemotherapy. For those with advanced disease, the median survival remains in the range of 2–2.5 yr (2). As a consequence of the poor prognosis of this group, new strategies have been employed in an attempt to improve survival. The research trend over the past 13 yr has been to utilize higher doses of chemotherapy, and preliminary phase III data on this approach has been slowly emerging over the past 2 yr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA Cancer J Clin 2001; 51: 15–36.

    Article  PubMed  CAS  Google Scholar 

  2. Clark G, Sledge GW, Osborne CK, McGuire WL. Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol 1987; 5: 55–61.

    PubMed  CAS  Google Scholar 

  3. Anderson JE. Bone marrow transplantation for myelodysplasia. Blood Rev 2000; 14 (2): 63–77.

    Article  PubMed  CAS  Google Scholar 

  4. Ball SE. The modern management of severe aplastic anemia. Br J Haematol 2000; 110: 41–53.

    Article  PubMed  CAS  Google Scholar 

  5. Savage DG, Goldman JM. Chronic myelogenous leukemia. In: Armitage JO, Antman KH, eds. High-Dose Cancer Therapy Pharmacology, Hematopoetins, Stem Cells. 3rd ed. Lippincott, Philadelphia, PA, 2000, pp. 705–732.

    Google Scholar 

  6. Frei III E, Canellos GP. Dose, a critical factor in cancer chemotherapy. Am J Med 1980; 69: 585–594.

    Article  PubMed  Google Scholar 

  7. Teicher BA, III EF. Development of alkylating agent-resistant human tumor cell lines. Cancer Chemother Pharmacol 1988; 21: 292–298.

    PubMed  CAS  Google Scholar 

  8. Hryniuk WM, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 1984; 2: 1281–1287.

    PubMed  CAS  Google Scholar 

  9. Fisher B, Anderson S, DeCillis A, et al. Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: findings from national surgical adjuvant breast and bowel project B-25. J Clin Oncol 1999; 17 (11): 3374–3388.

    PubMed  CAS  Google Scholar 

  10. Fisher B, Anderson S, Wickerham DL, et al. Increased intensification and total dose of cyclophosphamide in a doxorubicin-cyclophosphamide regimen for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-22. J Clin Oncol 1997; 15 (5): 1858–1869.

    PubMed  CAS  Google Scholar 

  11. Henderson I, Berry D, Demetri G, et al. Improved disease free and overall survival from the addition of sequential paclitaxel but not from the escalation of doxorubicin dose level in the adjuvant chemotherapy of patients with node positive primary breast cancer. Proc Am Soc Clin Oncol 1998;17:1O1a (abstract 390A).

    Google Scholar 

  12. VandatL, Antman K. Dose-intensive chemotherapy in breast cancer. In: ArmitageJ, AntmanK, eds. High-Dose Cancer Therapy Pharmacology, Hematopoetins, Stem Cells. 3rd ed. Lippincott, Philadelphia, PA, 2000, pp. 821–840.

    Google Scholar 

  13. Antman K, Rowlings P, Vaughn W, et al. High dose chemotherapy with autologous hematopoietic stem cell support for breast cancer in North America. J Clin Oncol 1997; 15 (5): 1870–1879.

    PubMed  CAS  Google Scholar 

  14. Nieto Y, Cagnoni PJ, Shpall EJ, et al. Phase II trial of high-dose chemotherapy with autologous stem cell transplant for stage IV breast cancer with minimal metastatic disease. Clin Cancer Res 1999; 5: 1731–1737.

    PubMed  CAS  Google Scholar 

  15. Rill D, Santana V, Roberts W, et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 1994; 84 (2): 380–383.

    PubMed  CAS  Google Scholar 

  16. Shpall E, Franklin W, Jones R, et al. Transplantation of CD34+ selected progenitor cells into breast cancer patients following high dose chemotherapy. Am Soc Blood Marrow Transplant 1995;1 (abstract).

    Google Scholar 

  17. Lotz JP, Cure H, Janvier M, et al. High-dose chemotherapy with hematopoietic stem cells transplantation for metastatic breast cancer: results of the French protocol Pegase 04. Proc Am Soc Clin Oncol 1999; 18: 43a (abstract 161).

    Google Scholar 

  18. Stadtmauer EA, O’Neill A, Goldstein LJ, et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N Engl J Med 2000; 342 (15): 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  19. Crump M, Gluck S, Stewart D, et al. A randomized trial of high dose chemotherapy wih autologous peripheral blood stem cell support compared to standard therapy in women with metastatic breast cancer: a National Cancer Institute of Canada (NCIC) Clinical Trials Group Study. Proc Am Soc Clin Oncol 2001; 20: 21a (abstract 82).

    Google Scholar 

  20. Madan B, Broadwater G, Rubin P, et al. Improved survival with consolidation high-dose cyclophosphamide, cisplatin and carmustine (HD-CPB) compared with observation in women with metastatic breast cancer (MBC) and only bone metastases treated with induction adriamycin, 5-flourouracil, and methotrexate (AFM): a phase three prospective randomized comparative trial. Proc Am Soc Clin Oncol 2000; 19: 48a (abstract 184).

    Google Scholar 

  21. Peters W, Jones R, Vredenburgh J, et al. A large prospective randomized trial of high-dose combination alkylating agents (CPB) with autologous cellular support as consolidation for patients with metastatic breast cancer achieving complete remission after intensive doxorubicin-based induction therapy (AFM). Proc Am Soc Clin Oncol 1996; 15: 121 (abstract 149).

    CAS  Google Scholar 

  22. Peters W, Rosner G, Vredenburgh J, et al. Updated results of a prospective, randomized comparison of two doses of combination alkylating agents as consolidation after CAF in high-risk primary breast cancer involving ten or more axillary lymph nodes: CALGB 9082/SWOG 9114/NCIC Ma13. Proc Am Soc Clin Oncol 2001; 20: 21a (abstract 81).

    Google Scholar 

  23. Rodenhuis S, Bontenbal M, Beex L, et al. Randomized phase III study of high-dose chemotherapy with cyclophosphamide, thiotepa and carboplatin in operable breast cancer patients with 4 or more axillary lymph nodes. Proc Am Soc Clin Oncol 2000; 19: 74a (abstract 286).

    Google Scholar 

  24. Roche H, Pouillart P, Meyer N, et al. Adjuvant high dose chemotherapy improves early outcome for high risk (N*7) breast cancer patients: The Pegase 01 trial. Proc Am Soc Clin Oncol 2001; 20: 26a (abstract 102).

    Google Scholar 

  25. Gianni A, Bonadonna G. Five-year results of the randomized clinical trial comparing standard versus highdose myeloablative chemotherapy in the adjuvant treatment of breast cancer with >3 positive nodes. Proc Am Soc Clin Oncol 2001; 20: 21a (abstract 80).

    Google Scholar 

  26. Marin G, Porto A, Prates V, et al. Graft versus host disease in autologous stem cell transplantation. J Exp Clin Cancer Res 1999;18(2):201 208.

    Google Scholar 

  27. Miura Y, Ueda M, Zeng W, et al. Induction of autologous graft-versus-host disease with cyclosporin A after peripheral blood stem cell transplantation: analysis of factors affecting induction. J Allergy Clin Immunol 2000; 106: 51–57.

    Article  Google Scholar 

  28. Vogelsang G. Advances in the treatment of graft-versus-host disease. Leukemia 2000; 14: 509, 510.

    Google Scholar 

  29. Kennedy M, Vogelsang G, Beveridge R, et al. Phase I trial of intravenous cyclosporine to induce graft-versushost disease in women undergoing autologous bone marrow transplantation for breast cancer. J Clin Oncol 1993; 11: 478–484.

    PubMed  CAS  Google Scholar 

  30. Kennedy M, Hess A, Passos Coelho J, et al. Cyclosporine A induces autologous graft vs. host disease following high dose chemotherapy supported with peripheral blood progenitor cell infusions alone. Proc Am Soc Clin Oncol 1996; 15: 335 (abstract 964).

    Google Scholar 

  31. Meehan K, Verma U, Cahill R, et al. Interleukin-2-activated hematopoietic stem cell transplantation for breast cancer: investigation of dose level with clinical correlates. Bone Marrow Transplant 1997; 20: 643–651.

    Article  PubMed  CAS  Google Scholar 

  32. Kennedy M, Davidson N, Fetting J, et al. Phase I and immunologic study of interleukin-2 to augment cyclosporine A- induced autologous graft-versus-host disease after high dose chemotherapy in women with advanced breast cancer. Proc Am Soc Clin Oncol 1997; 16: 106a (abstract 372).

    Google Scholar 

  33. Fefer A. Graft-versus-tumor responses. In: Thomas ED, Blume KG, Forman SJ, eds. Hematopoetic Cell Transplantation. 2nd ed. Blackwell Science, Malden, 1999, 316–326.

    Google Scholar 

  34. Weiden PL, Flournoy N, Tomas ED, et al. Antileukemic effect of graft-versus-host diseases in human recipients of allogeneic marrow grafts. N Engl J Med 1979; 330: 1068–1073.

    Article  Google Scholar 

  35. Gale R, Horowitz M, Ash R, et al. Identical-twin bone marrow transplants for leukemia. Ann Intern Med 1994; 120 (8): 646–652.

    Article  PubMed  CAS  Google Scholar 

  36. Goldman JM, Gale RP, Horowitz MM, et al. Bone marrow tansplantation for chronic myelogenous leukemia in chronic phase: increased risk of relapse associated with T-cell depletion. Ann Intern Med 1988; 108: 806–814.

    Article  PubMed  CAS  Google Scholar 

  37. Linehan DC, Goedgebuure PS, Peoples GE, Rogers SO, Eberlein TJ. Tumor-specific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol 1995; 155: 4486–4491.

    PubMed  CAS  Google Scholar 

  38. Baxevanis CN, Dedoussis GVZ, Papodopoulos NG, et al. Tumor-specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 1994; 74 (4): 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  39. Eibl B, Schwaighofer H, Nachbaur D, et al. Evidence for a graft-versus-tumor effect in a patient treated with marrow ablative chemotherapy and allogeneic bone marrow transplantation for breast cancer. Blood 1996; 88 (4): 1501–1508.

    PubMed  CAS  Google Scholar 

  40. Or R, Ackerstein A, Nagler A, et al. Allogeneic cell-mediated immunotherapy for breast cancer after autologous stem cell transplantation: a clinical pilot study. Cytokines Cell Molec Ther 1997; 4 (1): 1–6.

    PubMed  Google Scholar 

  41. Ueno N, Randon G, Mirza N, et al. Allogeneic peripheral blood progenitor cell transplantation for poor risk patients with metastatic breast cancer. J Clin Oncol 1998; 16 (3): 986–993.

    PubMed  CAS  Google Scholar 

  42. Feinstein L, Seidel K, Jocum J, et al. Reduced dose of intravenous immunoglobulin does not decrease transplant-related complications in adults given related donor marrow allografts. Biol Blood Marrow Transplant 1999; 5 (6): 369–378.

    Article  PubMed  CAS  Google Scholar 

  43. Dugan M, DeFor T, Steinbuch M, Filipovich A, Weisdorf D. ATG plus corticosteroid therapy for acute graftversus-host disease: predictors of response and survival. Ann Hematol 1997; 75 (1–2): 41–46.

    Article  PubMed  CAS  Google Scholar 

  44. Nash R, Antin J, Karanes C, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood 2000; 96 (6): 2062–2068.

    PubMed  CAS  Google Scholar 

  45. Zikos P, Van Lint M, Frassoni F, et al. Low transplant mortality in allogeneic bone marrow transplantation for acute myeloid leukemia: a randomized study of low-dose cyclosporin versus low-dose cyclosporin and low-dose methotrexate. Blood 1998; 91 (9): 3503–3508.

    PubMed  CAS  Google Scholar 

  46. Cooke K, Hill G, Crawford J, et al. Tumor necrosis factor-alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of acute graft-versus-host disease. J Clin Invest 1998; 102 (10): 1882–1891.

    Article  PubMed  CAS  Google Scholar 

  47. Vogelsang G, Farmer E, Hess A, et al. Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med 1992; 326 (16): 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  48. Hill G, Cooke K, Teshima T, Crawford J, Keith J, Brinson Y. Interleukin 11 promotes T cell polarization and prevents acute graft-versus-host disase after allogeneic bone marrow transplantation. J Clin Invest 1998; 102 (1): 115–123.

    Article  PubMed  CAS  Google Scholar 

  49. Teshima T, Hill G, Brinson Y, van den Brink M, Cooke K, Ferrara J. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest 1999; 104 (3): 317–325.

    Article  PubMed  CAS  Google Scholar 

  50. Bishop M. Non-myeloablative allogenic hematopoetic stem cell transplantation as adoptive cellular therapy. Updates: Princ Prac Biol Ther Cancer 2001; 2 (1): 1–9.

    Google Scholar 

  51. Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91 (3): 756–763.

    PubMed  CAS  Google Scholar 

  52. Hesdorffer C, Ayello J, Ward M, et al. A phase I trial of retroviral-mediated transfer of the human MDR-1 gene as marrow chemoprotection in patients undergoing high dose chemotherapy and autologous stem cell transplantation. J Clin Oncol 1998; 16: 165–172.

    PubMed  CAS  Google Scholar 

  53. Bonini C, Ferrari G, Verzeletti S, et al. HS V-TK gene transfer into donor lymphocytes for control of allogeneic graft-vs-leukemia. Science 1997; 276 (5319): 1719–1724.

    Article  PubMed  CAS  Google Scholar 

  54. deMagalhaes-Silverman M, Donnenberg A, Lembersky B, et al. Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer. J Immunother 2000; 23 (1): 154–160.

    Article  PubMed  CAS  Google Scholar 

  55. Paciucci PA, Holland JF, Glidewell O, Odchimar R. Recombinant interleukin-2 by continuous infusion and adoptive transfer of recombinant interleukin-2-activated cells in patients with advanced cancer. J Clin Oncol 1989; 7 (7): 869–878.

    PubMed  CAS  Google Scholar 

  56. Topalian SL, Solomon D, Avis FP, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant Interleukin-2: a pilot study. J Clin Oncol 1988; 6 (5): 839–853.

    PubMed  CAS  Google Scholar 

  57. Kolb H-J, Holler E. Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol 1997; 9: 139–145.

    Article  PubMed  CAS  Google Scholar 

  58. Holmberg L, Oparin D, Gooley T, et al. Clinical outcomes of breast and ovarian cancer patients treated with high-dose chemotherapy, autologous stem cell rescue and THERATOPE STn-KLH cancer vaccine. Bone Marrow Transplant 2000; 25 (12): 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  59. Gilewski T, Adluri S, Ragupathi G, et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res 2000; 6: 1693–1701.

    PubMed  CAS  Google Scholar 

  60. Brossart P, Heinrich K, Stuhler G, et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 1999; 12: 4309–4317.

    Google Scholar 

  61. Fujie T, Mori M, Sugimachi K, Akiyoshi T. Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol 1997; 8 (4): 369–372.

    Article  PubMed  CAS  Google Scholar 

  62. Bank A. Gene therapy. In: Armitage J, Antman K, eds. High-Dose Cancer Therapy Pharmacology, Hematopoetins, Stem Cells. 3rd ed. Lippincott, Philadelphia, PA, 2000, pp. 167–184.

    Google Scholar 

  63. Borrello I, SotomayorEM, Rattis F-M, Cooke SK, Gu L, Levitsky HI. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF) producing tumor vaccines. Blood 2000; 95 (10): 3011–3019.

    PubMed  CAS  Google Scholar 

  64. Weber J, Schultz W. Clinical trials of dendritic cells for cancer. Updates: Princ Prac Biol Ther Cancer 2000; 1 (1): 1–11.

    Google Scholar 

  65. Hsu FJ, Benicke C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2 (1): 52–58.

    Article  PubMed  CAS  Google Scholar 

  66. Morse M, Deng Y, Coleman D, et al. A phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 1999; 5: 1331–1338.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siegel, A.B., Vahdat, L.T. (2003). Allogeneic Stem Cell Transplantation for Breast Cancer. In: Laughlin, M.J., Lazarus, H.M. (eds) Allogeneic Stem Cell Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-333-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-333-0_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4481-1

  • Online ISBN: 978-1-59259-333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics