Skip to main content

Etiology and Pathogenesis of Atherosclerosis

  • Chapter
Peripheral Arterial Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 204 Accesses

Abstract

The World Health Organization defines atherosclerosis as a chronic vascular disease of medium and large arteries that includes thickening and remodeling of the vessel wall leading to reduction or obstruction of blood flow through plaque formation and thrombosis (1). It is characterized by a variable combination of intimal changes—patchy subintimal deposition of lipid substances, complex carbohydrates, blood components, connective tissue, and calcium—and changes in the media. Atherosclerosis is the most common and serious vascular disease, which can affect the heart, brain, kidneys, and other vital organs as well as the extremities. It is the leading cause of morbidity and mortality in the United States and in the Western hemisphere (2). In 1994, for example, approximately 1 million deaths in the United States were attributable to vascular, twice as many as from cancer and 10 times as many as from accidental causes (3). Atherosclerosis is a progressive disease process that generally begins in childhood and has clinical manifestations in middle to late adulthood (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WHO. Classification of atherosclerotic lesions: report of a study group. WHO Techn Rep Ser 1958: 1–20.

    Google Scholar 

  2. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 1994; 90: 583–612.

    Article  PubMed  CAS  Google Scholar 

  3. Lam JYT. Cardiovascular Disorders. In: Beers MH, Berkow R, eds. The Merck Manual, 17th ed. Whitehouse Station, NJ: Merck, 1999, pp. 1654–1656.

    Google Scholar 

  4. Zipes DB, Libby P. Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia: WB Saunders, 2001.

    Google Scholar 

  5. Keaney JFJ. Atherosclerosis: from lesion formation to plaque activation and endothelial dysfunction. Mol Aspects Med 2000; 21: 99–166.

    Article  PubMed  CAS  Google Scholar 

  6. Stary HC. The Evolution of Human Atherosclerotic Lesions. Philadelphia: Merck&Co, 1993.

    Google Scholar 

  7. Kannel WB, McGee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J Am Geriatr Soc 1985; 33: 13–18.

    PubMed  CAS  Google Scholar 

  8. Fowkes FG. Epidemiology of atherosclerotic arterial disease in the lower limbs. Eur J Vasc Surg 1988; 2: 283–291.

    Article  PubMed  CAS  Google Scholar 

  9. Newman AB, Siscovick DS, Manolio TA, et al. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study: Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993; 88: 837–845.

    Article  PubMed  CAS  Google Scholar 

  10. Murabito JM, D’Agostino RB, Silbershatz H, Wilson WE Intermittent claudication: a risk profile from the Framingham Heart Study. Circulation 1997; 96: 44–49.

    Article  PubMed  CAS  Google Scholar 

  11. Brand FN, Abbott RD, Kannel WB. Diabetes, intermittent claudication, and risk of cardiovascular events: the Framingham Study. Diabetes 1989; 38: 504–509.

    Article  PubMed  CAS  Google Scholar 

  12. Strandness DE, Jr, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. Diabetes 1964; 13: 366.

    PubMed  Google Scholar 

  13. Jonason T, Ringqvist I. Diabetes mellitus and intermittent claudication: relation between peripheral vascular complications and location of the occlusive atherosclerosis in the legs. Acta Med Scand 1985; 218: 217–221.

    Article  PubMed  CAS  Google Scholar 

  14. McDaniel MD, Cronenwett JL. Basic data related to the natural history of intermittent claudication. Ann Vasc Surg 1989; 3: 273–277.

    Article  PubMed  CAS  Google Scholar 

  15. Perloff D, Sokolow M, Cowan R. The prognostic value of ambulatory blood pressures. JAMA 1983; 249: 2792–2798.

    Article  PubMed  CAS  Google Scholar 

  16. Levy D, Wilson PW, Anderson KM, Castelli WP. Stratifying the patient at risk from coronary disease: new insights from the Framingham Heart Study. Am Heart J 1990; 119: 712–717.

    Article  PubMed  CAS  Google Scholar 

  17. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease: part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 1990; 335: 765–774.

    Article  PubMed  CAS  Google Scholar 

  18. Gurlek A, Dagalp Z, Oral D, et al. Restenosis after transluminal coronary angioplasty: a risk factor analysis. J Cardiovasc Risk 1995; 2: 51–55.

    Article  PubMed  CAS  Google Scholar 

  19. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 1967; 202: 1028–1034.

    Article  Google Scholar 

  20. Reaven GM. Insulin resistance and its consequences: type 2 diabetes mellitus and coronary heart disease. In: LeRoith D, Taylor SI, Olefsky JM, eds. Diabetes Mellitus, 2nd edit. Philadelphia: Lippincott-Raven, 2000, pp. 604–615.

    Google Scholar 

  21. Chen YD, Swami S, Skowronski R, Coulston A, Reaven GM. Differences in postprandial lipemia between patients with normal glucose tolerance and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1993; 76: 172–177.

    Article  PubMed  CAS  Google Scholar 

  22. Haffner SM, Stern MP, Mitchell BD, Hazuda HP, Patterson JK. Incidence of type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity, and body-fat distribution. Diabetes 1990; 39: 283–288.

    Article  PubMed  CAS  Google Scholar 

  23. Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus: prospective studies of Pima Indians. N Engl J Med 1993; 329: 1988–1992.

    Article  PubMed  CAS  Google Scholar 

  24. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 1990; 113: 909–915.

    PubMed  CAS  Google Scholar 

  25. Welborn TA, Wearne K. Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations. Diabetes Care 1979; 2: 154–160.

    Article  PubMed  CAS  Google Scholar 

  26. Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 1979; 2: 131–141.

    Article  PubMed  CAS  Google Scholar 

  27. Ducimetiere P, Eschwege E, Papoz L, Richard JL, Claude JR, Rosselin G. Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population. Diabetologia 1980; 19: 205–210.

    Article  PubMed  CAS  Google Scholar 

  28. Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–957.

    Article  PubMed  CAS  Google Scholar 

  29. Burchfiel CM, Sharp DS, Curb JD, et al. Hyperinsulinemia and cardiovascular disease in elderly men: the Honolulu Heart Program. Arterioscler Thromb Vasc Biol 1998; 18: 450–457.

    Article  PubMed  CAS  Google Scholar 

  30. Yip J, Facchini FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J Clin Endocrinol Metab 1998; 83: 2773–2776.

    Article  PubMed  CAS  Google Scholar 

  31. Lissner L, Bengtsson C, Lapidus L, Kristjansson K, Wedel H. Fasting insulin in relation to subsequent blood pressure changes and hypertension in women. Hypertension 1992; 20: 797–801.

    Article  PubMed  CAS  Google Scholar 

  32. Raitakari OT, Porkka KV, Ronnemaa T, et al. The role of insulin in clustering of serum lipids and blood pressure in children and adolescents: the Cardiovascular Risk in Young Finns Study. Diabetologia 1995; 38: 1042–1050.

    Article  PubMed  CAS  Google Scholar 

  33. Jeppesen J, Hein HO, Suadicani P, Gyntelberg E. High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease. Hypertension 2000; 36: 226–232.

    Article  PubMed  CAS  Google Scholar 

  34. Reaven GM, Chen YD. Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev 1988; 4: 639–652.

    Article  PubMed  CAS  Google Scholar 

  35. Laws A, Reaven GM. Evidence for an independent relationship between insulin resistance and fasting plasma HDL-cholesterol, triglyceride and insulin concentrations. J Intern Med 1992; 231: 25–30.

    Article  PubMed  CAS  Google Scholar 

  36. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 1993; 92: 141–146.

    Article  PubMed  CAS  Google Scholar 

  37. Abbasi F, McLaughlin T, Lamendola C, et al. Fasting remnant lipoprotein cholesterol and triglyceride concentrations are elevated in nondiabetic, insulin-resistant, female volunteers. J Clin Endocrinol Metab 1999; 84: 3903–3906.

    Article  PubMed  CAS  Google Scholar 

  38. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56: 111–128.

    PubMed  CAS  Google Scholar 

  39. Malinow MR. Hyperhomocyst(e)inemia: a common and easily reversible risk factor for occlusive atherosclerosis. Circulation 1990; 81: 2004–2006.

    Article  PubMed  CAS  Google Scholar 

  40. Stubbs PJ, Al-Obaidi MK, Conroy RM, et al. Effect of plasma homocysteine concentration on early and late events in patients with acute coronary syndromes. Circulation 2000; 102: 605–610.

    Article  PubMed  CAS  Google Scholar 

  41. Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991; 324: 1149–1155.

    Article  PubMed  CAS  Google Scholar 

  42. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337: 230–236.

    Article  PubMed  CAS  Google Scholar 

  43. Selhub J, Jacques PF, Bostom AG, et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995; 332: 286–291.

    Article  PubMed  CAS  Google Scholar 

  44. Virchow R. Gesammelte Abhandlungen zur Wissenschaftlichen Medizin. Frankfurt: Meidinger Sohn&Co., 1856, pp. 219–732.

    Google Scholar 

  45. Ross R, Glomset J, Harker L. Response to injury and atherogenesis. Am J Pathol 1977; 86: 675–684.

    PubMed  CAS  Google Scholar 

  46. Jaffe EA. Biology of the Endothelial Cell. New York: Martinus Nijhoff, 1984.

    Google Scholar 

  47. Cooke JR The endothelium: a new target for therapy. Vasc Med 2000;5:49–53.

    Google Scholar 

  48. Cooke JP, Tsao P. Endothelium-derived relaxing factor: an overview. In: Sowers JR, ed. Contemporary Endocrinology: Endocrinology of the Vasculature. Totowa, NJ: Humana Press, 1996, 3–19.

    Chapter  Google Scholar 

  49. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.

    Article  PubMed  CAS  Google Scholar 

  50. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.

    Article  PubMed  CAS  Google Scholar 

  51. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987; 61: 866–879.

    Article  PubMed  CAS  Google Scholar 

  52. Myers PR, Minor RL, Jr, Guerra R, Jr, Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990; 345: 161–163.

    Article  PubMed  CAS  Google Scholar 

  53. Ignarro LJ. Introduction and overview. In: Ignarro LJ, ed. Nitric Oxide-Biology and Pathobiology. San Diego: Academic Press, New York, 2000, pp. 3–19.

    Google Scholar 

  54. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

    Article  PubMed  CAS  Google Scholar 

  55. Cooke JP, Rossitch E, Jr, Andon NA, Loscalzo J, Dzau VJ. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 1991; 88: 1663–1671.

    Article  PubMed  CAS  Google Scholar 

  56. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315: 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  57. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987; 92: 181–187.

    Article  PubMed  CAS  Google Scholar 

  58. Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JE Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991; 11: 254–260.

    Article  PubMed  CAS  Google Scholar 

  59. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  60. Tsao PS, Lewis NP, Alpert S, Cooke JP. Exposure to shear stress alters endothelial adhesiveness: role of nitric oxide. Circulation 1995; 92: 3513–3519.

    Article  PubMed  CAS  Google Scholar 

  61. Tsao PS, Buitrago R, Chan JR, Cooke JR Fluid flow inhibits endothelial adhesiveness: nitric oxide and transcriptional regulation of VCAM-1. Circulation 1996; 94: 1682–1689.

    Article  PubMed  CAS  Google Scholar 

  62. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JR Nitric oxide regulates monocyte chemotactic protein-1. Circulation 1997; 96: 934–940.

    Article  PubMed  CAS  Google Scholar 

  63. De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation: nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–68.

    Article  PubMed  Google Scholar 

  64. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992; 90: 1168–1172.

    Article  PubMed  CAS  Google Scholar 

  65. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb 1994; 14: 753–759.

    Article  PubMed  CAS  Google Scholar 

  66. Naruse K, Shimizu K, Muramatsu M, et al. Long-term inhibition of NO synthesis promotes atherosclerosis in the hypercholesterolemic rabbit thoracic aorta. PGH2 does not contribute to impaired endothelium-dependent relaxation. Arterioscler Thromb 1994; 14: 746–752.

    Article  PubMed  CAS  Google Scholar 

  67. Cohen RA. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis 1995; 38: 105–128.

    Article  PubMed  CAS  Google Scholar 

  68. Diehm C, Balzer K, Bisler H, et al. Efficacy of a new prostaglandin El regimen in outpatients with severe intermittent claudication: results of a multicenter placebo-controlled double-blind trial. J Vasc Surg 1997; 25: 537–544.

    Article  PubMed  CAS  Google Scholar 

  69. Scheffer P, de la Hamette D, Leipnitz G. Therapeutic efficacy of intravenously applied prostaglandin El. Vasa 1989; 28S: 19–25.

    Google Scholar 

  70. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfunction in coronary micro-circulation of hypercholesterolaemic patients by L-arginine. Lancet 1991; 338: 1546–1550.

    Article  PubMed  CAS  Google Scholar 

  71. Boger RH, Bode-Boger SM, Thiele W, Junker W, Alexander K, Frolich JC. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 1997; 95: 2068–2074.

    Article  PubMed  CAS  Google Scholar 

  72. Creager MA, Cooke JP, Mendelsohn ME, et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 1990; 86: 228–234.

    Article  PubMed  CAS  Google Scholar 

  73. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation 1993; 88: 2541–2547.

    Article  PubMed  CAS  Google Scholar 

  74. Egashira K, Hirooka Y, Kuga T, Mohri M, Takeshita A. Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary arteriograms. Circulation 1996; 94: 130–134.

    Article  PubMed  CAS  Google Scholar 

  75. Tousoulis D, Davies GJ, Tentolouris C, et al. Effects of changing the availability of the substrate for nitric oxide synthase by L-arginine administration on coronary vasomotor tone in angina patients with angiographically narrowed and in patients with normal coronary arteries. Am J Cardiol 1998; 82: 1110–1113.

    Article  PubMed  CAS  Google Scholar 

  76. Bode-Boger SM, Boger RH, Alfke H, et al. L-Arginine induces nitric oxide-dependent vasodilation in patients with critical limb ischemia: a randomized, controlled study. Circulation 1996; 93: 85–90.

    Article  PubMed  CAS  Google Scholar 

  77. Boger RH, Bode-Boger SM, Thiele W, Creutzig A, Alexander K, Frolich JC. Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol 1998; 32: 1336–1344.

    Article  PubMed  CAS  Google Scholar 

  78. Anderson TJ. Oxidative stress, endothelial function and coronary atherosclerosis. Cardiologia 1997; 42: 701–714.

    PubMed  CAS  Google Scholar 

  79. Drexler H. Nitric oxide and coronary endothelial dysfunction in humans. Cardiovasc Res 1999; 43: 572–579.

    Article  PubMed  CAS  Google Scholar 

  80. Verbeuren TJ, Coene MC, Jordaens FH, Van Hove CE, Zonnekeyn LL, Herman AG. Effect of hypercholesterolemia on vascular reactivity in the rabbit. II: Influence of treatment with dipyridamole on endothelium-dependent and endothelium-independent responses in isolated aortas of control and hypercholesterolemic rabbits. Circ Res 1986; 59: 496–504.

    Article  PubMed  CAS  Google Scholar 

  81. Harrison DG, Freiman PC, Armstrong ML, Marcus ML, Heistad DD. Alterations of vascular reactivity in atherosclerosis. Circ Res 1987; 61 (Suppl II): 74–80.

    Google Scholar 

  82. McLenachan JM, Williams JK, Fish RD, Ganz P, Selwyn AP. Loss of flow-mediated endothelium-dependent dilation occurs early in the development of atherosclerosis. Circulation 1991; 84: 1273–1278.

    Article  PubMed  CAS  Google Scholar 

  83. Merkel LA, Rivera LM, Bilder GE, Perrone MH. Differential alteration of vascular reactivity in rabbit aorta with modest elevation of serum cholesterol. Circ Res 1990; 67: 550–555.

    Article  PubMed  CAS  Google Scholar 

  84. Preik M, Kelm M, Schoebel F, Schottenfeld Y, Leschke M, Strauer BE. Selective impairment of nitric oxide dependent vasodilation in young adults with hypercholesterolaemia. J Cardiovasc Risk 1996; 3: 465–471.

    Article  PubMed  CAS  Google Scholar 

  85. Zeiher AM, Schachlinger V, Hohnloser SH, Saurbier B, Just H. Coronary atherosclerotic wall thickening and vascular reactivity in humans: elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis. Circulation 1994; 89: 2525–2532.

    Article  PubMed  CAS  Google Scholar 

  86. Evans M, Anderson RA, Graham J, et al. Ciprofibrate therapy improves endothelial function and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus. Circulation 2000; 101: 1773–1779.

    Article  PubMed  CAS  Google Scholar 

  87. Dupuis J, Tardif JC, Cernacek P, Theroux P. Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes: the RECIFE (reduction of cholesterol in ischemia and function of the endothelium) trial. Circulation 1999; 99: 3227–3233.

    Article  PubMed  CAS  Google Scholar 

  88. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998; 279: 1643–1650.

    Article  PubMed  CAS  Google Scholar 

  89. Vita JA, Yeung AC, Winniford M, et al. Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation 2000; 102: 846–851.

    Article  PubMed  CAS  Google Scholar 

  90. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998; 97: 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  91. Di-Poi N, Faure J, Grizot S, Molnar G, Pick E, Dagher MC. Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex. Biochemistry 2001; 40: 10014–10022.

    Article  PubMed  CAS  Google Scholar 

  92. Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-lbeta. Circulation 2000; 101: 1319–1323.

    Article  PubMed  CAS  Google Scholar 

  93. Hernandez-Perera O, Perez-Sala D, Soria E, Lamas S. Involvement of Rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells. Circ Res 2000; 87: 616–622.

    Article  PubMed  CAS  Google Scholar 

  94. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993; 88: 2510–2516.

    Article  PubMed  CAS  Google Scholar 

  95. McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992; 35: 771–776.

    PubMed  CAS  Google Scholar 

  96. Calver A, Collier J, Valiance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992; 90: 2548–2554.

    Article  PubMed  CAS  Google Scholar 

  97. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996; 27: 567–574.

    Article  PubMed  CAS  Google Scholar 

  98. Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 1990; 85: 929–932.

    Article  PubMed  CAS  Google Scholar 

  99. Tesfamariam B, Cohen RA. Role of superoxide anion and endothelium in vasoconstrictor action of prostaglandin endoperoxide. Am J Physiol 1992; 262: H1915–1919.

    PubMed  CAS  Google Scholar 

  100. Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 1998; 97: 1695–1701.

    Article  PubMed  CAS  Google Scholar 

  101. Miller AW, Katakam PV, Ujhelyi MR. Impaired endothelium-mediated relaxation in coronary arteries from insulin-resistant rats. J Vasc Res 1999; 36: 385–392.

    Article  PubMed  CAS  Google Scholar 

  102. Katakam PV, Ujhelyi MR, Hoenig ME, Miller AW. Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol 1998; 275: R788–792.

    PubMed  CAS  Google Scholar 

  103. Kashiwagi A, Shinozaki K, Nishio Y, Okamura T, Toda N, Kikkawa R. Free radical production in endothelial cells as a pathogenetic factor for vascular dysfunction in the insulin resistance state. Diabetes Res Clin Pract 1999; 45: 199–203.

    Article  PubMed  CAS  Google Scholar 

  104. Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996; 97: 2601–2610.

    Article  PubMed  CAS  Google Scholar 

  105. Tomiyama H, Kimura Y, Okazaki R, et al. Close relationship of abnormal glucose tolerance with endothelial dysfunction in hypertension. Hypertension 2000; 36: 245–249.

    Article  PubMed  CAS  Google Scholar 

  106. Balletshofer BM, Rittig K, Enderle MD, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation 2000; 101: 1780–1784.

    Article  PubMed  CAS  Google Scholar 

  107. Stülhlinger MC, Abbasi F, Chu JW, Lamendola C, McLaughlin TL, Cooke JP, Reaven GM, Tsao PS. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 2002; 287: 1420–1426.

    Article  Google Scholar 

  108. Luscher TF, Vanhoutte PM, Raij L. Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension 1987; 9 (Suppl III): 193–197.

    Article  Google Scholar 

  109. Shultz PJ, Raij L. Effects of antihypertensive agents on endothelium-dependent and endothelium-independent relaxations. Br J Clin Pharmacol 1989; 28: 1515–1575.

    Article  Google Scholar 

  110. Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, Zatz R. Chronic inhibition of nitric oxide synthesis: a new model of arterial hypertension. Hypertension 1992; 20: 298–303.

    Article  PubMed  CAS  Google Scholar 

  111. Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 239–242.

    Article  PubMed  CAS  Google Scholar 

  112. Linder L, Kiowski W, Buhler FR, Luscher TE Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo: blunted response in essential hypertension. Circulation 1990; 81: 1762–1767.

    Article  PubMed  CAS  Google Scholar 

  113. Panza JA, Quyyumi AA, Brush JE, Jr., Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–27.

    Article  PubMed  CAS  Google Scholar 

  114. Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997; 95: 1119–1121.

    Article  PubMed  CAS  Google Scholar 

  115. Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 1999; 99: 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  116. Joannides R, Haefeli WE, Linder L, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995; 91: 1314–1319.

    Article  PubMed  CAS  Google Scholar 

  117. Harker LA, Ross R, Slichter SJ, Scott CR. Homocystine-induced arteriosclerosis: the role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976; 58: 731–741.

    Article  PubMed  CAS  Google Scholar 

  118. Starkebaum G, Harlan JM. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 1986; 77: 1370–1376.

    Article  PubMed  CAS  Google Scholar 

  119. Lang D, Kredan MB, Moat SJ, et al. Homocysteine-induced inhibition of endothelium-dependent relaxation in rabbit aorta: role for superoxide anions. Arterioscler Thromb Vasc Biol 2000; 20: 422–427.

    Article  PubMed  CAS  Google Scholar 

  120. Eberhardt RT, Forgione MA, Cap A, et al. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000; 106: 483–491.

    Article  PubMed  CAS  Google Scholar 

  121. Upchurch GR, Jr., Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997; 272: 17012–17017.

    Article  PubMed  CAS  Google Scholar 

  122. Boger RH, Bode-Boger SM, Sydow K, Heistad DD, Lentz SR. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 2000; 20: 1557–1564.

    Article  PubMed  CAS  Google Scholar 

  123. Boger RH, Lentz SR, Bode-Boger SM, Knapp HR, Haynes WG. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci (Colch) 2001; 100: 161–167.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stühlinger, M.C., Tsao, P.S. (2003). Etiology and Pathogenesis of Atherosclerosis. In: Coffman, J.D., Eberhardt, R.T. (eds) Peripheral Arterial Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-331-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-331-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-326-8

  • Online ISBN: 978-1-59259-331-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics