Skip to main content

The Role of T Cell Depletion in Bone Marrow Transplantation

  • Chapter
  • 94 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

New advances in the understanding of the complex mechanisms underlying acute and chronic graft-vs-host disease (GVHD) revealed the role of key cytokines and chemokines involved in the outbreak of the “cytokine storm,” which follows the initial allostimulation in vivo (1–4). However, to date, none of the attempts to translate these new insights into clinical interventions have led to a major improvement in the control of GVHD. Clearly, containing such a multifactorial outbreak by a single or even a double agent is enormously difficult, if not impossible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrera JLM, Deeg HJ, Burakoff SG. Graft-Versus-Host Disease. Marcell Decker, New York, 1997.

    Google Scholar 

  2. Krenger W, Hill GR, Ferrera JLM. Cytokine cascades in acute graft-versus-host disease. Transplantation 1997; 64: 553.

    Article  PubMed  CAS  Google Scholar 

  3. Serody JS, Cook DN, Kirby SL, Reap E, Shea TC, Frelinger JA. Murine T lymphocytes incapable of producing macrophage inhibitory protein-1 are impaired in causing graft versus-host disease across a class 1 but not class 11 major histocompatibility complex barrier. Blood 1999; 93: 43.

    PubMed  CAS  Google Scholar 

  4. Murphy WJ, Blazar BR. New strategies for preventing graft-versus-host disease. Curr Opin Immunol 1999; 11: 509.

    Article  PubMed  CAS  Google Scholar 

  5. Uphoff DE. J Natl Cancer Inst 1958; 20: 625.

    PubMed  CAS  Google Scholar 

  6. Muller-Ruchholtz W, Wottge H-U, Muller-Hermelink HK. Bone marrow transplantation in rats across stron histocompatibility barriers by selective elimination of lymphoid cells in donor marrow. Transplant Proc 1976; 8: 537–541.

    PubMed  CAS  Google Scholar 

  7. Dicke KA, van Bekkum DW. Allogeneic bone marrow transplantation after elimination of immunocompetent cells by means of density gradient centrifugation. Transplant Proc 1971; 3: 666.

    PubMed  CAS  Google Scholar 

  8. Reisner Y, Itzicovitch L, Meshorer A, Sharon N. Hemopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins. Proc Natl Acad Sci USA 1978; 75: 2933.

    Google Scholar 

  9. Reisner Y, Kapoor N, O’Reilly RJ, Good RA. Allogeneic bone marrow transplantation using stem cells fractionated by sheep red blood cells and soybean agglutinin. Lancet 1980; ii: 1320.

    Article  Google Scholar 

  10. Reisner Y, Kapoor N, Kirkpatrick D, et al. Transplantation for acute leukemia with HLA-A and B non0identical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 1981; ii: 327.

    Article  Google Scholar 

  11. Rich RR, Kirkpatrick CH, Smith TK.Simultaneous suppression of responses to allogeneic tissue in vitro and vivo. Cell Immunol 1972; 5: 190.

    Article  PubMed  CAS  Google Scholar 

  12. Von Boehmer H, Sprent J, Nabholz M. Tolerance to histocompatibility determinants in tetraparental bone marrow chimeras. J Exp Med 1975; 141: 322.

    Article  PubMed  CAS  Google Scholar 

  13. Yunis EJ, Good RA, Smikth J, Stutman O. Protection of lethally irradiated mice by spleen cells from neonatally thymectomized mice. Proc Natl Acad Sci USA 1974; 71: 2544.

    Google Scholar 

  14. Reisner Y, Kapoor N, Kirkpatrick D, et al. Transplantation for severe combined immunodeficiency with HLA-A,B.D.DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 1983; 61: 341.

    PubMed  CAS  Google Scholar 

  15. O’Reilly RJ, Kapoor N, Kirkpatrick D, et al. Transplantation for severe combined immunodeficiency using histoincompatible parental marrow fractionated by soybean agglutinin and sheep red blood cells: experience in six consecutive cases. Transplant Proc 1983; 15: 1431.

    Google Scholar 

  16. Friedrich W, Goldmann SF, Vetter U, et al Immunoreconstitution in severe immunodeficiency following transplantation of HLA-haploidentical, T-cell depleted bone marrow. Lancet 1984; i: 761.

    Article  Google Scholar 

  17. Gale RP, Reisner Y. Graft rejection and graft-versus-host disease: mirror images. Lancet 1986; i: 1468.

    Google Scholar 

  18. Zinkernagel RM, Althage A, Callahan G, Welsh RMJ. On the immunocompetence of H-2 incompatible irradiaation bone marrow chimeras. J Immunol 1980; 124: 2356.

    Google Scholar 

  19. Haddad E, Landais P, Friedrich W, et al. Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a european retrospective study of 116 patients. Blood 1998; 91: 36–46.

    Google Scholar 

  20. O’Reilly RJ, Keever CA, Small TN, Brochstein J. The use of HLA-non-identical T-cell depleted marrow transplants for correction of severe combined immunodeficiency disease. Immunodefic Rev 1989; 1: 273.

    PubMed  Google Scholar 

  21. Buckley RH. Bone marrow reconstitution in primary immunodeficiency, In Rich RR (eds): Clinical Immunology. Mosby, St. Louis, MO, 1996, p. 1813.

    Google Scholar 

  22. Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999; 349: 508.

    Article  Google Scholar 

  23. Rosenkrantz K, Keever C, Bhimani K, et al. Both ongoing suppression and clonal elimination contribute to graft-host tolerance after transplantation of HLA mismatched T cell-depleted marrow for severe combined immunodeficiency. J Immunol 1990; 144: 1721.

    PubMed  CAS  Google Scholar 

  24. O’Reilly RJ, Collins NH, Kernan N. Transplant Proc 1985; 17: 455.

    Google Scholar 

  25. O’Reilly RJ, Collins N, Dinsmore R, et al. Transplantation of HLA-mismatched marrow depleted of T-cells by lectin agglutination and E-rosette depletion. Tokai J Exp Clin Med 1985; 10: 99.

    PubMed  Google Scholar 

  26. Schwartz E, Lapidot T, Gozes D, Singer TS, Reisner Y. Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlaates with eradication of host clonable T cells and alloreactive cytotoxic precursors. J Immunol 1987; 138: 460.

    PubMed  CAS  Google Scholar 

  27. Reisner Y, Ben-Bassat I, Douer D, Kaploon A, Schwartz E, Ramot B. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation. Proc Natl Acad Sci USA 1986; 83: 4012.

    Article  PubMed  CAS  Google Scholar 

  28. Kernan NA, Flomenberg N, Dupont B, O’Reilly RJ. Graft rejection in recipients of T-cell-depleted HLAnonidentical marrow transplants for leukemia. Identificaation of host-derived antidonor allocytotoxic T lymphocytes. Transplantation 1987; 43: 842.

    PubMed  CAS  Google Scholar 

  29. Butturini A, Seeger RC, Gale RP. Recipient immune-competent T lymphocytes can survive intensive conditioning for bone marrow transplantation. Blood 1986; 68: 954.

    PubMed  CAS  Google Scholar 

  30. Slavin S, Waldmann H, Or R, et al. Prevention of graft-versus-host disease in allogeneic bone marrow transplantation for leukemia by T cell depletion in vitro prior to transplantation. Transplant Proc 1985; 17: 465.

    Google Scholar 

  31. Bordignon C, Keever CA, Small TN, et al.. Graft failure after T-Cell-depleted human leukocyte antigen identical marrow transplants for leukemia: II. In vitro analyses of host effector mechanisms. Blood 1989; 74: 2237.

    Google Scholar 

  32. Hale G, Cobbold S, Waldmann H. CAMPATH-1 Users: T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplantation 1988; 45: 753.

    Article  Google Scholar 

  33. Patterson J, Prentice HG, Brenner MK, et al. Graft rejection following HLA matched T-lymphocyte depleted bone marrow transplantation. Br J Haematol 1986; 63: 221.

    Article  PubMed  CAS  Google Scholar 

  34. Mitsuyasu RT, Champlin RE, Gale RP, Ho WG, Lenarsky C, Winston D. Treatment of donor bone marrow with monoclonal anti-T cell antibody and complement for the prevention of graft-versus-host disease. Ann Intern Med 1986; 105: 20.

    Article  PubMed  CAS  Google Scholar 

  35. Filipovich AH, Vallera DA, Youle RJ, et al. Graft versus host disease prevention in allogeneic bone marrow transplantation from histocompatible siblings. Transplantation 1987; 44: 62.

    Article  PubMed  CAS  Google Scholar 

  36. Martin PJ, Hansen JA, Buckner CD, et al. Effects of in vitro depletion of T-cells in HLA-identical allogeneic marrow grafts. Blood 1985; 66: 664.

    PubMed  CAS  Google Scholar 

  37. Small TN, Avigan D, Dupont B, et al. Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis. Biol Blood Marrow Transplant 1997; 3: 65.

    PubMed  CAS  Google Scholar 

  38. Terenzi A, Lubin I, Lapidot T, et al. Enhancement of T-cell depleted bone marrow allografts in mice by thiotepa. Transplantation 1990; 50: 717.

    Article  PubMed  CAS  Google Scholar 

  39. Aversa F, Terenzi A, Carotti A, et al. Improved outcome with T-cell-depleted bone marrow transplantation for acute leukemia. J Clin Oncol 1999; 17: 1545.

    PubMed  CAS  Google Scholar 

  40. Papadopoulos EB, Carabasi MH, Castro-Malaspina H, et al. T-cell-depleted allogeneic bone marrow transplanation as postremission therapy for acute myelogenous leukemia: freedom from relapse in the absence of graft-versus-host disease. Blood 1998; 91: 1083.

    PubMed  CAS  Google Scholar 

  41. Hale G, Zhang M-J, Bunjes D, et al. Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection. Blood 1998; 92: 4581.

    PubMed  CAS  Google Scholar 

  42. Hale G, Jacobs P, Wood L, et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantaation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 2000; 26: 69.

    Article  PubMed  CAS  Google Scholar 

  43. Kolb HJ, Mittermuller J, Clemm CH, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462.

    Google Scholar 

  44. Drobyski WR, Keever CA, Roth MS, et al. Salvage immunotherapy using donor leukocyte infusions as treaatment for relaapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 1993; 82: 2310.

    Google Scholar 

  45. Porter DL, Roth MS, McGarigle C, et al. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 1994; 330: 100.

    Article  PubMed  CAS  Google Scholar 

  46. Helg C, Roux E, Beris P, et al. Adoptive immunotherapy for recurrent CML after BMT. Bone Marrow Transplant 1993; 12: 125.

    PubMed  CAS  Google Scholar 

  47. van Rhee F, Lin F, Cullis JO, et al. Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: The case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood 1994; 83: 3377.

    PubMed  Google Scholar 

  48. Slavin S, Naparstek E, Nagler A, et al. Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes. Exp Hematol 1995; 23: 1553.

    PubMed  CAS  Google Scholar 

  49. Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995; 86: 1261.

    PubMed  CAS  Google Scholar 

  50. Naparstek E, Nagler A, Or R, et al. Allogeneic cell-mediated immunotherapy using donor lymphocytes for prevention of relapse in patients treaated with allogeneic bone marrow transplantation for hematological malignancies. Clin Transplant 1996; 281 290.

    Google Scholar 

  51. Roux E, Helg C, Dumont-Girard F, et al. Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 1996; 87: 3984.

    PubMed  CAS  Google Scholar 

  52. Dumont-Girard F, Roux E, van Lier RA, et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 1998; 92: 4464.

    PubMed  CAS  Google Scholar 

  53. Small TN, Papadopoulos EB, Boulad F, et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 1999; 93: 467.

    PubMed  CAS  Google Scholar 

  54. Oakhill A, Pamphilon DH, Otter MN, et al. Unrelated donor bone marrow transplantation for children with relapsed acute lymphoblastic leukaemia in second complete remission. Br J Haematol 1996; 94: 574.

    Article  PubMed  CAS  Google Scholar 

  55. Green A, Clarke E, Hunt L, et al. Children with acute lymphoblastic leukemia who receive T-cell-depleted HLA mismatched marrow allografts from unrelaated donors have an increaased incidence of primary graft failure but a similar overall transplant outcome. Blood 1999; 94: 2236.

    Google Scholar 

  56. Sprent J. T lymphocytes and the thymus, In Paul WE (ed). Fundamental Immunology 3rd ed., Raven, New York, 1993, p. 75.

    Google Scholar 

  57. Champlin RE, Passweg JR, Zhang M-J, et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood 2000; 95: 3996.

    PubMed  CAS  Google Scholar 

  58. Salomon O, Lapidot T, Terenzi A, et al. Induction of donor-type chimerism in murine recipients of bone marrow allografts by different radiation regimens currently used in treatment of leukemia patients. Blood 1990; 76: 1872.

    PubMed  CAS  Google Scholar 

  59. Ferrara JL, Michaelson J, Burakoff SJ, et al. Engraftment following T cell-depleted bone marrow transplantation. III. Differential effects of increased total-body irradiation on semiallogeneic recipients. Transplantation 1988; 45: 948.

    Article  PubMed  CAS  Google Scholar 

  60. Lapidot T, Singer TS, Salomon O, et al. Booster irradiation to the spleen following total body irradiation: a new immunosuppressive approach for allogeneic bone marrow transplantation. J Immunol 1988; 141: 2619.

    Google Scholar 

  61. Soderling CC, Song CW, Blazer BR, et al. A correlation between conditioning and engraftment in recipients of MHC mismatched T cell-depleted murine bone marrow transplants. Immunology 1985; 135: 941.

    CAS  Google Scholar 

  62. Cobbold SP, Martin G, Qin S, et al. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 1986; 323: 164.

    Article  PubMed  CAS  Google Scholar 

  63. Lapidot T, Terenzi A, Singer TS, et al. Enhancement by dimethyl myleran of donor type chimerism in murine recipients of bone marrow allografts. Blood 1989; 73: 2025.

    Google Scholar 

  64. Godder KT, Hazlett LJ, Abhyankar SH, et al. Partially mismatched related-donor bone marrow transplantation for pediatric patients with acute leukemia: younger donors and absence of peripheral blasts improve outcome. J Clin Oncol 2000; 18: 1856.

    PubMed  CAS  Google Scholar 

  65. Lapidot T, Terenzi A, Singer TS, et al. Size of bone marrow inoculum versus number of donor-type cells used for presensitization: a murine model for bone marrow allograft rejection in leukemia patients. Blood 1987; 70: 309a.

    Google Scholar 

  66. Uharek L, Gassmann W, Glass B, et al. Influence of cell dose and graft-versus-host reactivity on rejection rats after allogeneic bone marrow transplantation. Blood 1992; 79: 1612.

    PubMed  CAS  Google Scholar 

  67. Bachar-Lustig E, Rachamim N, Li HW, et al. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med 1995; 1: 1268.

    Article  PubMed  CAS  Google Scholar 

  68. Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 1994; 84: 3948.

    PubMed  CAS  Google Scholar 

  69. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Eng J Med 1998; 339: 1186.

    Article  CAS  Google Scholar 

  70. Handgretinger R, Schumm M, Lang P,et al. Transplantation of megadoses of purified haploidentical stem cells. Ann NYAcad Sci 1999; 872: 351.

    Article  CAS  Google Scholar 

  71. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94: 333.

    PubMed  CAS  Google Scholar 

  72. Goulmy E, Schipper R, Pool J, et al. Mismatches of Minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996; 334: 281.

    Article  PubMed  CAS  Google Scholar 

  73. Falkenburg JHF, Wafelman AR, Joosten P, et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94: 1201.

    PubMed  CAS  Google Scholar 

  74. Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018.

    Article  PubMed  CAS  Google Scholar 

  75. Volpi I, Perruccio K, Ruggeri L, et al. G-CSFblocks IL-12 production by antigen presenting cells: implications for improved immune reconstitution after haploidentical hematopoietic transplantation. Blood 1999; 94: 640a.

    Google Scholar 

  76. Min D, Taylor P, Chung B, et al. Protection from thymic epithelial cell (TEC) injury by pre-BMT keratinocyte growth factor (KGF): a new approach to speed thymic reconstitution after lethal irradiation. 42nd Annual Meeting of the American Society of Hematology, San Francisco, CA, December 1–5. Blood 2000; 96: 474a

    Google Scholar 

  77. Bolotin E, Smogorzewska M, Smith S, et al. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 1996; 88: 1887.

    PubMed  CAS  Google Scholar 

  78. Cavazzana Calvo M, Stephan L, Sarnacki S, et al. Attenuation of graft-versus-host disease and graft rejection by ex vivo immunotoxin elimination of alloreactive T cells in an H-2 haplotype disparate mouse combination. Blood 1994; 83: 288.

    Google Scholar 

  79. Koh MB, Prentice HG, Lowdell MW. Selective removal of alloreactive cells from haematopoietic stem cell grafts: graft engineering for GVHD prophylaxis. Bone Marrow Transplant 1999; 23: 1071.

    Article  PubMed  CAS  Google Scholar 

  80. Boussiotis VA, Gribben JG, Freeman GJ, et al. Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. Curr Opin Immunol 1994; 6: 797.

    Article  PubMed  CAS  Google Scholar 

  81. Gribben G, Guinan EC, Boussiotis VA, et al. Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool. Blood 1996; 87: 4887.

    PubMed  CAS  Google Scholar 

  82. Sambhara SR, Miller RG.: Programmed cell death of T cells signaled by the T cell receptor and the alpha 3 domain of class I MHC. Science 1991; 252: 1424.

    Article  PubMed  CAS  Google Scholar 

  83. Reich-Zeliger S, Zhao Y, Krauthgamer R, et al. Anti-third party CD8+ CTLs as potent veto cells: coexpression of CD8 and FasL is a prerequisite. Immunity 2000; 13: 507.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reisner, Y., Martelli, M.E. (2003). The Role of T Cell Depletion in Bone Marrow Transplantation. In: Laughlin, M.J., Lazarus, H.M. (eds) Allogeneic Stem Cell Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-333-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-333-0_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4481-1

  • Online ISBN: 978-1-59259-333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics