Skip to main content

Immune Recovery Following Allogeneic Blood Transplantation

Mechanisms of Immune Dysfunction

  • Chapter
Allogeneic Stem Cell Transplantation

Part of the book series: Current Clinical Oncology ((CCO))

  • 94 Accesses

Abstract

High-dose chemotherapy (HDT) followed by stem cell transplantation (SCT), using mobilized blood stem cell product (BSCP), cord blood, or bone marrow (BM), is used to treat a variety of advanced malignancies, as well as congenital and autoimmune conditions. In the last decade, it has become apparent that following HDT with an SCT, using either an allogeneic or autologous BSCP, causes more rapid neutrophil, platelet, and immune recoveries to be observed in comparison to an SCT with a BM product. We and others have observed an immune dysfunction in the peripheral blood (PB) of patients following HDT and SCT despite restoration of total T cell numbers. This immunologic dysfunction includes an inversion in the CD4:CD8 T cell ratio and a depression of T cell function. Mechanistic studies have demonstrated a cell-mediated suppression of T cell function in mobilized BSCP and the PB of allogeneic and autologous SCT patients. This loss of function has been associated with increased T cell apoptosis, which occurs predominantly within CD4+ T cell subpopulations. The induction of apoptosis is mediated, at least in part, by Fas Ligand (FasL) expression on monocytes, which are found in significantly higher numbers in mobilized BSCP and in the PB following SCT. In addition, high levels of type 2 cytokines are found in the infused T cells and monocytes as well as in the PB post-transplantation. These defects in immune function may be clinically relevant, as the tolerance induced following HDT and SCT may limit the acute graft-vs-host disease (GVHD) that occurs following the infusion of 10- to 100-fold greater numbers of T cells by an allogeneic mobilized BSCP, as compared to bone marrow transplant trol. CD4+ and CD8+ T cells have been shown to have a pivotal role in controlling the initial infection and maintaining CMV and EBV in a latent state. EBV causes potentially lethal immunoblastic lymphomas in approx 25% of SCT recipients receiving a stem cell product from unrelated or HLA-mismatched donors. Risk factors, which include TCD, major MHCmismatched transplants, and intensity of immunosuppression, support the role of T cell immune surveillance in the control of EBV (188) and CMV infections. CMV pneumonitis (191), despite ganciclovir and specific immunoglobulin therapy, has a poor outcome with a mortality rate of 30–70% (192). Thus, strategies involving the adoptive transfer of CMV- or EBVspecific CTL clones or boosting of donor or patient immunity using CMV or EBV vaccines are encouraging. If the allo-donor is vaccinated, the T cells contained within the stem cell product include, in theory, viral-specific CTL. Alternatively, CTL may be derived following ex vivo-expansion of virus-specific CTL using donor leukocytes. In either case, the leukocytes or isolated T cells can be given either prophylactically or therapeutically for the treatment of CMV and EBV infections. The EBV-specific CTL are readily stimulated and expanded using EBV-immortalized B lymphoblastoid cell lines as stimulators. Current protocols for CMVspecific CTL use transfection of PP65, an immunodominant CMV antigen into CMV-infected fibroblasts, DCs or EBV-transformed B lymphoblastic cell lines and used for antigen stimulation (186). Thus, graft manipulation via antigen-specific T cell augmentation, either ex vivo or by donor vaccination, has significant potential as a strategy to affect infection. Further, the utilization of DLI from vaccinated donors or ex vivo-stimulated and expanded viral-specific CTLs provides an exciting new strategy for the control of these life-threatening viral infections (186). Regardless of the strategy used to prevent or treat infections, the marked and prolonged cellular immunodeficiency that is observed following SCT—especially following transplantation with positively selected stem cells—results in an increased incidence of infections, including rare and unusual infections, such as Pneumocystis carinii, toxoplasmosism and Mycobacterium species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bensinger W, Appelbaum F, Rowley S, et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 1995; 13 (10): 2547–2555.

    PubMed  CAS  Google Scholar 

  2. Langenmayer I, Weaver C, Buckner CD, et al. Engraftment of patients with lymphoid malignancies transplanted with autologous bone marrow, peripheral blood stem cells or both. Bone Marrow Transplant 1995;15(2):241–246.

    PubMed  CAS  Google Scholar 

  3. Pavletic ZS, Bishop MR, Tarantolo SR, et al. Hematopoietic recovery after allogeneic blood stem-cell transplantation compared with bone marrow transplantation in patients with hematologic malignancies. J Clin Oncol 1997; 15 (4): 1608–1616.

    PubMed  CAS  Google Scholar 

  4. Kessinger A, Bierman PJ, Vose JM, et al. High-dose cyclophosphamide, carmustine, and etoposide followed by autologous peripheral stem cell transplantation for patients with relapsed Hodgkin’s disease [published erratum appears in Blood 1991 Dec 15;78(12):3330]. Blood 1991; 77 (11): 2322–2325.

    PubMed  CAS  Google Scholar 

  5. Vose JM, Anderson JR, Kessinger A, et al. High-dose chemotherapy and autologous hematopoietic stem-cell transplantation for aggressive non-Hodgkin’s lymphoma. J Clin Oncol 1993; 11 (10): 1846–1851.

    PubMed  CAS  Google Scholar 

  6. Appelbaum FR. The use of bone marrow and peripheral blood stem cell transplantation in the treatment of cancer [see comments]. CA Cancer J Clin 1996; 46 (3): 142–164.

    Article  PubMed  CAS  Google Scholar 

  7. Korbling M, Fliedner TM. The evolution of clinical peripheral blood stem cell transplantation. Bone Marrow Transplant 1996; 17 (5): 675–678.

    PubMed  CAS  Google Scholar 

  8. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor [see comments]. Blood 1995; 85 (6): 1655–1658.

    PubMed  CAS  Google Scholar 

  9. Korbling M, Przepiorka D, Huh YO, Engel H, van Besien K, Giralt S et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 1995; 85 (6): 1659–1665.

    PubMed  CAS  Google Scholar 

  10. Schmitz N, Dreger P, Suttorp M, et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 1995; 85 (6): 1666–1672.

    PubMed  CAS  Google Scholar 

  11. Bensinger WI, Clift R, Martin P, et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood 1996; 88 (7): 2794–2800.

    PubMed  CAS  Google Scholar 

  12. Przepiorka D, Anderlini P, Ippoliti C, et al. Allogeneic blood stem cell transplantation in advanced hematologic cancers. Bone Marrow Transplant 1997; 19 (5): 455–460.

    Article  PubMed  CAS  Google Scholar 

  13. Schmitz N, Bacigalupo A, Labopin M, et al. Transplantation of peripheral blood progenitor cells from HLAidentical sibling donors. European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 1996; 95 (4): 715–723.

    Article  PubMed  CAS  Google Scholar 

  14. Storek J, Gooley T, Siadak M, et al. Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease. Blood 1997; 90 (12): 4705–4709.

    PubMed  CAS  Google Scholar 

  15. Solano C, Martinez C, Brunet S, et al. Chronic graft-versus-host disease after allogeneic peripheral blood progenitor cell or bone marrow transplantation from matched related donors. A case-control study. Spanish Group of Allo-PBT. Bone Marrow Transplant 1998; 22 (12): 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  16. Miflin G, Russell NH, Hutchinson RM, et al. Allogeneic peripheral blood stem cell transplantation for haematological malignancies an analysis of kinetics of engraftment and GVHD risk. Bone Marrow Trans- plant 1997; 19 (1): 9–13.

    CAS  Google Scholar 

  17. Majolino I, Saglio G, Scime R, et al. High incidence of chronic GVHD after primary allogeneic peripheral blood stem cell transplantation in patients with hematologic malignancies. Bone Marrow Transplant 1996; 17 (4): 555–560.

    PubMed  CAS  Google Scholar 

  18. Urbano-Ispizua A, Solano C, et al. Allogeneic peripheral blood progenitor cell transplantation: analysis of short-term engraftment and acute GVHD incidence in 33 cases. allo-PBPCT Spanish Group. Bone Marrow Transplant 1996; 18 (1): 35–40.

    PubMed  CAS  Google Scholar 

  19. Brown RA, Adkins D, Khoury H, et al. Long-term follow-up of high-risk allogeneic peripheral-blood stem-cell transplant recipients: graft-versus-host disease and transplant-related mortality. J Clin Oncol 1999; 17 (3): 806–812.

    PubMed  CAS  Google Scholar 

  20. Champlin RE, Schmitz N, Horowitz MM, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation [in process citation]. Blood 2000; 95 (12): 3702–3709.

    PubMed  CAS  Google Scholar 

  21. Vigorito AC, Azevedo WM, Marques JF, et al. A randomised, prospective comparison of allogeneic bone marrow and peripheral blood progenitor cell transplantation in the treatment of haematological malignancies. Bone Marrow Transplant 1998; 22 (12): 1145–1151.

    Article  PubMed  CAS  Google Scholar 

  22. Schmitz N, Bacigalupo A, Hasenclever D, et al. Allogeneic bone marrow transplantation vs filgrastimmobilised peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of a randomised multicentre trial of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1998; 21 (10): 995–1003.

    Article  PubMed  CAS  Google Scholar 

  23. Blaise D, Kuentz M, Fortanier C, et al. Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 2000; 18 (3): 537–546.

    PubMed  CAS  Google Scholar 

  24. Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. NEngl JMed 2001; 344 (3): 175–181.

    Article  CAS  Google Scholar 

  25. Nash RA, Pepe MS, Storb R, et al. Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood 1992; 80 (7): 1838–1845.

    PubMed  CAS  Google Scholar 

  26. Vasconcelos ZF, Diamond HR, Tabak DG, et al. Thl/Th2 lymphokine profile of T cells present in the blood of granulocyte-colony stimulating factor-treated stem-cell donors: up or down modulation. Blood 2001; 97 (1): 333–335.

    Article  PubMed  CAS  Google Scholar 

  27. Sivakumaran M. Modulation of Thl/Th2 subsets by granulocyte-colony stimulating factor. Blood 2001; 97 (1): 333.

    Article  PubMed  CAS  Google Scholar 

  28. Arpinati M, Green CL, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95 (8): 2484–2490.

    PubMed  CAS  Google Scholar 

  29. Sloand EM, Kim S, Maciejewski JP, et al. Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 2000; 95 (7): 2269–2274.

    PubMed  CAS  Google Scholar 

  30. Pan L, Delmonte J, Jr., Jalonen CK, et al. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86 (12): 4422–4429.

    PubMed  CAS  Google Scholar 

  31. Talmadge JE, Reed EC, Kessinger A, et al Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone Marrow Transplant 1996; 17 (1): 101–109.

    PubMed  CAS  Google Scholar 

  32. Mielcarek M, Roecklein BA, Torok-Storb B. CD14+cells in granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood mononuclear cells induce secretion of interleukin-6 and G-CSF by marrow stroma. Blood 1996; 87 (2): 574–580.

    PubMed  CAS  Google Scholar 

  33. Powles R, Mehta J, Kulkarni S, et al. Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomised trial. Lancet 2000; 355 (9211): 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  34. Elmaagacli AH, Beelen DW, Opalka B, Set al. The risk of residual molecular and cytogenetic disease in patients with Philadelphia-chromosome positive first chronic phase chronic myelogenous leukemia is reduced after transplantation of allogeneic peripheral blood stem cells compared with bone marrow. Blood 1999; 94 (2): 384–389.

    PubMed  CAS  Google Scholar 

  35. Shenoy S, Mohanakumar T, Todd G, et al. Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant 1999; 23 (4): 335–346.

    Article  PubMed  CAS  Google Scholar 

  36. Tjonnfjord GE, Steen R, Evensen SA, et al. Characterization of CD34+ peripheral blood cells fromhealthy adults mobilized by recombinant human granulocyte colony-stimulating factor. Blood 1994;84(8): 2795 2801.

    Google Scholar 

  37. Weaver CH, Longin K, Buckner CD, et al. Lymphocyte content in peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant 1994; 13: 411–415.

    PubMed  CAS  Google Scholar 

  38. Mills KC, Gross TG, Varney ML, et al. Immunologic phenotype and function in human bone marrow, blood stem cells and umbilical cord blood. Bone Marrow Transplant 1996; 18 (1): 53–61.

    PubMed  CAS  Google Scholar 

  39. Todd G, Hang JS, Brown R, et al. The effect of G-CSF mobilization on lymphocyte subsets, monocytes, NK cells, RBCs, platelets and CD34+/LIN-progenitors in normal allogeneic PBSC donors. Blood 2001; 88: 679a.

    Google Scholar 

  40. Hassan HT, Stockschlader M, Schleimer B, et al. Comparison of the content and subpopulations of CD3 and CD34 positive cells in bone marrow harvests and G-CSF-mobilized peripheral blood leukapheresis products from healthy adult donors. Transplant Immunol 1996; 4 (4): 319–323.

    Article  CAS  Google Scholar 

  41. Korbling M, Huh YO, Durett A, et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-ldim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 1995; 86 (7): 2842–2848.

    PubMed  CAS  Google Scholar 

  42. Talmadge JE, Reed E, Ino K, et al. Rapid immunologic reconstitution following transplantation with mobilized peripheral blood stem cells as compared to bone marrow. Bone Marrow Transplant 1997; 19 (2): 161–172.

    Article  PubMed  CAS  Google Scholar 

  43. Storek J, Witherspoon RP, Storb R. T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 1995; 16 (3): 413–425.

    PubMed  CAS  Google Scholar 

  44. Atkinson K, Storb R, Prentice RL, et al. Analysis of late infections in 89 long-term survivors of bone marrow transplantation. Blood 1979; 53 (4): 720–731.

    PubMed  CAS  Google Scholar 

  45. Meyers JD. Infection in bone marrow transplant recipients. Am JMed 1986; 81 (1A): 27–38.

    CAS  Google Scholar 

  46. Paulin T, Ringden O, Nilsson B, et al. Variables predicting bacterial and fungal infections after allogeneic marrow engraftment. Transplantation 1987; 43 (3): 393–398.

    Article  PubMed  CAS  Google Scholar 

  47. Wingard JR. Infections in allogeneic bone marrow transplant recipients. Semin Oncol 1993;20(Suppl6):80–87.

    Google Scholar 

  48. Pavletic ZS, Joshi SS, Pirruccello SJ, et al. Lymphocyte reconstitution after allogeneic blood stem cell transplantation for hematologic malignancies. Bone Marrow Transplant 1998; 21 (1): 33–41.

    Article  PubMed  CAS  Google Scholar 

  49. Lum LG. The kinetics of immune reconstitution afterhuman marrow transplantation. Blood 1987; 69 (2): 369–380.

    PubMed  CAS  Google Scholar 

  50. Storb R, Thomas ED. Allogeneic bone-marrow transplantation. Immunol Rev 1983; 71: 77–102.

    Article  PubMed  CAS  Google Scholar 

  51. Forman SJ, Nocker P, Gallagher M, et al. Pattern of T cell reconstitution following allogeneic bone marrow transplantation for acute hematological malignancy. Transplantation 1982; 34 (2): 96–98.

    Article  PubMed  CAS  Google Scholar 

  52. Parkman R, Weinberg KI. Immunological reconstitution following bone marrow transplantation. Immunol Rev 1997; 157: 73–78.

    Article  PubMed  CAS  Google Scholar 

  53. Noel DR, Witherspoon RP, Storb R, et al. Does graft-versus-host disease influence the tempo of immunologic recovery after allogeneic human marrow transplantation? An observation on 56 long-term survivors. Blood 1978; 51 (6): 1087–1105.

    PubMed  CAS  Google Scholar 

  54. Keever CA, Small TN, Flomenberg N, et al. Immune reconstitution following bone marrow transplantation: Comparison of recipients of T-cell depleted marrow with recipients of conventional marrow grafts. Blood 1989; 73 (5): 1340–1350.

    PubMed  CAS  Google Scholar 

  55. Storek J, Gooley T, Witherspoon RP, et al. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am J Hematol 1997; 54 (2): 131–138.

    Article  PubMed  CAS  Google Scholar 

  56. Ramsdell F, Fowlkes BJ. Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science 1990; 248 (4961): 1342–1348.

    Article  PubMed  CAS  Google Scholar 

  57. Penninger JM, Kroemer G. Molecular and cellular mechanisms of T lymphocyte apoptosis. Adv Immunol 1998; 68: 51–144.

    CAS  Google Scholar 

  58. Gunthert U, Hofmann M, Rudy W, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65 (1): 13–24.

    Article  PubMed  CAS  Google Scholar 

  59. Cerra RF, Nathanson SD. Organ-specific chemotactic factors present in lung extracellular matrix. J Surg Res 1989; 46 (5): 422–426.

    Article  PubMed  CAS  Google Scholar 

  60. Orr FW, Sanchez-Sweatman OH, Kostenuik P, et al. Tumor-bone interactions in skeletal metastasis. Clin Orthop 1995;(312):19–33.

    Google Scholar 

  61. Mackall CL, Fleisher TA, Brown MR, et al. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 1994; 84 (7): 2221–2228.

    PubMed  CAS  Google Scholar 

  62. Witherspoon RP, Kopecky K, Storb RF, et al. Immunological recovery in 48 patients following syngeneic marrow transplantation or hematological malignancy. Transplantation 1982; 33 (2): 143.

    Article  PubMed  CAS  Google Scholar 

  63. Atkinson K. Reconstitution of the hematopoietic and immune recovery systems after human marrow transplantation. Bone Marrow Transplant 1990; 5 (4): 209–226.

    PubMed  CAS  Google Scholar 

  64. Roux E, Helg C, Dumont-Girard F, Chapuis B, Jet al. Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 1996; 87 (9): 3984–3992.

    PubMed  CAS  Google Scholar 

  65. Weinberg K, Annett G, Kashyap A, et al. The effect of thymic function on immunocompetence following bone marrow transplantation. Biol Blood Marrow Transplant 1995; 1 (1): 18–23.

    PubMed  CAS  Google Scholar 

  66. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Eng J Med 1995; 332 (3): 143–149.

    Article  CAS  Google Scholar 

  67. Dhein J, Walczak H, Baumler C, et al. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 1995; 373 (6513): 438–441.

    Article  PubMed  CAS  Google Scholar 

  68. Brunner T, Mogil RJ, LaFace D, et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation induced apoptosis in T cell hybridomas. Nature 1995;373(6513):441 1 14.

    Google Scholar 

  69. Ju ST, Panka DJ, Cui H, et al. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373 (6513): 444–448.

    Article  PubMed  CAS  Google Scholar 

  70. Ettinger R, Panka DJ, Wang JK, et al. Fas ligand mediated cytotoxicity is directly responsible for apoptosis of normal CD4+ T cells responding to bacterial superantigens. J Immunol 1995; 154 (9): 4302–4308.

    PubMed  CAS  Google Scholar 

  71. Badley AD, Dockrell D, Simpson M, et al. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J Exp Med 1997; 185 (1): 55–64.

    Article  PubMed  CAS  Google Scholar 

  72. Krammer PH, Behrmann I, Daniel P, et al. Regulation of apoptosis in the immune system. Curr Opin Immunol 1994; 6 (2): 279–289.

    Article  PubMed  CAS  Google Scholar 

  73. Alderson MR, Tough TW, Braddy S, et al. Regulation of apoptosis and T cell activation by Fas-specific mAb. Int Immunol 1994; 6 (11): 1799–1806.

    Article  PubMed  CAS  Google Scholar 

  74. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76 (6): 959–962.

    Article  PubMed  CAS  Google Scholar 

  75. Badley AD, McElhinny JA, Leibson PJ, et al. Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediated apoptosis of uninfected T lymphocytes. J Virol 1996; 70 (1): 199–206.

    PubMed  CAS  Google Scholar 

  76. MosierD, Sieburg H. Macrophage-tropic HIV: critical for AIDS pathogenesis? Immunol Today 1994; 15 (7): 332–339.

    Article  Google Scholar 

  77. Schuitemaker H, Meyaard L, Kootstra NA, et al. Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants. J Infect Dis 1993; 168 (6): 1140–1147.

    Article  PubMed  CAS  Google Scholar 

  78. Groux H, Torpier G, Monte D, et al. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus infected asymptomatic individuals. J Exp Med 1992;175(2):331 340.

    Google Scholar 

  79. Wu MX, Daley JF, Rasmussen RA, et al. Monocytes are required to prime peripheral blood T cells to undergo apoptosis. Proc Natl Acad Sci USA 1995; 92 (5): 1525–1529.

    Article  PubMed  CAS  Google Scholar 

  80. Mackall CL, Stein D, Fleisher TA, et al. Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood 2000; 96 (2): 754–762.

    PubMed  CAS  Google Scholar 

  81. Small TN, Papadopoulos EB, Boulad F, et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 1999; 93 (2): 467–480.

    PubMed  CAS  Google Scholar 

  82. Small TN, Avigan D, Dupont B, et al Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis. Biol Blood Marrow Transplant 1997; 3 (2): 65–75.

    PubMed  CAS  Google Scholar 

  83. Ino K, Singh RK, Talmadge JE. Monocytes from mobilized stem cells inhibit T cell function. J Leuko Biol 1997; 61 (5): 583–591.

    PubMed  CAS  Google Scholar 

  84. 84. Li Y, Li XC, Zheng XX, Wells AD, Tet al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. NatMed 1999;5(11):1298–1302.

    Google Scholar 

  85. Ferguson TA, Green DR. T cells are just dying to accept grafts [news]. Nat Med 1999;5(11): 1231, 1232.

    Google Scholar 

  86. Varney ML, Ino K, Ageitos AG, et al. Expression of interleukin-10 in isolated CD8+ T cells and monocytes from growth factor-mobilized peripheral blood stem cell products: a mechanism of immune dysfunction. J Interferon Cytokine Res 1999; 19 (4): 351–360.

    Article  PubMed  CAS  Google Scholar 

  87. Singh RK, Ino K, Varney ML, et al. Immunoregulatory cytokines in bone marrow and peripheral blood stem cell products. Bone Marrow Transplant 1999; 23 (1): 53–62.

    Article  PubMed  CAS  Google Scholar 

  88. Holler E, Roncarolo MG, Hintermeier-Knabe R, et al. Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplantation. Bone Marrow Transplant 2000; 25 (3): 237–241.

    Article  PubMed  CAS  Google Scholar 

  89. Bacchetta R, Bigler M, Touraine JL, et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 1994; 179 (2): 493–502.

    Article  PubMed  CAS  Google Scholar 

  90. Lutz MB, Sure RM, Niimi M, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30: 1813–1822.

    Article  PubMed  CAS  Google Scholar 

  91. Lin MT, Tseng LH, Frangoul H, et al. Increased apoptosis of peripheral blood T cells following allogeneic hematopoietic cell transplantation. Blood 2000; 95 (12): 3832–3839.

    PubMed  CAS  Google Scholar 

  92. Singh RK, Varney ML, Buyukberber S, et al. Fas-FasL-mediated CD4+ T-cell apoptosis following stem cell transplantation. Cancer Res 1999; 59 (13): 3107–3111.

    PubMed  CAS  Google Scholar 

  93. Ageitos AG, Varney ML, Bierman PJ, et al. Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products. Bone Marrow Transplant 1999; 23 (1): 63–69.

    Article  PubMed  CAS  Google Scholar 

  94. Donnenberg AD, Margolick JB, Beltz LA, et al. Apoptosis parallels lymphopoiesis in bone marrow transplantation and HIV disease. Res Immunol 1995; 146 (1): 11–21.

    Article  PubMed  CAS  Google Scholar 

  95. Donnenberg AD, Margolick JB, Donnenberg VS. Lymphopoiesis, apoptosis, and immune amnesia. Ann NY Acad Sci 1995; 770: 213–226.

    Article  PubMed  CAS  Google Scholar 

  96. Finkel TH, Tudor-Williams G, Banda NK, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1995; 1 (2): 129–134.

    Article  PubMed  CAS  Google Scholar 

  97. Giorgi JV, Detels R. T-cell subset alterations in HIV-infected homosexual men: NIAID Multicenter AIDS cohort study. Clin Immunol Immunopathol 1989; 52 (1): 10–18.

    Article  PubMed  CAS  Google Scholar 

  98. Debatin KM, Fahrig-Faissner A, Enenkel-Stoodt S, et al. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood 1994; 83 (10): 3101–3103.

    PubMed  CAS  Google Scholar 

  99. Katsikis PD, Wunderlich ES, Smith CA, et al. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med 1995;181(6):20292036.

    Google Scholar 

  100. Tanaka J, Mielcarek M, Torok-Storb B. Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 1998; 91 (1): 347–352.

    PubMed  CAS  Google Scholar 

  101. Mielcarek M, Martin PJ, Torok-Storb B. Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 1997; 89 (5): 1629–1634.

    PubMed  CAS  Google Scholar 

  102. Von Boehmer H. Thymic selection: a matter of life and death. Immunol Today 1992; 13 (11): 454–458.

    Article  Google Scholar 

  103. Lucas B, Germain RN. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 1996; 5 (5): 461–477.

    Article  PubMed  CAS  Google Scholar 

  104. Bevan MJ. In thymic selection, peptide diversity gives and takes away. Immunity 1997; 7 (2): 175–178.

    Article  PubMed  CAS  Google Scholar 

  105. Hunkapillar T, Hood L. Diversity of the immunoglobulin gene superfamily. Adv Immunol 1989; 44: 1–63.

    Article  Google Scholar 

  106. Wilson RK, Lai E, Concannon P, et al. Structure, organization and polymorphism of murine and human T-cell receptor alpha and beta chain gene families. Immunol Rev 1988; 101: 149–172.

    Article  PubMed  CAS  Google Scholar 

  107. Chothia C, Boswell DR, Lesk AM. The outline structure of the T-cell alpha beta receptor. EMBO J 1988; 7 (12): 3745–3755.

    PubMed  CAS  Google Scholar 

  108. Hawes GE, Struyk L, van den Elsen PJ. Differential usage of T cell receptor V gene segments in CD4+ and CD8+ subsets of T lymphocytes in monozygotic twins. J Immunol 1993;150(5):20332045.

    Google Scholar 

  109. Siu G, Kronenberg M, Strauss E, et al. The structure, rearrangement and expression of D beta gene segments of the murine T-cell antigen receptor. Nature 1984; 311 (5984): 344–350.

    Article  PubMed  CAS  Google Scholar 

  110. Gorski J, Yassai M, Zhu X, et al. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 1994; 152 (10): 5109–5119.

    PubMed  CAS  Google Scholar 

  111. Naumov YN, Naumova EN, Gorski J. CD4+ and CD8+ circulating alpha/beta T-cell repertoires are equally complex and are characterized by different levels of steady-state TCR expression. Hum Immunol 1996; 48 (1–2): 52–62.

    Article  PubMed  CAS  Google Scholar 

  112. Mackall CL, Bare CV, Granger LA, et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996; 156 (12): 4609–4616.

    PubMed  CAS  Google Scholar 

  113. Tanchot C, Rocha B. The peripheral T cell repertoire: independent homeostatic regulation of virgin and activated CD8+ T cell pools. Eur J Immunol 1995;25(8):21272136.

    Google Scholar 

  114. Mackall CL, Hakim FT, Gress RE. T-cell regeneration: all repertoires are not created equal. Immunol Today 1997;18(5):245251.

    Google Scholar 

  115. Nachbaur D, Kropshofer G, Heitger A, et al. Phenotypic and functional lymphocyte recovery after CD34+enriched versus non-T cell-depleted autologous peripheral blood stem cell transplantation. J Hematother Stem Cell Res 2000; 9 (5): 727–736.

    Article  PubMed  CAS  Google Scholar 

  116. Roux E, Helg C, Chapuis B, et al. T-cell repertoire complexity after allogeneic bone marrow transplantation. Hum Immunol 1996; 48 (1–2): 135–138.

    Article  PubMed  CAS  Google Scholar 

  117. Pawelec G. Molecular and cell biological studies of ageing and their application to considerations of T lymphocyte immunosenescence. Mech Ageing Dev 1995; 79 (1): 1–32.

    Article  PubMed  CAS  Google Scholar 

  118. Brocker T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J Exp Med 1997; 186 (8): 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  119. Tanchot C, Rocha B. The organization of mature T-cell pools. Immunol Today 1998; 19 (12): 575–579.

    Article  PubMed  CAS  Google Scholar 

  120. Peault B, Weissman IL, Baum C, et al. Lymphoid reconstitution of the human fetal thymus in SCID mice with CD34+ precursor cells. J Exp Med 1991; 174 (5): 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  121. Vandekerckhove BA, Baccala R, Jones D, et al. Thymic selection of the human T cell receptor V beta repertoire in SCID- hu mice. J Exp Med 1992; 176 (6): 1619–1624.

    Article  PubMed  CAS  Google Scholar 

  122. Muller-Hermelink HK, Sale GE, Borisch B, et al. Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients. Am J Pathol 1987; 129 (2): 242–256.

    PubMed  CAS  Google Scholar 

  123. Lundqvist C, Baranov V, Hammarstrom S, et al. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int Immunol 1995; 7 (9): 1473–1487.

    Article  PubMed  CAS  Google Scholar 

  124. Collins C, Norris S, McEntee G, et al. RAW, RAG2 and pre-T cell receptor alpha chain expression by adult human hepatic T cells: evidence for extrathymic T cell maturation. Eur J Immunol 1996; 26 (12): 3114–3118.

    Article  PubMed  CAS  Google Scholar 

  125. Godthelp BC, Van Tol MJ, Vossen JM, et al. T-Cell immune reconstitution in pediatric leukemia patients after allogeneic bone marrow transplantation with T-cell-depleted or unmanipulated grafts: evaluation of overall and antigen-specific T-cell repertoires. Blood 1999; 94 (12): 4358–4369.

    PubMed  CAS  Google Scholar 

  126. Dietrich PY, Caignard A, Lim A, et al. In vivo T-cell clonal amplification at time of acute graft-versus-host disease. Blood 1994; 84 (8): 2815–2820.

    PubMed  CAS  Google Scholar 

  127. Akatsuka Y, Cerveny C, Hansen JA. T cell receptor clonal diversity following allogeneic marrow grafting. Hum Immunol 1996; 48 (1–2): 125–134.

    Article  PubMed  CAS  Google Scholar 

  128. Claret EJ, Alyea EP, Orsini E, et al. Characterization of T cell repertoire in patients with graft-versus-leukemia after donor lymphocyte infusion. J Clin Invest 1997; 100 (4): 855–866.

    Article  PubMed  CAS  Google Scholar 

  129. Verfuerth S, Peggs K, Vyas P, et al. Longitudinal monitoring of immune reconstitution by CDR3 size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. Blood 2000; 95 (12): 3990–3995.

    PubMed  CAS  Google Scholar 

  130. Miyawaki T, Uehara T, Nibu R, et al. Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 1992; 149 (11): 3753–3758.

    PubMed  CAS  Google Scholar 

  131. Dhein J, Daniel PT, Trauth BC, et al. Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. Jlmmunol 1992; 149 (10): 3166–3173.

    CAS  Google Scholar 

  132. Suda T, Nagata S. Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med 1994; 179 (3): 873–879.

    Article  PubMed  CAS  Google Scholar 

  133. Owen-Schaub LB, Yonehara S, et al. DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol 1992; 140 (1): 197–205.

    Article  PubMed  CAS  Google Scholar 

  134. Wesselborg S, Janssen O, Kabelitz D. Induction of activation-driven death (apoptosis) in activated but not resting peripheral blood T cells. J Immunol 1993; 150 (10): 4338–4345.

    PubMed  CAS  Google Scholar 

  135. Atkinson K. T cell subpopulations defined by monoclonal antibodies after HLA- identical sibling marrow transplantation. II. Activated and functional subsets of helper-inducer and cytotoxic-suppressor subpopulations defined by two-colour fluorescence flow cytometry. Bone Marrow Transplant 1986; 1 (2): 121–132.

    PubMed  CAS  Google Scholar 

  136. Leino L, Lilius EM, Nikoskelainen J, et al. The reappearance of 10 differentiation antigens on peripheral blood lymphocytes after allogeneic bone marrow transplantation. Bone Marrow Transplant 1991; 8 (5): 339–344.

    PubMed  CAS  Google Scholar 

  137. Gorla R, Airo P, Ferremi-Leali P, et al. Predominance of `memory’ phenotype within CD4+ and CD8+ lymphocyte subsets after allogeneic BMT. Bone Marrow Transplant 1993; 11 (4): 346–347.

    PubMed  CAS  Google Scholar 

  138. Heitger A, Neu N, Kern H, et al. Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 1997; 90 (2): 850–857.

    PubMed  CAS  Google Scholar 

  139. Cooley MA, McLachlan K, Atkinson K. Cytokine activity after human bone marrow transplantation. III. Defect in IL2 production by peripheral blood mononuclear cells is not corrected by stimulation with Ca++ ionophore plus phorbol ester. Br J Haematol 1989; 73 (3): 341–347.

    Article  PubMed  CAS  Google Scholar 

  140. Brugnoni D, Airo P, Pennacchio M, et al. Immune reconstitution after bone marrow transplantation for combined immunodeficiencies: down-modulation of Bc1–2 and high expression of CD95/Fas account for increased susceptibility to spontaneous and activation-induced lymphocyte cell death. Bone Marrow Transplant 1999; 23 (5): 451–457.

    Article  PubMed  CAS  Google Scholar 

  141. Hebib NC, Deas O, Rouleau M, et al. Peripheral blood T cells generated after allogeneic bone marrow transplantation: lower levels of bc1–2 protein and enhanced sensitivity to spontaneous and CD95-mediated apoptosis in vitro. Abrogation of the apoptotic phenotype coincides with the recovery of normal naive/primed T-cell profiles. Blood 1999; 94 (5): 1803–1813.

    PubMed  CAS  Google Scholar 

  142. Rocha B, Dautigny N, Pereira P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur J Immunol 1989; 19 (5): 905–911.

    Article  PubMed  CAS  Google Scholar 

  143. Mackall CL, GrangerL, Sheard MA, et al. T-cell regeneration afterbone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 1993; 82 (8): 2585 2594.

    PubMed  CAS  Google Scholar 

  144. Mackall CL, Gress RE. Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol Rev 1997; 157: 61–72.

    Article  PubMed  CAS  Google Scholar 

  145. Gaschet J, Denis C, Milpied N, et al. Alterations of T cell repertoire after bone marrow transplantation: Characterization of over-represented subsets. Bone Marrow Transplant 1995; 19 (3): 427–435.

    Google Scholar 

  146. de Gast GC, Verdonck LF, Middeldorp JM, et al. Recovery of T-cell subsets after autologous BMT is mainly due to porliferation of mature T cells in the graft. Blood 1985; 66 (2): 428.

    PubMed  Google Scholar 

  147. Dolstra H, Van de Wiel-van Kemenade, de Witte T, et al. Clonal predominance of cytomegalovirus-specific CD8+ cytotoxic T lymphocytes in bone marrow recipients. Bone Marrow Transplant 1996; 18 (2): 339–345.

    PubMed  CAS  Google Scholar 

  148. Masuko K, Kato S, Hagihara M, et al. Stable clonal expansion of T cells induced by bone marrow transplantation. Blood 1996; 87 (2): 789–799.

    PubMed  CAS  Google Scholar 

  149. Goldman JM, Apperley JF, Jones L, et al. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 1986;314(4):202207.

    Google Scholar 

  150. Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396 (6712): 690–695.

    Article  PubMed  CAS  Google Scholar 

  151. Goldman JM, Gale RP, Horowitz MM, et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988; 108 (6): 806–814.

    Article  PubMed  CAS  Google Scholar 

  152. Apperley JF, Mauro FR, Goldman JM, et al. Bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: importance of a graft-versus-leukaemia effect. Br J Haematol 1988;69(2):239245.

    Google Scholar 

  153. Urbano-Ispizua A, Rozman C, Pimentel P, et al. The number of donor CD3 (+) cells is the most important factor for graft failure after allogeneic transplantation of CD34(+) selected cells from peripheral blood from HLAidentical siblings. Blood 2001; 97 (2): 383–387.

    Article  PubMed  CAS  Google Scholar 

  154. Laurenti L, Sica S, Sora F, et al. Long-term immune recovery after CD34+ immunoselected and unselected peripheral blood progenitor cell transplantation: a case-control study. Haematologica 1999; 84 (12): 1100–1103.

    PubMed  CAS  Google Scholar 

  155. Martinez C, Urbano IA, Rozman C, et al Immune reconstitution following allogeneic peripheral blood progenitor cell transplantation: comparison of recipients of positive CD34+ selected grafts with recipients of unmanipulated grafts. Exp Hematol 1999; 27 (3): 561–568.

    Article  PubMed  CAS  Google Scholar 

  156. Lowdell MW, Craston R, Ray N, et al. The effect of T cell depletion with Campath-1M on immune reconstitution after chemotherapy and allogeneic bone marrow transplant as treatment for leukaemia. Bone Marrow Transplant 1998; 21 (7): 679–686.

    Article  PubMed  CAS  Google Scholar 

  157. Small TN, Leung L, Stiles J, et al. Disseminated toxoplasmosis following T cell-depleted related and unrelated bone marrow transplantation. Bone Marrow Transplant 2000; 25 (9): 969–973.

    Article  PubMed  CAS  Google Scholar 

  158. Holmberg LA, Boeckh M, Hooper H, et al. Increased incidence of cytomegalovirus disease after autologous CD34- selected peripheral blood stem cell transplantation. Blood 1999; 94 (12): 4029–4035.

    PubMed  CAS  Google Scholar 

  159. Rutella S, Rumi C, Laurenti L, et al. Immune reconstitution after transplantation of autologous peripheral CD34+ cells: analysis of predictive factors and comparison with unselected progenitor transplants. Br J Haematol 2000; 108 (1): 105–115.

    Article  PubMed  CAS  Google Scholar 

  160. Sica S, Salutari P, La Barbera EO, et al. Infectious complications after CD34-selected autologous peripheral blood stem cell transplantation. Br J Haematol 1998; 101 (3): 592–593.

    Article  PubMed  CAS  Google Scholar 

  161. Eckle T, Prix L, Jahn G, et al. Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood 2000; 96 (9): 3286–3289.

    PubMed  CAS  Google Scholar 

  162. Tiacci E, Luppi M, Barozzi P, Get al. Fatal herpesvirus-6 encephalitis in a recipient of a T-cell-depleted peripheral blood stem cell transplant from a 3-loci mismatched related donor. Haematologica 2000; 85 (1): 94–97.

    PubMed  CAS  Google Scholar 

  163. Euler HH, Marmont AM, Bacigalupo A, et al. Early recurrence or persistence of autoimmune diseases after unmanipulated autologous stem cell transplantation. Blood 1996; 88 (9): 3621–3625.

    PubMed  CAS  Google Scholar 

  164. Kernan NA, Collins NH, Juliano L, et al. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 1986; 68 (3): 770–773.

    PubMed  CAS  Google Scholar 

  165. Hughes WT, Armstrong D, Bodey GP, et al. 1997 guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. Infectious Diseases Society of America. Clin Infect Dis 1997; 25 (3): 551–573.

    Article  PubMed  CAS  Google Scholar 

  166. Pizzo PA, Hathorn JW, Hiemenz J, et al. A randomized trial comparing ceftazidime alone with combination antibiotic therapy in cancer patients with fever and neutropenia. N Engl J Med 1986; 315 (9): 552–558.

    Article  PubMed  CAS  Google Scholar 

  167. Amgen I. Filgrastim. In: Physician’s Desk Reference. Medical Economics Company, Montvale, NJ, 2000, pp. 528–533.

    Google Scholar 

  168. Peterson PK, McGlave P, Ramsay NK, et al. A prospective study of infectious diseases following bone marrow transplantation: emergence of Aspergillus and Cytomegalovirus as the major causes of mortality. Infect Control 1983; 4 (2): 81–89.

    PubMed  CAS  Google Scholar 

  169. Meyers JD, Flournoy N, Thomas ED. Nonbacterial pneumonia after allogeneic marrow transplantation: a review of ten years’ experience. Rev Infect Dis 1982; 4 (6): 1119–1132.

    Article  PubMed  CAS  Google Scholar 

  170. Leung TF, Chik KW, Li CK, et al. Incidence, risk factors and outcome of varicella-zoster virus infection in children after haematopoietic stem cell transplantation. Bone Marrow Transplant 2000; 25 (2): 167–172.

    Article  PubMed  CAS  Google Scholar 

  171. Koc Y, Miller KB, Schenkein DP, et al. Varicella zoster virus infections following allogeneic bone marrow transplantation: frequency, risk factors, and clinical outcome. Biol Blood Marrow Transplant 2000; 6 (1): 44–49.

    Article  PubMed  CAS  Google Scholar 

  172. Schuchter LM, Wingard JR, Piantadosi S, et al. Herpes zoster infection after autologous bone marrow transplantation. Blood 1989; 74 (4): 1424–1427.

    PubMed  CAS  Google Scholar 

  173. Han CS, Miller W, Haake R, et al. Varicella zoster infection afterbone marrow transplantation: incidence, risk factors and complications. Bone Marrow Transplant 1994; 13 (3): 277–283.

    PubMed  CAS  Google Scholar 

  174. Ochs L, Shu XO, Miller J, et al. Late infections after allogeneic bone marrow transplantations: comparison of incidence in related and unrelated donor transplant recipients. Blood 1995; 86 (10): 3979–3986.

    PubMed  CAS  Google Scholar 

  175. Ambrosino DM, Molrine DC. Critical appraisal of immunization strategies for prevention of infection in the compromised host. Hematol Oncol Clin N Am 1993; 7 (5): 1027–1050.

    CAS  Google Scholar 

  176. Winston DJ, Ho WG, Champlin RE, et al. Infectious complications of bone marrow transplantation. Exp Hematol 1984; 12 (3): 205–215.

    PubMed  CAS  Google Scholar 

  177. Wingard J. Bacterial infections. In: Thomas ED, Blume K, Forman SJ (eds.) Hematopoietic Cell Transplantation. Blackwell Science, Malden, MA, 1999, pp. 537–554.

    Google Scholar 

  178. Rege K, Mehta J, Treleaven J, et al. Fatal pneumococcal infections following allogeneic bone marrow transplant. Bone Marrow Transplant 1994; 14 (6): 903–906.

    Article  PubMed  CAS  Google Scholar 

  179. Avanzini MA, Carra AM, Maccario R, et al Immunization with Haemophilus influenzae type b conjugate vaccine in children given bone marrow transplantation: comparison with healthy age-matched controls. J Clin Immunol1998;18(3):193 201.

    Google Scholar 

  180. Parkkali T, Kayhty H, Ruutu T, et al. A comparison of early and late vaccination with Haemophilus influenzae type b conjugate and pneumococcal polysaccharide vaccines after allogeneic BMT. Bone Marrow Transplant 1996; 18 (5): 961–967.

    PubMed  CAS  Google Scholar 

  181. Prentice HG, Gluckman E, Powles RL, et al. Impact of long-term acyclovir on cytomegalovirus infection and survival after allogeneic bone marrow transplantation. European Acyclovir for CMV Prophylaxis Study Group. Lancet 1994; 343 (8900): 749–753.

    Article  PubMed  CAS  Google Scholar 

  182. Boeckh M, Gooley TA, Reusser P, et al. Failure of high-dose acyclovir to prevent cytomegalovirus disease after autologous marrow transplantation. J Infect Dis 1995; 172 (4): 939–943.

    Article  PubMed  CAS  Google Scholar 

  183. American Public Health Association. Mononucleosis, infectious. In: Chin J (ed.) Control of Communicable Diseases Manual. American Public Health Association, Washington, D.C., 2001, pp. 350–352.

    Google Scholar 

  184. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994; 330 (17): 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  185. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92 (5): 1549–1555.

    PubMed  CAS  Google Scholar 

  186. Riddell SR, Greenberg PD. T cell therapy of human CMV and EBV infection in immunocompromised hosts. Rev Med Virol 1997; 7 (3): 181–192.

    Article  PubMed  Google Scholar 

  187. Heslop HE, Perez M, Benaim E, et al. Transfer of EBV-specific CTL to prevent EB V lymphoma post bone marrow transplant. J Clin Apheresis 1999; 14 (3): 154–156.

    Article  PubMed  CAS  Google Scholar 

  188. Aguilar LK, Rooney CM, Heslop HE. Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation. Curr Opin Oncol 1999; 11 (2): 96–101.

    Article  PubMed  CAS  Google Scholar 

  189. Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996; 2 (5): 551–555.

    Article  PubMed  CAS  Google Scholar 

  190. Dykewicz CA, Jaffe HW, Kaplan JE. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients: recommendations of CDC, the Infectious Disease Society of America, and the American Society of Blood and Morrow Transplantations. 49(RR10), 1–128. 10–20–2000.

    Google Scholar 

  191. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333 (16): 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  192. Stocchi R, Ward KN, Fanin R, et al. Management of human cytomegalovirus infection and disease after allogeneic bone marrow transplantation. Haematologica 1999; 84 (1): 71–79.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Talmadge, J.E. (2003). Immune Recovery Following Allogeneic Blood Transplantation. In: Laughlin, M.J., Lazarus, H.M. (eds) Allogeneic Stem Cell Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-333-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-333-0_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4481-1

  • Online ISBN: 978-1-59259-333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics