Skip to main content

Umbilical Cord Blood Transplantation

  • Chapter
Book cover Allogeneic Stem Cell Transplantation

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Transplantation of allogeneic hematopoietic stem cells (HSC) derived either from sibling or unrelated donor bone marrow (BM) or mobilized peripheral blood (PB) have been successfully utilized in the treatment of high risk or recurrent hematological malignancies, BM failure syndromes, hemoglobinopathies, selected hereditary immunodeficiency states, and inborn errrors of metabolism (1). However, a number of limitations exist that impede the successful use of such HSC transplant therapy. The first of these is the unavailability of suitable donors. With current trends in family size in the U.S. fewer than 35% of patients will have an human leukocyte antigen (HLA)-matched sibling (2). While there are currently more than 5 million HLA-typed marrow donors registered in BM donor registries worldwide, substantial numbers of patients are still unable to find an available, suitably HLA-matched BM donor. For example, although an initial search may identify at least one potential HLA-matched donor for 85% of Caucasian patients, 40% of African-American or Asian-Pacific-Islanders will not have a matched donor (3–5). Further, because of the heterogeneity of HLA haplotypes seen in some racial groups, such as African-Americans, HLA-matched BM may be unavailable regardless of registry size (6). Also, the unrelated BM donor search process can be lengthy, taking 3.7 mo on average (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas ED, Blume K, Forman S. Hematopoietic Cell Transplantation. Blackwell Science, Cambridge, MA, 1999.

    Google Scholar 

  2. Beatty PG, Boucher KM, Mori M, Milford EL. Probability of finding HLA-mismatched related or unrelated marrow or cord blood donors. Hum Immunol 2000; 61: 834–940.

    Article  PubMed  CAS  Google Scholar 

  3. van Rood JJ, Schipper RF, Bakker JN, van der Zanden HG, Oudshoorn M. Bone marrow donors worldwide and cord blood stem cell transplantation. Bone Marrow Transplant 1998; 22 (Suppl 1): S19–21.

    PubMed  Google Scholar 

  4. Dodson K, Coppo P, Confer D. The National Marrow Donor Program: Improving access to hematopoietic stem cell transplantation. In: Cecka JM, Terasaki PI, eds. Clinical Transplants. UCLA Immunogenetics Center, Los Angeles, CA, 1999.

    Google Scholar 

  5. Anasetti C, Petersdorf EW, Martin PJ, Woolfrey A, Hansen JA. Improving availability and safety of unrelated donor transplants. Curr Opin Oncol 2000; 12: 121–126.

    Article  PubMed  CAS  Google Scholar 

  6. Beatty PG, Mori M, Milford E. Impact of racial genetic polymorphism on the probability of finding an HLAmatched donor. Transplantation 1995; 60: 778–783.

    PubMed  CAS  Google Scholar 

  7. Madrigal JA, Scott I, Arguello R, Szydlo R, Little AM, Goldman JM. Factors influencing the outcome of bone marrow transplants using unrelated donors. Immunol Rev 1997; 157: 153–166.

    Article  PubMed  CAS  Google Scholar 

  8. Champlin RE, Passweg JR, Zhang MJ, et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood 2000; 95: 3996–4003.

    PubMed  CAS  Google Scholar 

  9. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997; 337: 373–381.

    Article  PubMed  CAS  Google Scholar 

  10. Wagner JE, DeFor T, Rubinstein P, Kurtzberg J. Transplantation of unrelated donor umbilical cord blood (UCB): Outcomes and Analysis of Risk Factors. Blood 1997; 90: 398a.

    Google Scholar 

  11. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998; 339: 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  12. Laughlin MS, Barker J, Bambach B, et al. Hematologic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001; 24: 1815–1822

    Article  Google Scholar 

  13. Barker JN, Davies SM, Defor T, Ramsay NKC, Weisdorf DJ, Wagner JE. Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of HLA-matched unrelated donor bone marrow: results of a matched pair analysis. Blood 2001; 97 (10): 2957–2961.

    Article  PubMed  CAS  Google Scholar 

  14. Broxmeyer HE, Kurtzberg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 1991; 17: 313–329.

    PubMed  CAS  Google Scholar 

  15. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl . Acad Sci USA 1989; 86: 3828–3832.

    Article  PubMed  CAS  Google Scholar 

  16. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’ s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl JMed 1989; 321: 1174–1178.

    Article  CAS  Google Scholar 

  17. Roy V, Verfaillie CM. Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: implications for anatomical localization and developmental stage specific regulation of hematopoiesis. Exp Hematol 1999; 27: 302–312.

    Article  PubMed  CAS  Google Scholar 

  18. Mayani H, Lansdorp PM. B iology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998; 16: 153–165.

    Article  PubMed  CAS  Google Scholar 

  19. Wynter EA, Emmerson AJB, Testa NG. Properties of peripheral blood and cord blood stem cells. Bailliere’s Clin Haematol 1999; 1 /2: 1–17.

    Google Scholar 

  20. Leung W, Ramirez M, Novelli EM, Civin CI. In vivo engraftment potential of clinical hematopoietic grafts. J Invest Med 1998; 46: 303–311.

    CAS  Google Scholar 

  21. Holyoake TL, Nicolini FE, Eaves CJ. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 1999; 27: 1418–1427.

    Article  PubMed  CAS  Google Scholar 

  22. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc NatlAcad Sci USA 1994; 91: 9857–9860.

    Article  CAS  Google Scholar 

  23. Lewis I, Verfaillie CM. Multi-lineage expansion potential of primitive hematopoietic progenitors. Superiority of umbilical cord blood compared to mobilized peripheral blood. Exp Hematol 2000; 28: 1087–1095.

    Article  PubMed  CAS  Google Scholar 

  24. Punzel M, Gupta P, Roodell M, Mortari F, Verfaillie CM. Factor(s) secreted by AFT024 fetal liver cells following stimulation with human cytokines are important for human LTC-IC growth. Leukemia 1999; 13: 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  25. Gupta P, Oegema TR, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM. Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with 0-sulfated heparan sulfates: requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins. Blood 2000; 95: 147–155.

    PubMed  CAS  Google Scholar 

  26. Theunissen K, Lewis I, Scheller C, Verfaillie C. Ex-vivo expansion of cord blood CD34+ cells in a clinically suitable artificial media that maintains transplantable cells after 14 days in culture. Blood 2000; 96: 775a.

    Google Scholar 

  27. Glimm H, Oh IH, Eaves CJ. Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 2000; 96: 4185–4193.

    PubMed  CAS  Google Scholar 

  28. Shpall E, Quinones R, Giller R, et al. Transplantation of adult and pediatric cancer patients with cord blood progenitors expanded ex vivo. Blood 2000; 96: 207a.

    Google Scholar 

  29. Carow CE, Hangoc G, Broxmeyer HE. Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood 1993; 81: 942–949.

    PubMed  CAS  Google Scholar 

  30. Kogler G, Nurnberger W, Fischer J, et al. Simultaneous cord blood transplantation of ex vivo expanded together with non-expanded cells for high risk leukemia. Bone Marrow Transplant 1999; 24: 397–403.

    Article  PubMed  CAS  Google Scholar 

  31. Almeida-Porada G, Porada CD, Tran N, Zanjani ED. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000; 95: 3620–3627.

    PubMed  CAS  Google Scholar 

  32. Lu L, Xiao M, Clapp DW, Li ZH, Broxmeyer HE. High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood. J Exp Med 1993; 178: 2089 2096.

    Google Scholar 

  33. Kohn DB, Weinberg KI, Nolta JA, et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1995; 1: 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  34. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  PubMed  CAS  Google Scholar 

  35. Theunissen K, Verfaillie CM. Translation of an optimized AFT024 non-contact transduction system into clinically siutable protocols. Blood 2000; 96: 219a.

    Google Scholar 

  36. Woods NB, Fahlman C, Mikkola H, et al. Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood 2000; 96: 3725–3733.

    PubMed  CAS  Google Scholar 

  37. Risdon G, Gaddy J, Stehman FB, Broxmeyer HE. Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol 1994; 154: 14–24.

    Article  PubMed  CAS  Google Scholar 

  38. Risdon G, Gaddy J, Horie M, Broxmeyer HE. Alloantigen priming induces a state of unresponsiveness in human umbilical cord blood T cells. Proc Natl Acad Sci USA 1995; 92: 2413–2417.

    Article  PubMed  CAS  Google Scholar 

  39. Roncarolo MG, Bigler M, Martino S, Ciuti E, Tovo PA, WagnerJ Immune functions of cord blood cells before and after transplantation. J Hematother 1996; 5: 157–160.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen SB, Madrigal JA. Immunological and functional differences between cord and peripheral blood. Bone Marrow Transplant 1998; 21 (Suppl 3): S9–12.

    PubMed  Google Scholar 

  41. Garderet L, Dulphy N, Douay C, et al. The umbilical cord blood alphabeta T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood 1998; 91: 340–346.

    PubMed  CAS  Google Scholar 

  42. Leung W, Ramirez M, Mukherjee G, Perlman EJ, Civin CI. Comparisons of alloreactive potential of clinical hematopoietic grafts. Transplantation 1999; 68: 628–635.

    Article  PubMed  CAS  Google Scholar 

  43. Kadereit S, Mohammad SF, Miller RE, et al. Reduced NFAT1 protein expression in human umbilical cord blood T lymphocytes. Blood 1999; 94: 3101–3107.

    PubMed  CAS  Google Scholar 

  44. Sorg RV, Kogler G, Wernet P. Functional competence of dendritic cells in human umbilical cord blood. Bone Marrow Transplant 1998; 22 (Suppl 1): 552–54.

    Google Scholar 

  45. Canque B, Camus S, Dalloul A, et al. Characterization of dendritic cell differentiation pathways from cord blood CD34(+)CD7(+)CD45RA(+) hematopoietic progenitor cells. Blood 2000; 96: 3748–3756.

    PubMed  CAS  Google Scholar 

  46. Wagner JE, J. K. Allogeneic Umbilical Cord Blood Transplantation. In: Broxmeyer HE, ed. Cellular Characteristics of Cord Blood and Cord Blood Transplantation. AABB Press, Bethesda, MA, 1998, pp. 113–146.

    Google Scholar 

  47. van Rood JJ, Loberiza FR, Zhang MJ, et al. Effect of early exposure to non-inherited maternal antigens on outcome of haplo-identical bone marrow transplants. Blood 2000; 96: 840a.

    Google Scholar 

  48. Rocha V, Wagner JE, Jr., Sobocinski KA, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. N Engl J Med 2000; 342: 1846–1854.

    Article  PubMed  CAS  Google Scholar 

  49. Giraud P, Thuret I, Reviron D, et al. Immune reconstitution and outcome after unrelated cord blood transplantation: a single paediatric institution experience. Bone Marrow Transplant 2000; 25: 53–57.

    Article  PubMed  CAS  Google Scholar 

  50. Abu-Ghosh A, Goldman S, Slone V, et al. Immunological reconstitution and correlation of circulating serum inflammatory mediators/cytokines with the incidence of acute graft-versus-host disease during the first 100 days following unrelated umbilical cord blood transplantation. Bone Marrow Transplant 1999; 24: 535–544.

    Article  PubMed  CAS  Google Scholar 

  51. Thomson BG, Robertson KA, Gowan D, et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000; 96: 2703–2711.

    PubMed  CAS  Google Scholar 

  52. Talvensaari K, Clave E, Douay C, et al. Immune Reconstitution is improved is improved after 1 year in cord blood compared to HLA-identical sibling bone marrow transplanted patients. Blood 2000; 96: 555a.

    Google Scholar 

  53. Demarest JF, Kadereit S, Brenner-Jones S. V Beta Repertoire of t lymphocytes emerging in adults after unrelated umbilical cord blood (UCB) allogeneic transplantation. Blood 2000; 96: 788a.

    Google Scholar 

  54. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 2001; 97: 1491–1497.

    Article  PubMed  CAS  Google Scholar 

  55. Min D, Taylor P, Chung B, et al. Protection from thymic epithelial cell (TEC) injury by pre-BMT keratinocyte growth factor (KGF): a new approach to speed thymic reconstitution after lethal irradiation. Blood 2000; 96: 474a.

    Google Scholar 

  56. Locatelli F, Comoli P, Giorgiani G, et al. Infusion of donor-derived peripheral blood leukocytes after transplantation of cord blood progenitor cells can increase the graft-versus-leukaemia effect. Leukemia 1997; 11: 729–731.

    Article  PubMed  CAS  Google Scholar 

  57. Howrey RP, Martin PL, Driscoll T, et al. Graft-versus-leukemia-induced complete remission following unrelated umbilical cord blood transplantation for acute leukemia. Bone Marrow Transplant 2000; 26: 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  58. Goldberg SL, Pecora AL, Rosenbluth RJ, Jennis AA, Preti RA. Treatment of leukemic relapse following unrelated umbilical cord blood transplantation with interleukin-2: potential for augmenting graft-versus-leukemia and graft-versus-host effects with cytokines. Bone Marrow Transplant 2000; 26: 353–355.

    Article  PubMed  CAS  Google Scholar 

  59. Laws HJ, Nurnberger W, Korholz D, et al. Successful treatment of relapsed CML after cord blood transplantation with donor leukocyte infusion IL-2 and IFNalpha. Bone Marrow Transplant 2000; 25: 219–222.

    Article  PubMed  CAS  Google Scholar 

  60. Marshall NA, Howe JG, Formica R, et al. Rapid reconstitution of Epstein-Barr virus-specific T lymphocytes following allogeneic stem cell transplantation. Blood 2000; 96: 2814–2821.

    PubMed  CAS  Google Scholar 

  61. Barker JN, Martin PL, Coad J, et al. Low Incidence of Epstein-Barr virus-associated post-transplant lymphoproliferative disorders (EBV-PTLD) in 272 unrelated donor umbilical cord blood transplant recipients. Biol Blood Marrow Transplant 2001; 7: 395–399.

    Article  PubMed  CAS  Google Scholar 

  62. Issaragrisil S, Visuthisakchai S, Suvatte V, et al. Brief report: transplantation of cord-blood stem cells into a patient with severe thalassemia [see comments]. N Engl J Med 1995; 332: 367–369.

    Article  PubMed  CAS  Google Scholar 

  63. Issaragrisil S, Suvatte V, Visuthisakchai S, et al. Bone marrow and cord blood stem cell transplantation for thalassemia in Thailand. Bone Marrow Transplant 1997; 19: 54, 55.

    Google Scholar 

  64. Graphacos S, Kitra V, Peristeri J, et al. Haematopoietic transplantation for thalassemic children: the Greek children. Bone Marrow Transplant 1997; 19: 68, 69.

    Google Scholar 

  65. Li CK, Yen PMP, Shing MK, et al. Stem cell transplant for Thalessemia patients in Hong Kong. Bone Marrow Transplant 1997; 19: 6, 69.

    CAS  Google Scholar 

  66. Miniero R, Rocha V, Saracco P, et al. Cord blood transplantation (CB T) in hemoglobinopathies. Eurocord. Bone Marrow Transplant 1998;22(Suppl 1): 578, 79.

    Google Scholar 

  67. Kurtzberg J, Laughlin M, Graham ML, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 1996; 335: 157–166.

    Article  PubMed  CAS  Google Scholar 

  68. WagnerJE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood 1996; 88: 795–802.

    Google Scholar 

  69. Wagner JE, DeFor T, Barker J, et al. Superior survival in recipients of umbilical cord blood (UCB): results of a case controlled analysis comparing UCB and bone marrow (BM) from unrelated donors. Blood 1999; 94: 711a.

    Google Scholar 

  70. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp Hematol 2000; 28: 1197–1205.

    Article  PubMed  CAS  Google Scholar 

  71. Jefferies LC, Albertus M, Morgan MA, Moolten D. High deferral rate for maternal-neonatal donor pairs for an allogeneic umbilical cord blood bank. Transfusion 1999; 39: 415–419.

    Article  PubMed  CAS  Google Scholar 

  72. Brown J, Poles A, Brown CJ, Contreras M, Navarrete CV. HLA-A, -B and -DR antigen frequencies of the London Cord Blood Bank units differ from those found in established bone marrow donor registries. Bone Marrow Transplant 2000; 25: 475–481.

    Article  PubMed  CAS  Google Scholar 

  73. Fraser JK, Cairo MS, Wagner EL, et al. Cord Blood Transplantation Study (COBLT): cord blood bank standard operating procedures. J Hematother 1998; 7: 521–561.

    Article  PubMed  CAS  Google Scholar 

  74. Surbek DV, Schonfeld B, Tichelli A, Gratwohl A, Holzgreve W. Optimizing cord blood mononuclear cell yield: a randomized comparison of collection before vs after placenta delivery. Bone Marrow Transplant 1998; 22: 311, 312.

    Google Scholar 

  75. Shlebak AA, Roberts IA, Stevens TA, Syzdlo RM, Goldman JM, Gordon MY. The impact of antenatal and perinatal variables on cord blood haemopoietic stem/progenitor cell yield available for transplantation. Br J Haematol 1998; 103: 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  76. Rubinstein P, Dobrila L, Rosenfield RE, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA 1995;92:10, 119–10, 122.

    Google Scholar 

  77. Broxmeyer HE, Cooper S. High-efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years. Clin Exp Immunol 1997; 107 (Suppl 1): 45–53.

    PubMed  Google Scholar 

  78. Annas GJ. Waste and longing-the legal status of placental-blood banking. NEngl JMed 1999; 340: 1521–1524.

    Article  CAS  Google Scholar 

  79. Barker JN, Verfaillie CM, McGlave P, et al. Creation of a double chimera by transplantation of two unrelated donor umbilical cord blood units. Blood 2000; 96: 207a.

    Google Scholar 

  80. Wagner JE. Designer babies-are they a reality yet? RBM Online 2000; 1: 77.

    PubMed  CAS  Google Scholar 

  81. Locatelli F, Maccario R, Comoli P, et al. Hematopoietic and immune recovery after transplantation of cord blood progenitor cells in children. Bone Marrow Transplant. 1996; 6: 1095–1101.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barker, J., Wagner, J.E. (2003). Umbilical Cord Blood Transplantation. In: Laughlin, M.J., Lazarus, H.M. (eds) Allogeneic Stem Cell Transplantation. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-333-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-333-0_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4481-1

  • Online ISBN: 978-1-59259-333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics