Skip to main content
  • 199 Accesses

Abstract

The traditional notion regarding cerebellar function has been that it is important for coordinating voluntary motor activity (1). Early studies of patients with degenerative cerebellar diseases or focal cerebellar injuries (2) described ataxia (wide-based lurching gait) and dysmetria (inaccuracy and wavering unsteadiness or dysrhythmia of directed extremity movements). These observations led to the conclusion that when cerebellum malfunctions, balance and coordination are impaired, tremor is evident, eye movements are disordered, speech is dysarthric, and handwriting is illegible. Theories of cerebellar function, experiments to test the role of the cerebellum in nervous system, and the interpretation of previously available cerebellar anatomy have been predicated on the hypothesis that cerebellum is a motor control device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.D. and Victor M. (2000) Principles of Neurology, McGraw Hill, New York.

    Google Scholar 

  2. Holmes, G. (1917) The symptoms of acute cerebellar injuries due to gunshot wounds. Brain 40, 461–535.

    Article  Google Scholar 

  3. Dow, R.S. and Moruzzi, G. (1958) The Physiology and Pathology of the Cerebellum, University of Minnesota Press, Minneapolis.

    Google Scholar 

  4. Dow, R.S. (1974) Some novel concepts of cerebellar physiology. Mt. Sinai. J. Med. 41,103–119.

    PubMed  CAS  Google Scholar 

  5. Watson, P.J. (1978) Nonmotor functions of the cerebellum. Psychol. Bull. 85, 944–967.

    Article  PubMed  CAS  Google Scholar 

  6. Leiner, H.C., Leiner, A.L., and Dow, R.S. (1986) Does the cerebellum contribute to mental skills? Behay. Neurosci. 100, 443–454.

    Article  CAS  Google Scholar 

  7. Schmahmann, J.D. (1991) An emerging concept: the cerebellar contribution to higher function. Arch. Neurol. 48, 1178–1187, and (1992) 49, 1230.

    Article  Google Scholar 

  8. Schmahmann, J.D. (1997) Rediscovery of an early concept, in Int. Rev. Neurobiol., volume 41, The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 3–27.

    Chapter  Google Scholar 

  9. Schmahmann, J.D. (Ed.) (1997) Int. Rev. Neurobiol., volume 41, The Cerebellum and Cognition, Academic Press, San Diego.

    Google Scholar 

  10. Schmahmann, J.D. (1998) Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn. Sci. 2, 362–370.

    Article  PubMed  CAS  Google Scholar 

  11. Schmahmann, J.D. (2000) The role of the cerebellum in affect and psychosis. J. Neurolinguistics 13, 189–214.

    Article  Google Scholar 

  12. Schmahmann, J.D. (2001) The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int. Rev. Psychiatry 13, 247–260.

    Article  Google Scholar 

  13. Schmahmann, J.D. (2001) The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int. Rev. Psychiatry 13, 313–322.

    Article  Google Scholar 

  14. Moruzzi, G. (1947) Sham rage and localized autonomic responses elicited by cerebellar stimulation in the acute thalamic cat. Proc. XVII Internat Congress Physiol Oxford, pp. 114–115.

    Google Scholar 

  15. Martner, J. (1975) Cerebellar influences on autonomic mechanisms. Acta Physiol. Scand. 425(Suppl.), 1–42.

    CAS  Google Scholar 

  16. Bard, P. (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am. J. Physiol. 84, 490–515.

    Google Scholar 

  17. Zanchetti, A. and Zoccolini, A. (1954) Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J. Neurophysiol. 17, 475–483.

    PubMed  CAS  Google Scholar 

  18. Reis, D.J., Doba, N., and Nathan, M.A. (1973) Predatory attack, grooming and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science 182, 845–847.

    Article  PubMed  CAS  Google Scholar 

  19. Snider, R.S. (1950) Recent contributions to the anatomy and physiology of the cerebellum. Arch. Neuro. Psychol. 64, 196–219.

    Article  CAS  Google Scholar 

  20. Man, D. (1969) A theory of cerebellar cortex. J. Physiol. 202, 437–470.

    Google Scholar 

  21. Albus, J.S. (1971) A theory of cerebellar function. Math Biosc. 10, 25–61.

    Article  Google Scholar 

  22. Thompson, R.F., Bao, S., Chen, L., et al. (1997) Associative learning, in The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 151–189.

    Google Scholar 

  23. Lalonde, R. (1997) Visuospatial abilities, in The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 191–216.

    Google Scholar 

  24. Petrosini, L., Molinari, M., and Dell’Anna, M.E. (1996) Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur. J. Neurosci. 9, 1896–1996.

    Google Scholar 

  25. Voogd, J. and Glickstein, M. (1998) The anatomy of the cerebellum. Trends Neurosci. 21, 370–375.

    Article  PubMed  CAS  Google Scholar 

  26. Hawkes, R., Colonnier, M., and Leclerc, N. (1985) Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex. Brain Res. 6, 359–365.

    Article  Google Scholar 

  27. Haines, D.E. (1981) Zones in the cerebellar cortex. Their organization and potential relevance to cerebellar stimulation. J. Neurosurg. 55, 254–256.

    Article  PubMed  CAS  Google Scholar 

  28. Noda, H., Sugita, S., and Ikeda, Y. (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J. Comp. Neurol. 302, 330–348.

    Article  PubMed  CAS  Google Scholar 

  29. Qvist, H. (1989) Demonstration of axonal branching of fibres from certain precerebellar nuclei to the cerebellar cortex and nuclei: a retrograde fluorescent double-labelling study in the cat. Exp. Brain Res. 75, 15–27.

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalo-Ruiz, A. and Leichnetz, G.R. (1998) Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res. Bull. 25, 919–927.

    Article  Google Scholar 

  31. Andrezik, J.A., Dormer, K.J., Foreman, R.D., and Person, R.J. (1984) Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neuroscience 11, 497–507.

    Article  PubMed  CAS  Google Scholar 

  32. Miller, R.A. and Strominger, N.L. (1977) An experimental study of the efferent connections of the superior cerebellar peduncle in the rhesus monkey. Brain Res. 133, 237–250.

    Article  PubMed  CAS  Google Scholar 

  33. Person, R.J., Andrezik, J.A., Dormer, K.J., and Foreman, R.D. (1986) Fastigial nucleus projections in the midbrain and thalamus in dogs. Neuroscience 18, 105–120.

    Article  PubMed  CAS  Google Scholar 

  34. Aumann, T.D. and Home, M.K. (1996) Ramification and termination of single axons in the cerebellothalamic pathway of the rat. J. Comp. Neurol. 376, 420–430.

    Article  PubMed  CAS  Google Scholar 

  35. Snider, R.S. (1975) A cerebellar-ceruleus pathway. Brain Res. 88, 59–63.

    Article  PubMed  CAS  Google Scholar 

  36. Dempsey, C.W., Tootle, D.M., Fontana, C.J., Fitzjarrell, A.T., Garey, RE., and Heath R.G. (1983) Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biol. Psychiat. 18, 127–132.

    Google Scholar 

  37. Marcinkiewicz, M., Morcos, R., and Chretien, M. (1989) CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-gold complex in the rat. J. Comp. Neurol. 289, 11–35.

    Article  PubMed  CAS  Google Scholar 

  38. Moruzzi, G. (1940) Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J. Neurophysiol. 3, 20–32.

    Google Scholar 

  39. Paton, J.F. and Spyer, K.M. (1990) Brain stem regions mediating the cardiovascular responses elicited from the posterior cerebellar cortex in the rabbit. J. Physiol. (Lond.) 427, 533–552.

    CAS  Google Scholar 

  40. Reis, D.J. and Golanov, E.V. (1997) Autonomic and vasomotor regulation, in The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 121–149.

    Google Scholar 

  41. Xu, F. and Frazier, D.T. (1997) Involvement of the fastigial nuclei in vagally mediated respiratory responses. J. Appl. Physiol. 82, 1853–1861.

    Article  PubMed  CAS  Google Scholar 

  42. Coghill, R.C., Sang, C.N., Maisog, J.M., and Iadarola, M.J. (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophvsiol. 82, 1934–1943.

    CAS  Google Scholar 

  43. Ploghaus, A., Tracey, I., Gati, J.S., et al. (1999) Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981.

    Article  PubMed  CAS  Google Scholar 

  44. Parsons, L.M., Egan, G., Liotti, M., et al. (2001) Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc. Natl. Acad. Sci. USA 98, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  45. Tataranni, P.A., Gautier, J.F., Chen, K., et al. (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 4569–4574.

    Article  PubMed  CAS  Google Scholar 

  46. Haines, D.E., Dietrichs, E., Mihailoff, G.A., and McDonald, E.F. (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations, in The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 83–107.

    Google Scholar 

  47. Whiteside, D.G. and Snider, R.S. (1953) Relation of cerebellum to upper brain stem. J. Neurophysiol. 16, 39

    Google Scholar 

  48. Heath, R.G. and Harper, J.W. (1974) Ascending projections of the cerebellar fastigial nucleus to the thippocampus amygdala and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp. Neurol. 45, 2682–2687.

    Article  Google Scholar 

  49. Mutani, R. (1967) Cobalt experimental hippocampal epilepsy in the cat. Epilepsia 8, 22.3–240

    Google Scholar 

  50. Babb, T.L., Mitchell, A.G. Jr., and Crandall, P.H. (1974) Fastigiobulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. Electroencephalogr. Clin. Neurophysiol. 36, 141–154.

    Article  PubMed  CAS  Google Scholar 

  51. Heath, R.G., Dempsey, C.W., Fontana, C.J., and Myers, W.A. (1978) Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol. Psychiat. 13, 501–529.

    PubMed  CAS  Google Scholar 

  52. Snider, R.S. and Maiti, A. (1976) Cerebellar contributions to the Papez circuit. J. Neurosci. Res. 2, 133–146.

    Article  PubMed  CAS  Google Scholar 

  53. Oades, R.D. and Halliday, G.M. (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy ana connectivity. Brain Res. 434, 117–165.

    PubMed  CAS  Google Scholar 

  54. Aas, J.-E. and Brodal, P. (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental study in the cat. J. Comp. Neurol. 268, 313–328.

    Article  PubMed  CAS  Google Scholar 

  55. Ebert, D. and Ebmeier, K.P. (1996) The role of the cingulate gyrus in depression: trom tunctional anatomy to neurochemistry. Biol. Psychiatry 39, 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  56. Rauch, S.L., Jenike, M.A., Alpert, N.M., et al. (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 1, 62–70..

    Article  Google Scholar 

  57. Vilensky, J.A. and Van Hoesen, G.W. (1981) Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res. 205, 391–395.

    Article  PubMed  CAS  Google Scholar 

  58. Brodai, P., Bjaali, J.G., and Aas, J.E. (1991) Organization of cingulo-ponto-cerebellar connections in me cat. Anat. Embryol. (Berl.) 184, 245–254.

    Article  Google Scholar 

  59. Schmahmann, J.D. (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum. Brain Mapping 4, 174–198.

    Article  CAS  Google Scholar 

  60. Sunderland, S. (1940) The projection of the cerebral cortex on the pons and cerebellum in the macaque monkey. J. Anat. 74, 201–226.

    PubMed  CAS  Google Scholar 

  61. Nyby, O. and Jansen, J. (1951) An experimental investigation of the corticopontine projection in macaca muiatta. Shifter utgitt av Det Norske Videnskaps-Akademi: Oslo; 1. Mat. Naturv. Klasse. 3, 1–47.

    Google Scholar 

  62. Brodal, P. (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101, 251–283.

    Article  PubMed  CAS  Google Scholar 

  63. Schmahmann, J.D. and Pandya, D.N. (1995) -Prefrontal cortex projections to the basilar pons: implications tor the cerebellar contribution to higher function. Neurosci. Lett. 199, 175–178.

    Article  PubMed  CAS  Google Scholar 

  64. Schmahmann, J.D. and Pandya, D.N. (1997) Anatomic organization of the basilar pontine projections trom pretrontal cortices in rhesus monkey. J. Neurosci. 17, 438–458.

    PubMed  CAS  Google Scholar 

  65. Astruc, J. (1971) Corticofugal connections of area 8 (frontal eye field) in macaca mulatta. Brain Res. 33, 241–256.

    Article  PubMed  CAS  Google Scholar 

  66. Küinzle, H. and Akert K. (1977) Efferent connections of cortical area 8 (frontal eye lid) in Macaca tascicuiaris. A reinvestigation using the autoradiographic technique. J. Comp. Neurol. 173, 147–164.

    Article  Google Scholar 

  67. Fuster, J.M. (1980) The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe. Raven Press, New York.

    Google Scholar 

  68. Stanton, G.B., Goldberg, M.E., and Bruce, C.J. (1988) Frontal eye field efferents in the macaque monkey: 11. opography of terminal fields in midbrain and pons. J. Comp. Neurol. 271, 493–506.

    Article  PubMed  CAS  Google Scholar 

  69. Petrides, M. and Pandya, D.N. (1994) Comparative architectonic analysis of the human and the macaque frontal cortex, in Handbook of Neuropsychology, vol. 9 (Boller, F. and Grafman, J., eds.), Elsevier, New York, pp. 17–57.

    Google Scholar 

  70. Hyvarinen, J. (1982) Posterior parietal lobe of the primate brain. Physiol. Rev. 62, 1060–1129.

    PubMed  CAS  Google Scholar 

  71. Schmahmann, J.D. and Pandya DN. (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J. Comp. Neurol. 289, 53–73.

    Article  PubMed  CAS  Google Scholar 

  72. Critchley, M. (1953) The Parietal Lobes. Hafner Press, New York.

    Google Scholar 

  73. Denny-Brown, D. and Chambers, R.A. (1958) The parietal lobe and behavior. Res. Publ. Assoc. Nerv. Ment Dis. 36, 35–117.

    CAS  Google Scholar 

  74. Glickstein, M., May, J.G., and Mercier, B.E. (1985) Corticopontine projection in the macaque: the distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 235, 343–359.

    Article  PubMed  CAS  Google Scholar 

  75. May, J.G. and Andersen, R.A. (1986) Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Exp. Brain Res. 63, 265–278.

    Article  PubMed  CAS  Google Scholar 

  76. Perrett, D.I., Mistlin, A.J., and Chitty, A.J. (1987) Visual neurons responsive to faces. Trends Neurosci. 10, 358–364.

    Article  Google Scholar 

  77. Schmahmann, J.D. and Pandya, D.N. (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J. Comp. Neurol. 308, 224–248.

    Article  PubMed  CAS  Google Scholar 

  78. Ungerleider, L.G., Desimone, R., Galkin, T.W., and Mishkin, M. (1984) Subcortical projections of area MT in the macaque. J. Comp. Neurol. 223, 368–386.

    Article  PubMed  CAS  Google Scholar 

  79. Desimone, R. and Ungerleider, L.G. (1989) Neural mechanisms of visual processing in monkeys, in Handbook of Neurophysiology, vol. 2 (Boller, F. and Grafman, J., eds), Elsevier, Amsterdam, pp. 267–299.

    Google Scholar 

  80. Schmahmann, J.D. and Pandya, D.N. (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J. Comp. Neurol. 337, 94–112.

    Article  PubMed  CAS  Google Scholar 

  81. Fries, W. (1990) Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Vis. Neurosci. 4, 205–216.

    Article  PubMed  CAS  Google Scholar 

  82. Boussaoud, D., Desimone, R., and Ungerleider, L.G. (1991) Visual topography of area TEO in the macaque. J. Comp. Neurol. 306, 554–575.

    Article  PubMed  CAS  Google Scholar 

  83. Nadel, L. (1991) The hippocampus and space revisited. Hippocampus 1, 221–229.

    Article  PubMed  CAS  Google Scholar 

  84. Picard, N. and Strick, P.L. (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353.

    Article  PubMed  CAS  Google Scholar 

  85. Devinsky, O., Morrell, M.J., and Vogt, B.A. (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306.

    Article  PubMed  Google Scholar 

  86. Paus, T. (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2, 417–424.

    Article  PubMed  CAS  Google Scholar 

  87. Mesulam, M.-M. and Mufson, E.J. (1985) The insula of reil in man and monkey. Architectonics, connectivity, and function, in Cerebral Cortex, vol. 4 (Peters, A. and Jones E.G., eds.), Plenum Press. New York. no. 179–226.

    Google Scholar 

  88. Schmahmann, J.D. and Pandya, D.N. (1992) Fiber pathways to the pons from parasensory association cortices in Rhesus Monkey. J. Comp. Neurol. 326, 159–179.

    Article  PubMed  CAS  Google Scholar 

  89. Schmahmann, J.D. and Pandya, D.N. (1997) The cerebrocerebellar system, in The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 31–60.

    Google Scholar 

  90. Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.

    Article  PubMed  CAS  Google Scholar 

  91. Kuypers, H.G.J.M. and Lawrence, D.G. (1967) Cortical projections to the red nucleus and the brainstem in the rhesus monkey. Brain Res. 4, 151–188.

    Article  PubMed  CAS  Google Scholar 

  92. Humphrey, D.R., Gold, R., and Reed, D.J. (1984) Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. J. Comp. Neurol. 225, 75–94.

    Article  PubMed  CAS  Google Scholar 

  93. Kennedy, P.R., Gibson, A.R., and Houk, J.C. (1986) Functional and anatomic differentiation between parvicellular and magnocellular regions of red nucleus in the monkey. Brain Res. 364, 124–136.

    Article  PubMed  CAS  Google Scholar 

  94. Saint-Cyr, J.A. and Courville, J. (1980) Projections from the motor cortex, midbrain, and vestibular nuclei to the inferior olive in the cat: anatomical and functional correlates, in The Inferior Olivary Nucleus: Anatomy and Physiology (Courville, J., DeMontigny, C., and Lamarre, Y., eds.), Raven Press, New York, pp. 97–124.

    Google Scholar 

  95. Shah, V.S., Schmahmann, J.D., Pandya, D.N., and Vaher, P.R. (1997)Associative projections to the zona incerta: possible anatomic substrates for extension of the Marr-Albus hypothesis to non-motor learning. Soc. Neurosci. Abstr. 23, 1829.

    Google Scholar 

  96. Allen, G.I., and Tsukahara, N. (1974) Cerebrocerebellar communication systems. Physiol. Rev. 54, 957–1008.

    PubMed  CAS  Google Scholar 

  97. Stein, J.R. and Glickstein, M. (1992) Role of the cerebellum in visual guidance of movement. Physiol. Rev. 72, 967–1017.

    PubMed  CAS  Google Scholar 

  98. Sasaki, K., Oka, H., Matsuda, Y., Shimono, T., and Mizuno, N. (1975) Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Exp. Brain Res. 23, 91–102.

    Article  PubMed  CAS  Google Scholar 

  99. Brodal, P. (1979) The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4, 193–208.

    Article  PubMed  CAS  Google Scholar 

  100. Strick, P.L. (1999) Symposium: basal ganglia, cerebellum and motor control. Soc. Neurosci. Abstr. 25, 528.

    Google Scholar 

  101. Jansen, J. and Brodai, A. (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. J. Comp. Neurol. 73, 267–321.

    Article  Google Scholar 

  102. Chambers, W.W. and Sprague, J.M. (1955) Functional localization in the cerebellum. I. Organization in longitudinal corticonuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J. Comp. Neurol. 103, 105–130.

    Article  PubMed  CAS  Google Scholar 

  103. Haines, D.E. (1989) HRP study of cerebellar corticonuclear-nucleocortical topography of the dorsal culminate lobule-lobule V-in a prosimian primate (Galago): with comments on nucleocortical cell types. J. Comp. Neurol. 282, 274–292.

    Article  PubMed  CAS  Google Scholar 

  104. Dow, R.S. (1942) The evolution and anatomy of the cerebellum. Biol. Rev. 17, 179–220.

    Article  Google Scholar 

  105. Brodal, A. (1981) Neurological Anatomy in Relation to Clinical Medicine, Oxford University Press, New York.

    Google Scholar 

  106. Olszewski, J. (1952) The Thalamus of the Macaca Mulatta, S. Karger. Basel.

    Google Scholar 

  107. Strick, P.L. (1976) Anatomical analysis of ventrolateral thalamic input to primate motor cortex. J. Neurophysiol. 39, 1020–1031.

    PubMed  CAS  Google Scholar 

  108. Batton, R.R. III, Jayaraman, A., Ruggiero, D., and Carpenter, M.B. (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J. Comp. Neurol. 174, 281–306.

    Article  PubMed  Google Scholar 

  109. Thach, W.T. and Jones, E.G. (1979) The cerebellar dentatothalamic connection: terminal field, lamellae, rods and somatotopy. Brain Res. 169, 168–172.

    Article  PubMed  CAS  Google Scholar 

  110. Stanton, G.B. (1980) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J. Comp. Neurol. 190, 699–731.

    Article  PubMed  CAS  Google Scholar 

  111. Kalil, K. (1981) Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J. Comp. Neurol. 195, 25–50.

    Article  PubMed  CAS  Google Scholar 

  112. Wiesendanger, R. and Wiesendanger, M. (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Exp. Brain Res. 59, 91–104.

    PubMed  CAS  Google Scholar 

  113. Ilinsky, I.A. and Kultas-Ilinsky, K. (1987) Sagittal cytoarchitectonic maps of Macaca mulatta. J. Comp. Neurol. 173, 147–164.

    Google Scholar 

  114. Orioli, P.J. and Strick, P.L. (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J. Comp. Neurol. 288, 621–626.

    Article  Google Scholar 

  115. Kievet, J. and Kuypers, H.G.J.M. (1977) Organization of the thalamocortical connections to the frontal lobe in the rhesus monkey. Exp. Brain Res. 29, 299–322.

    Google Scholar 

  116. Yeterian, E.H. and Pandya, D.N. (1985) Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 237, 408–426.

    Article  PubMed  CAS  Google Scholar 

  117. Yeterian, E.H. and Pandya, D.N. (1989) Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 282, 80–97.

    Article  PubMed  CAS  Google Scholar 

  118. Vogt, B.A. and Pandya, D.N. (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262, 271–289.

    Article  PubMed  CAS  Google Scholar 

  119. Schmahmann, J.D. and Pandya, D.N. (1990) Anatomical investigation of projections from thalamus to the posterior parietal association cortices in rhesus monkey. J. Comp. Neurol. 295, 299–326.

    Article  PubMed  CAS  Google Scholar 

  120. Siwek, D.F. and Pandya, D.N. (1991) Prefrontal projections to the mediodorsal nucleus of the thalamus in the rhesus monkey. J. Comp. Neurol. 312, 509–524.

    Article  PubMed  CAS  Google Scholar 

  121. Giguere, M. and Goldman Rakic, P.S. (1988) Mediodorsal nucleus: areal, laminar, and tangential distribution or afferents and efferents in the frontal lobe of rhesus monkeys. J. Comp. Neurol. 277, 195–213.

    Article  PubMed  CAS  Google Scholar 

  122. Barbas, H., Haswell Henion, T.H., and Cermon, C.R. (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 313, 65–94.

    Article  PubMed  CAS  Google Scholar 

  123. Middleton, F.A. and Strick, P.L. (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266, 458–451.

    Article  PubMed  CAS  Google Scholar 

  124. Middleton, F.A. and Strick, P.L. (1997) Cerebellar output channels, in The Cerebellum and Cognition, Schmahmann (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 61–82.

    Google Scholar 

  125. Mackel, R. (1987) The role of the monkey sensory cortex in the recovery from cerebellar injury. Exp. Brain Res. 66, 638–652.

    Article  PubMed  CAS  Google Scholar 

  126. Metter, E.J., Kempler, D., Jackson, C.A., et al. (1987) Cerebellar glucose metabolism in chronic aphasia. Neuroogy 37, 1599–1606.

    Article  CAS  Google Scholar 

  127. Botez-Marquard, T. and Botez, M.I. (1997) Olivopontocerebellar atrophy and Friedreich’s ataxia: neuropsychological consequences of bilateral versus unilateral cerebellar lesions, in The Cerebellum and Cognition (Schmahmann, J.D., ed.), Academic Press, San Diego, pp. 387–410.

    Google Scholar 

  128. Schmahmann, J.D. and Sherman, J.C. (1998) The cerebellar cognitive affective syndrome. Brain 121, 5661–5 669. (see editorial, Brain 1998; 121, 545–546.)

    Article  Google Scholar 

  129. Knoepfel, H.K. and Macken, J. (1947) Le syndrome psycho-organique dans les heredo-ataxies. J. Belge. Neurol. Psychiat. 47, 314–323.

    CAS  Google Scholar 

  130. Kish, S.J., El-Awar, M., Schut, L., Leach, L., Oscar-Berman, M., and Freedman, M. (1988) Cognitive deficits in olivopontocerebellar atrophy: implications for the cholinergic hypothesis of Alzheimer’s dementia. Ann. Neurol. 24, 200–206.

    Article  PubMed  CAS  Google Scholar 

  131. Bracke-Tolkmitt, R., Linden, A., Canavan, A.G.M., et al. (1989) The cerebellum contributes to mental skills. Behay. Neurosci. 103, 442–446.

    Article  Google Scholar 

  132. Grafman, J., Litvan, I., Massaquoi, S., Stewart, M., Sirigu, A., and Hallett, M. (1992) Cognitive planning deficit in patients with cerebellar atrophy. Neurology 42, 1493–1496.

    Article  PubMed  CAS  Google Scholar 

  133. Appollonio, I.M., Grafman, J., Schwartz, V., Massaquoi, S., and Hallett, M. (1993) Memory in patients with cerebellar degeneration. Neurology 43, 1536–1544.

    Article  PubMed  CAS  Google Scholar 

  134. Geschwind, D.H. (1999) Focusing attention on cognitive impairment in spinocerebellar ataxia. Arch Neurol. 56, 20–22.

    Article  PubMed  CAS  Google Scholar 

  135. Wallesch, C.-W. and Horn, A. (1990) Long-term effects of cerebellar pathology on cognitive functions. Brain Cogn. 14, 19–25.

    Article  PubMed  CAS  Google Scholar 

  136. Botez-Maquard, T., Leveille, J., and Botez, M.I. (1994) Neuropsychological functioning in unilateral cerebellar damage. Can. J. Neurol. Sci. 21, 353–357.

    Google Scholar 

  137. Silveri, M.C., Leggio, M.G., and Molinari, M. (1994) The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology 44, 2047–2050.

    Article  PubMed  CAS  Google Scholar 

  138. Fiez, J.A., Petersen, S.E., Cheney, M.K., and Raichle, M.E. (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115, 155–178.

    Article  PubMed  Google Scholar 

  139. Malm, J., Kristensen, B., Karlsson, T., Carlberg, B., Fagerlund, M., and Olsson, T. (1998) Cognitive impairment in young adults with infratentorial infarcts. Neurology 51, 433–440.

    Article  PubMed  CAS  Google Scholar 

  140. Neau, J.P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., and Gil, R. (2000) Neuropsychological disturbances in cerebellar infarcts. Acta Neurol. Scand. 102,363–370.

    Article  PubMed  CAS  Google Scholar 

  141. Parvizi, J., Anderson, S.W., Martin, C.O.. Damasio, H., and Damasio, A.R. (2001) Pathological laughter and crying: a link to the cerebellum. Brain 124, 1708–1719.

    Article  PubMed  CAS  Google Scholar 

  142. Gomez Beldarrain, M., Garcia-Monco, J.C., Quintana, J.M., Llorens, V., and Rodeno, E. (1997) Diaschisis and neuropsychological performance after cerebellar stroke. Eur. Neurol. 37, 82–89.

    Article  PubMed  CAS  Google Scholar 

  143. Schmahmann, J.D. and Sherman, J.C. The cerebellar cognitive affective syndrome. (1998) Brain 121, 2203–2205.

    Article  Google Scholar 

  144. Botez-Marquard, T., Léveillé, J., and Botez, M.I. (1994) Neuropsychological functioning in unilateral cerebellar damage. Can. J. Neurol. Sci. 21, 353–357.

    PubMed  CAS  Google Scholar 

  145. Dennis, M., Spiegler, B.J., Hetherington, C.R., and Greenberg, M.L. (1996) Neuropsychological sequelae of the treatment of children with medulloblastoma. J. Neurooncol. 29, 91–101.

    Article  PubMed  CAS  Google Scholar 

  146. Waber, D.P. and Holmes, J.M. (1985) Assessing children’s copy production of the Rey-Ostereith complex figure. J. Clin. Exp. Neuropsychol. 7, 264–280.

    Article  PubMed  CAS  Google Scholar 

  147. Duffner, P.K., Cohen, M.E., and Thomas, P. (1983) Late effects of treatment on the intelligence of children with posterior fossa tumors. Cancer 51, 233–237.

    Article  PubMed  CAS  Google Scholar 

  148. Glauser, T.A. and Packer, R.J. (1991) Cognitive deficits in long-term survivors of childhood brain tumors. Child’s Nerv. Sys. 7, 2–12.

    Article  CAS  Google Scholar 

  149. Radcliffe, J., Packer, R.J., Atkins, T.E., et al. (1992) Three- and four-year cognitive outcome in children with noncortical brain tumors treated with whole-brain radiotherapy. Ann. Neural. 32. 551–554.

    Article  CAS  Google Scholar 

  150. Levisohn, L., Cronin-Golomb, A., and Schmahmann, J.D. (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123, 1041–1050.

    Article  PubMed  Google Scholar 

  151. Riva, D. and Giorgi, C. (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123, 1051–1061.

    Article  PubMed  Google Scholar 

  152. Wisoff, J.H. and Epstein, F.J. (1984) Pseudobulbar palsy after posterior fossa operation in children. Neurosurgery 15, 707–709.

    Article  PubMed  CAS  Google Scholar 

  153. Pollack, I.F., Polinko, P., Albright, A.L., Towbin, R., and Fritz, C. (1995) Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery 37, 885–893.

    Article  PubMed  CAS  Google Scholar 

  154. Catsman-Berrevoets, C.E., Van Dongen, H.R., Mulder, P.G., Pazy Geuze, D., Paquier, P.F., and Lequin, M.H. (1999) Tumour type and size are high risk factors for the syndrome of “cerebellar” mutism and subsequent dysarthria. J. Neurol. Neurosurg. Psychiatry 67, 755–757.

    Article  PubMed  CAS  Google Scholar 

  155. Dunwoody, G.W., Alsagoff, Z.S., and Yuan, S.Y. (1997) Cerebellar mutism with subsequent dysarthria in an adult: case report. Br. J. Neurosurg. 11, 161–163.

    Article  PubMed  CAS  Google Scholar 

  156. Berquin, P.C., Giedd, J.N., Jacobsen, L.K., et al. (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  157. Mostofsky, S.H., Mazzacco, M.M., Aakalu, G., Warsofsky, I.S., Denckla, M.B., and Reiss, A.L., et al. (1998) Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology 50, 121–130.

    Article  PubMed  CAS  Google Scholar 

  158. Castellanos, F.X., Giedd, J.N., Berquin, P.C., et al. (2001) Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 58, 289–295.

    Article  PubMed  CAS  Google Scholar 

  159. Allin, M., Matsumoto, H., Santhouse, A.M., et al. (2001) Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain 124, 60–66.

    Article  PubMed  CAS  Google Scholar 

  160. Nicolson, R.I., Fawcett, A.J., Berry, EL., Jenkins, I.H., Dean, P., and Brooks, D.J. (1999) Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet 353. 1662–1667

    Article  PubMed  CAS  Google Scholar 

  161. Glickstein, M. (1994) Cerebellar agenesis. Brain 117, 1209–1212.

    Article  PubMed  Google Scholar 

  162. Gardner, R.J., Coleman, L.T., Mitchell, L.A., et al. (2001) Near-total absence of the cerebellum. Neuropediatrics 32, 62–68.

    Article  PubMed  CAS  Google Scholar 

  163. Chheda, M.G., Sherman, J.C., and Schmahmann, J.D. (2002) Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology 58(Suppl. 3), 356.

    Google Scholar 

  164. Heath, R.G., Franklin, D.E., and Shraberg, D. (1979) Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J. Nerv. Ment. Dis. 167, 585–592.

    Article  PubMed  CAS  Google Scholar 

  165. Pollak, L., Klein, C., Rabey, J.M., and Schiffer, J. (1996) Posterior fossa lesions associated with neuropsychiatric symptomatology. Int. J. Neurosci. 87, 119–126.

    Article  PubMed  CAS  Google Scholar 

  166. Lippman, S., Manshadi, M., Baldwin, H., Drasin, G., Rice, J., and Alrajech, S. (1981) Cerebellar vermis dimensions on computerized tomographic scans of schizophrenic and bipolar patients. Am. J. Psychiatry 139. 667–668.

    Google Scholar 

  167. Moriguchi, I. (1981) A study of schizophrenic brains by computerized tomography scans. Folia. Psychiatry Neurol. Jpn. 35, 55–72.

    CAS  Google Scholar 

  168. Loeber, R.T., Cintron, C.M., and Yurgelun-Todd, D.A. (2001) Morphometry of individual cerebellar lobules in schizophrenia. Am. J. Psychiatry 158, 952–954.

    PubMed  CAS  Google Scholar 

  169. Ichimiya, T., Okubo, Y., Suhara, T., and Sudo, Y. (2001) Reduced volume of the cerebellar vermis in neurolepticnaive schizophrenia. Biol. Psychiatry 49, 20–27.

    Article  PubMed  CAS  Google Scholar 

  170. Volz, H., Gaser, C., and Sauer, H. (2000) Supporting evidence for the model of cognitive dysmetria in schizophrenia -a structural magnetic resonance imaging study using deformation-based morphometry. Schizophr. Res. 46. 45–56.

    Article  PubMed  CAS  Google Scholar 

  171. Andreasen, N.C., O’Leary, D.S., Cizadlo, T., et al. (1996) Schizophrenia and cognitive dysmetria: a positronemission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc. Natl. Acad. Sci. USA 93, 9985–9990.

    Article  PubMed  CAS  Google Scholar 

  172. Staal, W.G., Hulshoff Pol, H.E., Schnack, H.G., van Haren, N.E., Seifert, N., and Kahn, R.S. (2001) Structural brain abnormalities in chronic schizophrenia at the extremes of the outcome spectrum. Am. J. Psychiatry 158. 1140–1142.

    Article  PubMed  CAS  Google Scholar 

  173. Courchesne, E., Yeung-Courchesne, R., Press, G.A., Hesselink, J.R., and Jernigan, T.L. (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N. Engl. J. Med. 318, 1349–1354.

    Article  PubMed  CAS  Google Scholar 

  174. Murakami, J.W., Courchesne, E., Press, G.A., Yeung-Courchesne, R., and Hesselink, J.R. (1989) Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 46, 689–694.

    Article  PubMed  CAS  Google Scholar 

  175. Kemper, T.L. and Bauman, M. (1998) Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 57,645–652.

    Article  PubMed  CAS  Google Scholar 

  176. Heath, R.G. (1977) Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. J. Nerv. Ment. Dis. 165, 300–317.

    Article  PubMed  CAS  Google Scholar 

  177. Cooper, I.S., Riklan, M., Amin, I., and Cullinan, T. (1978) A long-term follow-up study of cerebellar stimulation for the control of epilepsy, in Cerebellar Stimulation in Man (Cooper, I.S., ed.), Raven Press, New York, pp. 19–38.

    Google Scholar 

  178. Berman, A.J., Berman, D., and Prescott, J.W. (1974) The effects of cerebellar lesions on emotional behavior in the rhesus monkey, in The Cerebellum Epillepsy and Behavior (Cooper, I.S., Riklan, M., and Snider, R.S., eds.), Plenum Press, New York, pp. 277–284.

    Chapter  Google Scholar 

  179. Reiman, E.M., Raichle, M.E., Robins, E., et al. (1989) Neuroanatomical correlates of a lactate-induced anxiety attack. Arch. Gen. Psychiatry 46, 493–500.

    Article  PubMed  CAS  Google Scholar 

  180. Lane, R.D., Reiman, E.M., Ahern, G.L., Schwartz, G.E., and Davidson, R.J. (1997) Neuroanatomical correlates of happiness, sadness, and disgust. Am. J. Psychiatry 154, 926–933.

    PubMed  CAS  Google Scholar 

  181. Beauregard, M., Leroux, J.M., Bergman, S., et al. (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 9, 3253–3258.

    Article  PubMed  CAS  Google Scholar 

  182. Desmond, J.E. and Fiez, J.A. (1998) Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cog. Sci. 2, 355–362.

    Article  CAS  Google Scholar 

  183. Schmahmann, J.D., Loeber, R.T., Marjani, J., and Hurwitz, A.S. (1998) Topographic organization of cognitive function in the human cerebellum. A meta-analysis of functional imaging studies. Neuroimage 7, S721.

    Google Scholar 

  184. Schmahmann, J.D. (1994) The cerebellum in autism: clinical and anatomic perspectives, in The Neurobiology of Autism (Bauman, M.L. and Kemper, T.L., eds.), Johns Hopkins University Press, Baltimore, pp. 195–226.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmahmann, J.D. (2003). The Role of the Cerebellum in Cognition and Emotion. In: Bédard, MA., Agid, Y., Chouinard, S., Fahn, S., Korczyn, A.D., Lespérance, P. (eds) Mental and Behavioral Dysfunction in Movement Disorders. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-326-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-326-2_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-372-5

  • Online ISBN: 978-1-59259-326-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics