Skip to main content

In Vivo Models for the Study of Graft-vs-Host Disease and Graft-vs-Tumor Effects

  • Chapter
  • 100 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

While nonprimate studies of graft-vs-host disease (GVHD) most commonly use rodent models, the field of allogeneic transplantation and treatment of GVHD also owes much to its study in dogs. Donnall Thomas, in collaboration with other investigators at Fred Hutchinson Cancer Center, pioneered the field of allogeneic bone marrow transplantation with his work in beagles. The use of outbred animals requires detailed knowledge of the major histocompatibility complex (MHC) complex for these species and the availability of reagents for tissue typing. More recently, the miniature swine model has been added to the repertoire of models available to investigators. While this model has not gained prominence with investigators of GVHD, it is used to study mechanisms of tolerance in allogeneic and xenogeneic hematopoietic cell and/or organ transplantation. The swine model has advantages for translational work because its body size and composition is comparable to humans Likewise, the sheep model has been used to study issues of tolerance in xenogeneic hematopoietic cell transplantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billingham RE, Brent L. A simple method for inducing tolerance of skin homografts in mice. Transplant Bull. 1957; 4: 67–71.

    PubMed  CAS  Google Scholar 

  2. Komgold B, Sprent J. Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. JExp Med 1978; 148: 1687–1698.

    Google Scholar 

  3. Hess AD, Horwitz L, Beschorner WE, Santos GW. Development of graft-vs.-host disease-like syndrome in cyclosporine-treated rats after syngeneic bone marrow transplantation. I. Development of cytotoxic T lymphocytes with apparent polyclonal anti-Ia specificity, including autoreactivity. J Exp Med 1985; 161: 718–730.

    Article  PubMed  CAS  Google Scholar 

  4. Vallera DA, Carroll SF, Snover DC, Carlson GJ, Blazar BR. Toxicity and efficacy of anti-T-cell ricin toxin A chain immunotoxins in a murine model of established graft-versus-host disease induced across the major histocompatibility barrier. Blood 1991; 77: 182–194.

    PubMed  CAS  Google Scholar 

  5. Sprent J, Schaefer M, Korngold R. Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class II H-2 differences. II. Protective effects of L3T4+ cells in anti-class II GVHD. Jlmmunol 1990; 144: 2946–2954.

    CAS  Google Scholar 

  6. Mowat AM, Sprent J. Induction of intestinal graft-versus-host reactions across mutant major histocompatibility antigens by T lymphocyte subsets in mice. Transplantation 1989; 47: 857–863.

    Article  PubMed  CAS  Google Scholar 

  7. Sprent J, Schaefer M, Gao EK, Korngold R. Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class II H-2 differences. I. L3T4+ cells can either augment or retard GVHD elicited by Lyt-2+ cells in class I different hosts. J Exp Med 1988; 167: 556–569.

    Article  PubMed  CAS  Google Scholar 

  8. Williams FH, Thiele DL. The role of major histocompatibility complex and non-major histocompatibility complex encoded antigens in generation of bile duct lesions during hepatic graft-vs.-host responses mediated by helper or cytotoxic T cells. Hepatology 1994; 19: 980–988.

    Article  PubMed  CAS  Google Scholar 

  9. Sprent J, Surh CD, Agus D, Hurd M, Sutton S, Heath WR. Profound atrophy of the bone marrow reflecting major histocompatibility complex class II-restricted destruction of stem cells by CD4+ cells. J Exp Med 1994; 180: 307–317.

    Article  PubMed  CAS  Google Scholar 

  10. Blazar BR, Taylor PA, Sehgal SN, Vallera DA. Rapamycin, a potent inhibitor of T-cell function, prevents graft rejection in murine recipients of allogeneic T-cell-depleted donor marrow. Blood 1994; 83: 600–609.

    PubMed  CAS  Google Scholar 

  11. Korngold R, Sprent J. Variable capacity of L3T4+ T cells to cause lethal graft-versus-host disease across minor histocompatibility barriers in mice. J Exp Med 1987; 165: 1552–1564.

    Article  PubMed  CAS  Google Scholar 

  12. Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med 1971; 134: 1513–1528.

    Article  PubMed  CAS  Google Scholar 

  13. Knobloch C, Dennert G. Loss of Fl hybrid resistance to bone marrow grafts after injection of parental lymphocytes. Demonstration of parental anti-Fl T killer cells and general immunosuppression in the host. Transplantation 1988; 45: 175–183.

    Article  PubMed  CAS  Google Scholar 

  14. Pals ST, Radaszkiewicz T, Gleichmann E. Allosuppressor-and allohelper-T cells in acute and chronic graft-vs-host disease. IV. Activation of donor allosuppressor cells is confined to acute GVHD. J Immunol 1984; 132: 1669–1678.

    PubMed  CAS  Google Scholar 

  15. Tschetter JR, Mozes E, Shearer GM. Progression from acute to chronic disease in a murine parent-into-F(1) model of graft-versus-host disease. J Immunol 2000; 165: 5987–5994.

    PubMed  CAS  Google Scholar 

  16. Bennett M, Yu YY, Stoneman E, et al. Hybrid resistance: `negative’ and `positive’ signaling of murine natural killer cells. Semin Immunol 1995; 7: 121–127.

    Article  PubMed  CAS  Google Scholar 

  17. De Togni P, Goellner J, Ruddle NH, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994; 264: 703–707.

    Article  PubMed  Google Scholar 

  18. Iizuka K, Chaplin DD, Wang Y, et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc Natl Acad Sci USA 1999; 96: 6336–6340.

    Article  PubMed  CAS  Google Scholar 

  19. Murphy WJ, Welniak LA, Taub DD, et al. Differential effects of the absence of interferon-gamma and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Clin Invest 1998; 102: 1742–1748.

    Article  PubMed  CAS  Google Scholar 

  20. Quesenberry PJ, Stewart FM, Becker P, et al. Stem cell engraftment strategies. Ann NY Acad Sci 2001; 938: 54–61.

    Article  PubMed  CAS  Google Scholar 

  21. Ballen KK, Becker PS, Stewart FM, Quesenberry PJ. Manipulation of the stem cell as a target for hematologic malignancies. Semin Oncol 2000; 27: 512–523.

    PubMed  CAS  Google Scholar 

  22. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara IL. Total body irradiation and acute graft-versushost disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90: 3204–3213.

    PubMed  CAS  Google Scholar 

  23. Murphy WJ, Blazar BR. New strategies for preventing graft-versus-host disease. Curr Opin Immunol 1999; 11: 509–515.

    Article  PubMed  CAS  Google Scholar 

  24. Sykes M, Szot GL, Swenson KA, Pearson DA. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 1997; 3: 783–787.

    Article  PubMed  CAS  Google Scholar 

  25. Weiss L, Slavin S. Prevention and treatment of graft-versus-host disease by down-regulation of anti-host reactivity with veto cells of host origin. Bone Marrow Transplant 1999; 23: 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  26. Truitt RL, Atasoylu AA. Impact of pretransplant conditioning and donor T cells on chimerism, graft-versushost disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation. Blood 1991; 77: 2515–2523.

    PubMed  CAS  Google Scholar 

  27. Claman HN, Jaffee BD, HuffJC, Clark RA. Chronic graft-versus-host disease as a model for scleroderma. II. Mast cell depletion with deposition of immunoglobulins in the skin and fibrosis. Cell Immunol 1985; 94: 73–84.

    Article  PubMed  CAS  Google Scholar 

  28. Xun CQ, Thompson JS, Jennings CD, Brown SA, WidmerMB. Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2- incompatible transplanted SCID mice. Blood 1994; 83: 2360–2367.

    PubMed  CAS  Google Scholar 

  29. Xun CQ, Tsuchida M, Thompson JS. Delaying transplantation after total body irradiation is a simple and effective way to reduce acute graft-versus-host disease mortality after major H2 incompatible transplantation. Transplantation 1997; 64: 297–302.

    Article  PubMed  CAS  Google Scholar 

  30. Lehnert S, Rybka WB. Amplification of the graft-versus-host reaction by cyclophosphamide: dependence on timing of drug administration. Bone Marrow Transplant 1994; 13: 473–477.

    PubMed  CAS  Google Scholar 

  31. Heidt PJ, Vossen JM. Experimental and clinical gnotobiotics: influence of the microflora on graft-versus-host disease after allogeneic bone marrow transplantation. J Med 1992; 23: 161–173.

    PubMed  CAS  Google Scholar 

  32. Hill GR, Teshima T, Gerbitz A, et al. Differential roles of IL-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. J Clin Invest 1999; 104: 459–467.

    Article  PubMed  CAS  Google Scholar 

  33. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 1996; 88: 3230–3239.

    PubMed  CAS  Google Scholar 

  34. Cooke KR, Gerbitz A, Crawford JM, et al. LPS antagonism reduces graft-versus-host disease and preserves graftversus-leukemia activity after experimental bone marrow transplantation. J Clin Invest 2001; 107: 1581–1589.

    Article  PubMed  CAS  Google Scholar 

  35. Hakim FT, Sharrow SO, Payne S, Shearer GM. Repopulation of host lymphohematopoietic systems by donor cells during graft-versus-host reaction in unirradiated adult Fl mice injected with parental lymphocytes. J Immunol 1991; 146: 2108–115.

    PubMed  CAS  Google Scholar 

  36. Murphy WJ, Kumar V, Bennett M. Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized. J Exp Med 1987; 166: 1499–1509.

    Article  PubMed  CAS  Google Scholar 

  37. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  PubMed  CAS  Google Scholar 

  38. Purtilo DT, Falk K, Pirruccello SJ, et al. SCID mouse model of Epstein-Barr virus-induced lymphomagenesis of immunodeficient humans. Int J Cancer 1991; 47: 510–517.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson BD, Drobyski WR, Truitt RL. Delayed infusion of normal donor cells after MHC-matched bone marrow transplantation provides an antileukemia reaction without graft-versus-host disease. Bone Marrow Transplant 1993; 11: 329–336.

    PubMed  CAS  Google Scholar 

  40. Johnson B D, Truitt RL. Delayed infusion of immunocompetent donor cells after bone marrow transplantation breaks graft-host tolerance allows for persistent antileukemic reactivity without severe graft-versus-host disease. Blood 1995; 85: 3302–3312.

    PubMed  CAS  Google Scholar 

  41. Speiser DE, Bachmann MF, Shahinian A, Mak TW, Ohashi PS. Acute graft-versus-host disease without costimulation via CD28. Transplantation 1997; 63: 1042–1044.

    Article  PubMed  CAS  Google Scholar 

  42. Williamson E, Garside P, Bradley JA, Mowat AM. IL-12 is a central mediator of acute graft-versus-host disease in mice. J Immunol 1996; 157: 689–699.

    PubMed  CAS  Google Scholar 

  43. Via CS, Shearer GM. Murine graft-versus-host disease as a model for the development of autoimmunity. Relevance of cytotoxic T lymphocytes. Ann NYAcad Sci 1988; 532: 44–50.

    Article  PubMed  CAS  Google Scholar 

  44. Welniak LA, Blazar BR, Wiltrout RH, Anver MR, Murphy WJ. Role of interleukin-12 in acute graft-versushost disease(1). Transplant Proc 2001; 33: 1752–1753.

    Article  PubMed  CAS  Google Scholar 

  45. Williamson E, Garside P, Bradley JA, More IA, Mowat AM. Neutralizing IL-12 during induction of murine acute graft-versus-host disease polarizes the cytokine profile toward a Th2-type alloimmune response and confers long term protection from disease. Jlmmunol 1997; 159: 1208–1215.

    CAS  Google Scholar 

  46. Krenger W, Cooke KR, Crawford JM, et al. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease. Transplantation 1996; 62: 1278–1285.

    Article  PubMed  CAS  Google Scholar 

  47. Pan L, Delmonte J, Jr., Jalonen CK, Ferrara JL. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429.

    PubMed  CAS  Google Scholar 

  48. Pan L, Bressler S, Cooke KR, Krenger W, Karandikar M, Ferrara IL. Long-term engraftment, graft-vs.-host disease, and immunologic reconstitution after experimental transplantation of allogeneic peripheral blood cells from G-CSF-treated donors. Biol Blood Marrow Transplant 1996; 2: 126–1133.

    PubMed  CAS  Google Scholar 

  49. Gorczynski RM, Kennedy M, Robillard M. Graft-versus-host disease in murine bone marrow transplantation. I. Modification of GVHD by preimmunization of recipients with spleen cells of primary recipients undergoing GVHD. Immunol Lett 1985; 11: 281–291.

    Article  PubMed  CAS  Google Scholar 

  50. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Gray GS, Vallera DA. Coblockade of the LFAI:ICAM and CD28/CTLA4:B7 pathways is a highly effective means of preventing acute lethal graft-versus-host disease induced by fully major histocompatibility complex-disparate donor grafts. Blood 1995; 85: 2607–2618.

    PubMed  CAS  Google Scholar 

  51. Blazar BR, Taylor PA, Snover DC, Sehgal SN, Vallera DA. Murine recipients of fully mismatched donor marrow are protected from lethal graft-versus-host disease by the in vivo administration of rapamycin but develop an autoimmune-like syndrome. J Immunol 1993; 151: 5726–5741.

    PubMed  CAS  Google Scholar 

  52. Nikolic B, Lee S, Bronson RT, Grusby MJ, Sykes M. Thl and Th2 mediate acute graft-versus-host disease, each with distinct end-organ targets. J Clin Invest 2000; 105: 1289–1298.

    Article  PubMed  CAS  Google Scholar 

  53. Baker KS, Allen RD, Roths JB, Sidman CL. Kinetic and organ-specific patterns of cytokine expression in acute graft-versus-host disease. Bone Marrow Transplant 1995; 15: 595–603.

    Article  PubMed  CAS  Google Scholar 

  54. Krenger W, Hill GR, Ferrara JL. Cytokine cascades in acute graft-versus-host disease. Transplantation 1997; 64: 553–558.

    Article  PubMed  CAS  Google Scholar 

  55. Fujimori Y, Takatsuka H, Takemoto Y, et al. Elevated interleukin (IL)-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 2000; 109: 652–657.

    Article  PubMed  CAS  Google Scholar 

  56. Fialkow PJ, Gilchrist C, Allison AC. Autoimmunity in chronic graft-versus-host disease. Clin Exp Immunol 1973; 13: 479–486.

    PubMed  CAS  Google Scholar 

  57. Jaffee BD, Claman HN. Chronic graft-versus-host disease (GVHD) as a model for scleroderma. I. Description of model systems. Cell Immunol 1983; 77: 1–12.

    Article  PubMed  CAS  Google Scholar 

  58. Mekori YA, Claman HN. Is graft-versus-host disease a reliable model for scleroderma? Ric Clin Lab 1986; 16: 509–513.

    PubMed  CAS  Google Scholar 

  59. Rolink AG, Radaszkiewicz T, Melchers F. The autoantigen-binding B cell repertoires of normal and of chronically graft-versus-host-diseased mice. J Exp Med 1987; 165: 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  60. van Rappard-Van der Veen FM, Kiesel U, Poets L, et al. Further evidence against random polyclonal antibody formation in mice with lupus-like graft-vs-host disease. J Immunol 1984; 132: 1814–1820.

    Google Scholar 

  61. Rolink AG, Pals ST, Gleichmann E. Allosuppressor and allohelper T cells in acute and chronic graft-vs.- host disease. II. Fl recipients carrying mutations at H-2K and/or I-A. J Exp Med 1983; 157: 755–771.

    Article  PubMed  CAS  Google Scholar 

  62. Gleichmann E, Van Elven EH, Van der Veen JP. A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell cooperation. Preferential formation of autoantibodies characteristic of SLE. Eur J Immunol 1982; 12: 152–159.

    Article  PubMed  CAS  Google Scholar 

  63. Rolink AG, Gleichmann E. Allosuppressor-and allohelper-T cells in acute and chronic graft-vs.- host (GVH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes. J Exp Med 1983; 158: 546–558.

    Article  PubMed  CAS  Google Scholar 

  64. Gelpi C, Martinez MA, Vidal S, et al. Different strains of donor parental lymphoid cells induce different models of chronic graft-versus-host disease in murine (Balb/c x A/J)F1 hybrid hosts. Clin Immunol Immunopathol 1990; 56: 298–310.

    Article  PubMed  CAS  Google Scholar 

  65. Shustov A, Luzina I, Nguyen P, et al. Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity. J Clin Invest 2000; 106: R39–47.

    Article  PubMed  CAS  Google Scholar 

  66. Allen RD, Staley TA, Sidman CL. Differential cytokine expression in acute and chronic murine graft-versushost-disease. Eur J Immunol 1993; 23: 333–337.

    Article  PubMed  CAS  Google Scholar 

  67. Meyers CM, Tomaszewski JE, Glass JD, Chen CW. The nephritogenic T cell response in murine chronic graftversus-host disease. J Immunol 1998; 161: 5321–5330.

    PubMed  CAS  Google Scholar 

  68. Via CS, Rus V, Gately MK, Finkelman FD. IL-12 stimulates the development of acute graft-versus-host disease in mice that normally would develop chronic, autoimmunegraft-versus-host disease. Jlmmunol 1994;153:4040–4047.

    Google Scholar 

  69. Parkman R. Clonal analysis of murine graft-vs-host disease. I. Phenotypic and functional analysis of T lymphocyte clones. J Immunol 1986; 136: 3543–3548.

    PubMed  CAS  Google Scholar 

  70. Portanova JP, Claman HN, Kotzin BL. Autoimmunization in murine graft-vs-host disease. I. Selective production of antibodies to histones and DNA. Jlmmunol 1985; 135: 3850–3856.

    CAS  Google Scholar 

  71. Bruijn JA, van Leer EH, Baelde HJ, Corver WE, Hogendoorn PC, Fleuren GJ. Characterization and in vivo transfer of nephritogenic autoantibodies directed against dipeptidyl peptidase IV and laminin in experimental lupus nephritis. Lab Invest 1990; 63: 350–359.

    PubMed  CAS  Google Scholar 

  72. Bruijn JA, Hogendoorn PC, Corver WE, van den Broek LJ, Hoedemaeker PJ, Fleuren GJ. Pathogenesis of experimental lupus nephritis: a role for anti-basement membrane and anti-tubular brush border antibodies in murine chronic graft-versus-host disease. Clin Exp Immunol 1990; 79: 115–1122.

    Article  PubMed  CAS  Google Scholar 

  73. Brinkman K, van Dam A, van den Brink H, Termaat RM, Berden J, Smeenk R. Murine monoclonal antibodies to DNA. A comparison of MRL/lpr NZB/W and chronically graft-versus-host-diseased mice. Clin Exp Immunol 1990; 80: 274–280.

    Article  PubMed  CAS  Google Scholar 

  74. Nonomura A, Koizumi H, Yoshida K, Ohta G. Histological changes of bile duct in experimental graft-versushost disease across minor histocompatibility barriers. I. Light microscopic and immunocytochemical observations. Acta Pathol Jpn 1987; 37: 763–773.

    PubMed  CAS  Google Scholar 

  75. Glass B, UharekL, Zeis M, et al. Allogeneic peripheral blood progenitor cell transplantation in a murine model: evidence for an improved graft-versus-leukemia effect. Blood 1997; 90: 1694–1700.

    PubMed  CAS  Google Scholar 

  76. Weiss L, Nusair S, Reich S, Sidi H, Slavin S. Induction of graft versus leukemia effects by cell-mediated lymphokine-activated immunotherapy after syngeneic bone marrow transplantation in murine B cell leukemia. Cancer Immunol Immunother 1996; 43: 103–108.

    Article  PubMed  CAS  Google Scholar 

  77. Morecki S, Moshel Y, Gelfend Y, Pugatsch T, Slavin S. Induction of graft vs. tumor effect in a murine model of mammary adenocarcinoma. Int J Cancer 1997; 71: 59–63.

    Article  PubMed  CAS  Google Scholar 

  78. Asai O, Longo DL, Tian ZG, et al. Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 1998; 101: 1835–1842.

    Article  PubMed  CAS  Google Scholar 

  79. Blazar BR, Taylor PA, Boyer MW, Panoskaltsis-Mortari A, Allison JP, Vallera DA. CD28/B7 interactions are required for sustaining the graft-versus-leukemia effect of delayed post-bone marrow transplantation splenocyte infusion in murine recipients of myeloid or lymphoid leukemia cells. J Immunol 1997; 159: 3460–3473.

    PubMed  CAS  Google Scholar 

  80. Boyer MW, Vallera DA, Taylor PA, et al. The role of B7 costimulation by murine acute myeloid leukemia in the generation and function of a CD8+ T-cell line with potent in vivo graft-versus-leukemia properties. Blood 1997; 89: 3477–3485.

    PubMed  CAS  Google Scholar 

  81. Boyer MW, Orchard PJ, Gorden KB, Anderson PM, McLvor RS, Blazar BR. Dependency on intercellular adhesion molecule recognition and local interleukin-2 provision in generation of an in vivo CD8+ T-cell immune response to murine myeloid leukemia. Blood 1995; 85: 2498–2506.

    PubMed  CAS  Google Scholar 

  82. Porter DL, Collins RH, Jr., Shpilberg O, et al. Long-term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood Marrow Transplant 1999; 5: 253 261.

    Google Scholar 

  83. Tanaka KK, Roberts E. Biological Studies of E.L.4 Lymphoma and C1498 Leukemia in Susceptible (C56BL) and Resistant (B 10.D2) mice. Cancer Res 1964; 24: 1785–1797.

    PubMed  CAS  Google Scholar 

  84. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 1997; 158: 29–39.

    PubMed  CAS  Google Scholar 

  85. Yang YG, Sergio JJ, Pearson DA, Szot GL, Shimizu A, Sykes M. Interleukin-12 preserves the graft-versusleukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood 1997; 90: 4651–4660.

    PubMed  CAS  Google Scholar 

  86. Sykes M, Abraham VS, Harty MW, Pearson DA. IL-2 reduces graft-versus-host disease and preserves a graftversus-leukemia effect by selectively inhibiting CD4+ T cell activity. J Immunol 1993; 150: 197205.

    Google Scholar 

  87. Sykes M, Harty MW, Pearson DA. Strain dependence of interleukin-2-induced graft-versus-host disease protection: evidence that interleukin-2 inhibits selected CD4 functions. J Immunother 1994; 15: 1121.

    Article  Google Scholar 

  88. Dunn YB, Potter M. A transplantable mast-cell neoplasm in the mouse. J Natl Cancer Inst 1957; 18: 587.

    PubMed  CAS  Google Scholar 

  89. Teshima T, Hill GR, Pan L, et al. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest 1999; 104: 317–325.

    Article  PubMed  CAS  Google Scholar 

  90. de La Selle V, Riche N, Dorothe G, Bruley-Rosset M. CD8+ cytotoxic T cell repertoire implicated in grafts-versusleukemia effect in a murine bone marrow transplantation model. Bone Marrow Transplant 1999; 23: 951–958.

    Article  Google Scholar 

  91. Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol 1979; 122: 549–554.

    PubMed  CAS  Google Scholar 

  92. Borgmann A, Baldy C, von Stackelberg A, et al. Childhood all blasts retain phenotypic and genotypic characteristics upon long-term serial passage in NOD/SCID mice. Pediatr Hematol Oncol 2000; 17: 635–650.

    Article  PubMed  CAS  Google Scholar 

  93. Xun CQ, Thompson JS, Jennings CD, Brown SA. The effect of human IL-2-activated natural killer and T cells on graft-versus-host disease and graft-versus-leukemia in SCID mice bearing human leukemic cells. Transplantation 1995; 60: 821–827.

    PubMed  CAS  Google Scholar 

  94. Harris DT. In vitro and in vivo assessment of the graft-versus-leukemia activity of cord blood. Bone Marrow Transplant 1995; 15: 17–23.

    PubMed  CAS  Google Scholar 

  95. Hsieh MH, Korngold R. Differential use of FasL- and perforin-mediated cytolytic mechanisms by T-cell subsets involved in graft-versus-myeloid leukemia responses. Blood 2000; 96: 1047–1055.

    PubMed  CAS  Google Scholar 

  96. Schmaltz C, Alpdogan O, Horndasch KJ, et al. Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 2001; 97: 2886–2895.

    Article  PubMed  CAS  Google Scholar 

  97. Tsukada N, Kobata T, Aizawa Y, Yagita H, Okumura K. Graft-versus-leukemia effect and graft-versus-host disease can be differentiated by cytotoxic mechanisms in a murine model of allogeneic bone marrow transplantation. Blood 1999; 93: 2738–2747.

    PubMed  CAS  Google Scholar 

  98. Jiang Z, Podack E, Levy RB. Major histocompatibility complex-mismatched allogeneic bone marrow transplantation using perforin and/or Fas ligand double-defective CD4(+) donor T cells: involvement of cytotoxic function by donor lymphocytes prior to graft-versus-host disease pathogenesis. Blood 2001; 98: 390–397

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, K., Murphy, W.J., Welniak, L.A. (2003). In Vivo Models for the Study of Graft-vs-Host Disease and Graft-vs-Tumor Effects. In: Laughlin, M.J., Lazarus, H.M. (eds) Allogeneic Stem Cell Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-333-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-333-0_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4481-1

  • Online ISBN: 978-1-59259-333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics