Skip to main content

Abstract

There is now ample evidence that cognitive symptoms observed in striatal disorders bear strong similarities with those associated with frontal cortex lesions. The most characteristic cognitive deficits in frontostriatal disorders are cognitive control (executive control) deficits. Cognitive control symptoms affect functions such as attention, decisions, action planning, and retrieval from memory (1–6). These symptoms can easily be observed in patients with Huntington’s disease (HD) and in a majority of patients with parkinsonian syndromes. They also represent the most ubiquitous cognitive symptoms in psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, R.G. and Marsden, C.D. (1988a) Subcortical dementia: the neuropsychological evidence. Neuroscience 25, 363–387.

    Article  PubMed  CAS  Google Scholar 

  2. Sagar, H.J. and Sullivan, E.V. (1988) Patterns of cognitive impairment in dementia, in Recent Advances in Clinical Neurology, vol. 5 (Kennard, C., ed.), Edinburgh, Churchill Livingstone, pp. 47–86.

    Google Scholar 

  3. Owen, A.M., James, M., Leigh, P.N., et al. (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115, 1727–1751.

    Article  PubMed  Google Scholar 

  4. Passingham, R. (1993) The Frontal Lobes and Voluntary Action, Oxford University Press, New York.

    Google Scholar 

  5. Lawrence, A.D., Sahakian, B.J., Hodges, J.R., Rosser, A.E., Lange, K.W., and Robbins, TW. (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119, 1633–1645.

    Article  PubMed  Google Scholar 

  6. Fuster, J.M. (1997) The Prefrontal Cortex, Lippincott-Raven, Philadelphia.

    Google Scholar 

  7. Shallice, T. (1988) From Neuropsychology to Mental Structure, Cambridge University Press, New York.

    Book  Google Scholar 

  8. Richer, F., Decary, A., Lapierre, M.F., Rouleau, I., Bouvier, G., and Saint-Hilaire, J.M. (1993) Target detection deficits in frontal lobectomy. Brain Cogn. 21, 203–211.

    Article  PubMed  CAS  Google Scholar 

  9. Lawrence, A.D., Sahakian, B.J., Rogers, R.D., Hodges, J.R., and Robbins, T.W. (1999) Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia 37, 1359–1374.

    Article  PubMed  CAS  Google Scholar 

  10. Petrides, M. (1985) Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23, 601–614.

    Article  PubMed  CAS  Google Scholar 

  11. Decary, A. and Richer, F. (1995) Response selection deficits in frontal excisions. Neuropsychologia 33, 1243–1253.

    Article  PubMed  CAS  Google Scholar 

  12. Goldman-Rakic, P.S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in Handbook of Physiology-The Nervous System, V (Plum, F., ed.), American Psychological Society, New York.

    Google Scholar 

  13. Graybiel, A. (1998) The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136.

    Article  PubMed  CAS  Google Scholar 

  14. Wise, S.P. (1996) The role of the basal ganglia in procedural memory. Semin. Neurosc. 8. 39–46.

    Article  Google Scholar 

  15. Miller, E.K. and Cohen, J.D. (2001) An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 24, 167–202.

    Article  PubMed  CAS  Google Scholar 

  16. Schultz, W. and Dickinson, A. (2000) Neuronal coding of prediction errors. Ann. Rev. Neurosci. 23, 473–500.

    Article  PubMed  CAS  Google Scholar 

  17. Brown, R.G. and Marsden, C.D. (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111, 323–345.

    Article  PubMed  Google Scholar 

  18. Bhatia, K. and Marsden, C.D. (1994) The behavioural and motor conserquences of focal lesions of the basal ganglia in man. Brain 117, 859–876.

    Article  PubMed  Google Scholar 

  19. Jahanshahi, M., Brown, G., and Marsden, C.D. (1993) A comparative study of simple and choice reaction time in Parkinson’s, Huntington’s and cerebellar disease. J. Neurol. Neurosurg. Psychiatry 56, 1169–1177.

    Article  PubMed  CAS  Google Scholar 

  20. Richer, F. and Boulet, C. (1999) Frontal lesions and fluctuations in response preparation. Brain Cogn. 40, 234–238.

    Google Scholar 

  21. Hanes, D.P. and Schall, J.D. (1996) Control of voluntary movement initiation. Science 274, 427–430.

    Article  PubMed  CAS  Google Scholar 

  22. Halsband, U., Ito, N., Tanji, J., and Freund, H.J. (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116, 243–166.

    Article  PubMed  Google Scholar 

  23. Maddox, W.T. and Filoteo, J.V. (2001) Striatal contributions to category learning: quantitative modeling of simple linear and complex non-linear rule learning in patients with Parkinson’s. J. Int. Neuropsychological Soc. 7, 710–727.

    Article  CAS  Google Scholar 

  24. Luria, A.R. (1966) Higher Cortical Functions in Man, Basic Books, New York.

    Google Scholar 

  25. Benecke, R., Rothwell, J.C., Dick, J.P.R., Day, B.L., and Marsden, C.D. (1987) Disturbance of sequential movements in patients with Parkinson’s disease. Brain 110, 361–379.

    Article  PubMed  Google Scholar 

  26. Shallice, T. (1982) Specific impairments of planning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 288, 199–209.

    Google Scholar 

  27. Canavan, A.G.M., Passingham, R.E., Marsden, C.D., Quinn, N., Wyke, M., and Polkey, C.E. (1989) Sequence ability in parkinsonians, patients with frontal lobe lesions and patients who have undergone unilateral temporal lobectomies. Neuropsychologia 27, 787–798.

    Article  PubMed  CAS  Google Scholar 

  28. Owen, A.M., James, M., Leigh, P.N., et al. (1990) Planning and spatial working memory following frontal lobe sessions in man. Neuropsychologia 28, 1021–1034.

    Article  PubMed  CAS  Google Scholar 

  29. Glosser, G. and Goodglass, H. (1990) Disorders in executive control functions among aphasic and toher brain-damaged patients. J. Clin. Exp. Neuropsychol. 12, 485–501.

    Article  PubMed  CAS  Google Scholar 

  30. Karnath, H.O. and Wallesch, C.W. (1992) Inflexibility of mental planning: a characteristic disorder with prefrontal lesions? Neuropsychologia 30, 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  31. Richer, F., Bédard, S., Lepage, M., and Chouinard, M.J. (1998) Frontal lesions produce a dual task deficit in simple rapid choices. Brain Cogn. 37, 173–175.

    Google Scholar 

  32. Barone, R. and Joseph, J.P. (1989) Prefrontal cortex and spatial sequencing in macaque monkey. Exp. Brain Res. 78, 447–464.

    Article  PubMed  CAS  Google Scholar 

  33. Mushiake, H., Inase, M., and Tanji, J. (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J. Neurophysiol. 66, 705–718.

    PubMed  CAS  Google Scholar 

  34. D’Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S., and Grossman, M. (1995) The neural basis of the central executive system of working memory. Nature 378, 279–281.

    Article  PubMed  Google Scholar 

  35. Bunge, S.A., Klingberg, T., Jacobsen, R.B., and Gabrieli, J.D.E. (2000) A resource model of the neural basis of executive memory. Proc. Natl. Acad. Sci. USA 97, 3573–3578.

    Article  PubMed  CAS  Google Scholar 

  36. Adcock, R.A., Constable, R.T., Gore, J.C., and Goldman-Rakic, P.S. (2000) Functional neuroanatomy of executive processes involved in dual-task performance. Proc. Natl. Acad. Sci. USA 97, 3567–3572.

    Article  PubMed  CAS  Google Scholar 

  37. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L., and Petersen, S.E. (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402.

    PubMed  CAS  Google Scholar 

  38. Fink, G.R., Dolan, R.J., Halligan, P.W., Marshall, J.C., and Frith, C.D. (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120, 2013–2028.

    Article  PubMed  Google Scholar 

  39. Bradshaw, J.L., Phillips, J.G., Dennis, C., et al. (1992) Initiation and execution of movement sequences in those suffering from and at-risk of developing Huntington’s disease. J. Clin. Exp. Neuropsychol. 14, 179–192.

    Article  PubMed  CAS  Google Scholar 

  40. Lepage, M. and Richer, F. (1996) Inter-response interference contributes to the sequencing deficit in frontal lobe lesions. Brain 119, 1289–1295.

    Article  PubMed  Google Scholar 

  41. Lepage, M. and Richer, F. (2000) Frontal brain lesions affect the use of advance information during response planning. Behav. Neurosci. 114, 1034–1040.

    Article  PubMed  CAS  Google Scholar 

  42. Bloxham, C.A., Mindel, T.A., and Frith, C.D. (1984) Initiation and execution of predictable and unpredictable movements in Parkinson’s disease. Brain 107, 371–384.

    Article  PubMed  Google Scholar 

  43. Willingham, D.B., Koroshetz, W.J., Treadwell, J.R., and Bennett, J.P. (1995) Comparison of Huntington’s and Parkinson’s disease patients’ use of advance information. Neuropsychology 9, 39–46.

    Article  Google Scholar 

  44. Georgiou, N., Bradshaw, J.L., Phillips, J.G., Chiu, E., and Bradshaw, J.A. (1995) Reliance on advance information and movement sequencing in Huntington’s disease. Mov. Disord. 10, 472–481.

    Article  PubMed  CAS  Google Scholar 

  45. Fuster, J.M., Bauer, R.H., and Jervey, J.P. (1985) Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 25, 299–307.

    Article  Google Scholar 

  46. Colby, C.L. and Goldberg, M.E. (1999) Space and attention in parietal cortex. Ann. Rev. Neurosci. 22, 319–349.

    Article  PubMed  CAS  Google Scholar 

  47. Hopfinger, J.B., Buonocore, M.H., and Mangun, G.R. (2000) The neural mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291.

    Article  PubMed  CAS  Google Scholar 

  48. Kastner, S. and Ungerleider, L.G. (2000) Mechanisms of visual attention in the human cortex. Ann. Rev. Neurosci. 23, 315–341.

    Article  PubMed  CAS  Google Scholar 

  49. Reynolds, J.H., Chelazzi, L., and Desimone, R. (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753.

    PubMed  CAS  Google Scholar 

  50. Rainer, G., Assad, W.F., and Miller, E.K. (1998) Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579.

    Article  PubMed  CAS  Google Scholar 

  51. Kim, J.N. and Shadlen, M.N. (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185.

    Article  PubMed  Google Scholar 

  52. Thompson, K.G. and Schall, J.D. (1999) The detection of visual signals by macaque frontal eye field during masking. Nat. Neurosci. 2, 283–288.

    Article  PubMed  CAS  Google Scholar 

  53. Brouwers, P., Cox, C., Martin, A., Chase, T., and Fedio, P. (1984) Differential perceptual-spatial impairment in Huntington’s and Alzheimer’s dementias. Arch. Neurol. 41, 1073–1076.

    Article  PubMed  CAS  Google Scholar 

  54. Brown, R.G. and Marsden, C.D. (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114, 215–231.

    PubMed  Google Scholar 

  55. Sharpe, M.H. (1990) Distractibility in early Parkinson’s disease. Cortex 26, 239–246.

    PubMed  CAS  Google Scholar 

  56. Richer, F. and Lepage, M. (1996) Frontal lesions increase post-target interference in rapid visual streams. Neuropsychologia 34, 509–514.

    Article  PubMed  CAS  Google Scholar 

  57. Richer, F., Boulet, C., Chouinard, M.J., Bédard, M.A., and Chouinard, S. Impaired attentional control of unpracticed movements in early Huntington’s disease, submitted.

    Google Scholar 

  58. Di Lollo, V., Enns, J.T., and Rensick, R.A. (2000) Competition for consciousness among visual events: the psychophysics of reentrant visual processes. J. Exp. Psychol. Gen. 129, 481–507.

    Article  PubMed  Google Scholar 

  59. Raymond, J.E., Shapiro, K.L., and Arnell, K.M. (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psycho!. Hum. Percept. Perform. 18, 849–860.

    Article  CAS  Google Scholar 

  60. Richer, F., Marcantoni, W.S., Lévesque, M., Mansour, B., Beaudoin, G., and Bourguoin, P. Distinct brain systems for masking interference and inter-target interference in visual attention, submitted.

    Google Scholar 

  61. Gold, J.I. and Shadlen, M.N. (2001) Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16.

    Article  PubMed  Google Scholar 

  62. Schmidt, R.A. (1982) Motor control and learning. Human Kinetics, Champaign, IL.

    Google Scholar 

  63. Shadmehr, R. and Holcomb, H.H. (1997) Neural correlates of motor memory consolidation. Science 277, 821–825.

    Article  PubMed  CAS  Google Scholar 

  64. Petersen, S.E., van Mier, H., Fiez, J.A., and Raichle, M.E. (1998) The effects of practice on the functional anatomy of task performance. Proc. Natl. Acad. Sci. USA 95, 853–860.

    Article  PubMed  CAS  Google Scholar 

  65. Chouinard, M.J., Rouleau, I., and Richer, F. (1998) Closed-loop sensorimotor control and acquisition after frontal lesions. Brain Cogn. 37, 178–182.

    Google Scholar 

  66. Richer, F., Chouinard, M.J., and Rouleau, I. (1999) Frontal lesions impair the attentional control of movements during motor learning. Neuropsychologia 37, 1427–1435.

    Article  PubMed  CAS  Google Scholar 

  67. Lemay, S., Lévesque, M., Chouinard, S., Blanchet, P., Richer, F., and Bédard, M.A. (2001) Parkinson’s disease affects movements in transformed visual feedback [abstract]. Mov. Disord. 16(Suppl. 1), S 28.

    Google Scholar 

  68. Gabrieli, J.D.E., Stebbins, G.T., Singh, J., Willingham, D.B., and Goetz, C.G. (1997) Intact mirror-tracing and impaired rotary-poursuit skill learning in patients with Huntington’s disease: evidence for dissociable memory systems in skill learning. Neuropsychology 11, 272–281.

    Article  PubMed  CAS  Google Scholar 

  69. Willingham, D.B. and Koroshetz, W.J. (1993) Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiol. 21, 173–182.

    Google Scholar 

  70. Willingham, D.B., Koroshetz, W.J., and Peterson, E.W. (1996) Motor skills have diverse neural bases: spared and impaired skill acquisition in Huntington’s disease. Neuropsychology 10, 315–321.

    Article  Google Scholar 

  71. Heindel, W.C., Butters, N., and Salmon, D.P. (1988) Impaired learning of a motor skill in patients with Huntington’s disease. Behav. Neurosci. 10, 141–147.

    Article  Google Scholar 

  72. Boulet, C., Chouinard, S., Lesperance, P., and Richer, F. (2001) Attentional demands affect visuomotor precision in early Huntington’s disease [abstract]. Mov. Disord. 16(Suppl. 1), S28–S29.

    Google Scholar 

  73. Smith, M.A., Brandt, J., and Shadmehr, R. (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403, 544–549.

    Article  PubMed  CAS  Google Scholar 

  74. Knopman, D. and Nissen, M.J. (1987) Procedural learning is impaired in Huntington’s disease: evidence from the serial reaction time task. Neuropsychologia 29, 245–254.

    Article  Google Scholar 

  75. Saint-Cyr, J.A., Taylor, A.E., and Lang, A.E. (1988) Procedural learning and neostriatal dysfunction in man. Brain 111, 941–959.

    Article  PubMed  Google Scholar 

  76. Pascual-Leone, A., Grafman, J., Clark, K., et al. (1993) Procedural learning in Parkinson’s disease and cerebellar degeneration. Ann. Neurol. 34, 594–602.

    Article  PubMed  CAS  Google Scholar 

  77. Jackson, G.M., Jackson, S.R., Harrison, J., Henderson, L., and Kennard, C. (1995) Serial reaction time learning and Parkinson’s disease: evidence for a procedural learning deficit. Neuropsychologia 33, 577–593.

    Article  PubMed  CAS  Google Scholar 

  78. Doyon, J., Gaudrea, D., Laforce, R., et al. (1997) Role of the striatum, cerebellum and frontal lobes in the learning of a visumotor skill. Brain Cogn. 34, 218–245.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richer, F., Chouinard, S. (2003). Cognitive Control in Frontostriatal Disorders. In: Bédard, MA., Agid, Y., Chouinard, S., Fahn, S., Korczyn, A.D., Lespérance, P. (eds) Mental and Behavioral Dysfunction in Movement Disorders. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-326-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-326-2_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-372-5

  • Online ISBN: 978-1-59259-326-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics