Skip to main content

Integrating Cognition and Motivation into the Basal Ganglia Pathways of Action

  • Chapter
Mental and Behavioral Dysfunction in Movement Disorders
  • 199 Accesses

Abstract

The involvement of the basal ganglia in motor control is well documented, particularly in its association with the neurological disorders, Parkinson’ s disease (PD) and Huntington’ s disease (HD). It is the dorsal basal ganglia that is most affected in these diseases. In contrast, the ventral basal ganglia (the ventral striatum [VS] and ventral pallidum [VP]) are associated with mental health problems including schizophrenia and drug abuse and addiction (1–5). Taken as a whole, the basal ganglia, both dorsal and ventral components, are involved in motor, cognitive, and limbic functions. These functions are thought to be contained in separate, segregated corticobasal ganglia circuits (6). However, although severe motoric dysfunctions are associated with the dorsal striatum, and cognitive, emotional, and motivational problems are associated with the VS diseases effecting these striatal regions often have a mixed set of dysfunctions (7–15). For example, often the earliest detectable symptoms in PD patients occur on cognitive tasks requiring attentional set-shifting and tasks requiring organizational skills and use of working memory. Thus, although different basal ganglia regions are involved in various functions, the basal ganglia as a whole operates in concert with cortex in mediating overall behavioral responses. This involves a complex coordination of motivational, cognitive, and motor elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koob, G.F. and Nestler, E.J. (1997) The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9, 482–497.

    PubMed  CAS  Google Scholar 

  2. Singer, H.S., Butler, I.J., Tune, L.E., Seifert, W.E. Jr., and Coyle, J.T. (1982) Dopaminergic dsyfunction in Tourette syndrome. Ann. Neurol. 12, 361–366.

    Article  PubMed  CAS  Google Scholar 

  3. Grace, A.A. (1991) Phasic versus tonic dopmaine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24.

    Article  PubMed  CAS  Google Scholar 

  4. Swerdlow, N.R. and Koob, G.F. (1987) Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav. Brain Res. 10, 197–245.

    Article  Google Scholar 

  5. Cooper, J.A., Sagar, H.J., Doherty, S.M., Jordan, N., Tidswell, P., and Sullivan, E.V. (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. A follow-up study of untreated patients. Brain 115, 1701–1725.

    Article  PubMed  Google Scholar 

  6. Alexander, G.E. and Crutcher, M.D. (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper, JA., Sagar, H.J., Jordan, N., Harvey, N.S., and Sullivan, E.V. (1991) Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114, 2095–2122.

    Article  PubMed  Google Scholar 

  8. Owen, A.M., Iddon, J.L., Hodges, J.R., Summers, B.A., and Robbins, T.W. (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35, 519–532.

    Article  PubMed  CAS  Google Scholar 

  9. Taylor, A.E., Saint-Cyr, JA., Lang, A.E., and Kenny, F.T. (1986) Parkinson’s disease and depression: a critical re-evaluation. Brain 109, 279–292.

    Article  PubMed  Google Scholar 

  10. Taylor, A.E., Saint-Cyr, J.A., and Lang, A.E. (1990) Memory and learning in early Parkinson’s disease: evidence for a “frontal lobe syndrome.” Brain Cogn. 13, 211–232.

    Article  PubMed  CAS  Google Scholar 

  11. Folstein, S.E., Folstein, M.F., and McHugh, P.R. (1979) Psychiatric syndromes in Huntington’s disease, in Advances in Neurology (Chase, TN., ed.), Raven Press, New York, pp. 281–280.

    Google Scholar 

  12. J, B. (1991) Cognitive impairments in Huntington’s disease: insights into the neuropsychology of the striatum, in Handbook of Neuropsychology (Boller, F. and Grafman, J., ed.), Elsevier, Amsterdam, pp. 241–264.

    Google Scholar 

  13. Kalivas, P.W., Churchill, L., and Klitenick, M.A. (1993) The circuitry mediating the translation of motivational stimuli into adaptive motor responses, in Limbic Motor Circuits and Neuropsychiatry (Kalivas, P.W. and Barnes, C.D., eds.), CRC Press, Boca Raton, pp. 237–275.

    Google Scholar 

  14. Mogenson, G.J., Wu, M., and Jones, D.L. (1980) Locomotor activity elicited by injections of picrotoxin into the ventral tegmental area is attenuated by injections of GABA into the globus pallidus. Brain Res. 191, 569–571.

    Article  PubMed  CAS  Google Scholar 

  15. Mogenson, G.J. and Nielsen, M.A. (1983) Evidence that an accumbens to subpallidal GAGAergic projection contributes to locomotor activity. Brain Res. Bull. 11, 309–314.

    Article  PubMed  CAS  Google Scholar 

  16. Heimer, L. and Wilson, R.D. (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex, in Golgi Centennial Symposium: Perspectives in Neurobiology (Santini, M., ed.), Raven Press, New York, pp. 177–193.

    Google Scholar 

  17. Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.

    Article  PubMed  CAS  Google Scholar 

  18. Alexander, G.E., Crutcher, M.D., and DeLong, M.R. (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–110.

    Article  PubMed  CAS  Google Scholar 

  19. Middleton, F.A. and Strick, P.L. (1997) New concepts about the organization of basal ganglia output. Adv. Neurol. 74, 57–68.

    PubMed  CAS  Google Scholar 

  20. Nauta, W.J.H., Smith, G.P., Faull, R.L.M., and Domesick, V.B. (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3, 385–401.

    Article  PubMed  CAS  Google Scholar 

  21. Percheron, G., Yelnik, J., and Francois, C. (1984) The primate striato-pallido-nigral system: an integrative system for cortical information, in The Basal Ganglia: Structure and Function (McKenzie, J.S., Kemm, R.E., and Wilcock, L.N., eds.), Plenum Press, London, pp. 87–105.

    Chapter  Google Scholar 

  22. Haber, S.N., Fudge, J.L., and McFarland, N. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382.

    PubMed  CAS  Google Scholar 

  23. Mogenson, G.J., Jones, D.L., and Yim, C.Y. (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14, 69–97.

    Article  PubMed  CAS  Google Scholar 

  24. Haber, S.N. and McFarland, N.R. (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist, in press…

    Google Scholar 

  25. Dum, R.P. and Strick, P.L. (1993) Cingulate motor areas, in Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Treatise (Vogt, B.A. and Gabriel, M., eds.), Birkhauser, Boston, pp. 415–441….

    Google Scholar 

  26. Kurata, K. (1993) Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J. Neurophysiol. 69, 187–200.

    PubMed  CAS  Google Scholar 

  27. Matsuzaka, Y., Aizawa, H., and Tanji, J. (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J. Neurophysiol. 68, 653–662.

    PubMed  CAS  Google Scholar 

  28. Passingham, R.E. (1995) The Frontal Lobes and Voluntary Action. Oxford Psychology Series, vol. 21, Oxford University Press, Oxford.

    Google Scholar 

  29. Levy, R. and Goldman-Rakic, P.S. (1999) Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. J. Neurosci. 19, 5149–5158.

    PubMed  CAS  Google Scholar 

  30. Cummings, J.L. (1995) Anatomic and behavioral aspects of frontal-subcortical circuits. [review]. Ann. NY Acad Sci. 769, 1–13.

    Article  PubMed  CAS  Google Scholar 

  31. Filley, C.M. (1995) Frontal lobe syndromes, in Neurobehavioral Anatomy, 1st ed. University Press of Colorado, Niwot, pp. 149–162.

    Google Scholar 

  32. Schall, J.D. (1997) Visuomotor areas of the frontal lobe, in Cerebral Cortex, Vol. 12, Extrastriate Cortex in Primates, 1st ed. (Rockland, K.S., Kaas, J.H., and Peters, A., eds.), Plenum Press, New York, pp. 527–638.

    Google Scholar 

  33. Cummings, J.L. (1993) Frontal-subcortical circuits and human behavior [review]. Arch. Neurol. 50, 873–880.

    Article  PubMed  CAS  Google Scholar 

  34. Eslinger, P.J. and Damasio, A.R. (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35, 1731–1741.

    Article  PubMed  CAS  Google Scholar 

  35. Fuster, J.M. (1989) Lesion studies, in The Prefrontal Cortex Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 2nd ed., Raven Press, New York, pp. 51–82.

    Google Scholar 

  36. Rolls, E.T., Burton, M.J., and Mora, F. (1980) Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res. 194, 339–357.

    Article  PubMed  CAS  Google Scholar 

  37. Carmichael, S.T. and Price, J.L. (1996) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641.

    Article  Google Scholar 

  38. Butter, C.M. (1969) Perseveration in extinction and in discrimination reversal tasks following selective fronal ablations in macaca mulatta. Physiol. Behav. 4, 163–171.

    Article  Google Scholar 

  39. Fuster, J.M. (1989) The Prefrontal Cortex, Raven, New York.

    Google Scholar 

  40. Künzle, H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res. 88, 195–209.

    Article  PubMed  Google Scholar 

  41. Künzle, H. (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. Brain Behav. Evol. 15, 185–234.

    Article  PubMed  Google Scholar 

  42. Künzle, H. (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav. Evol. 15. 185–234.

    Article  PubMed  Google Scholar 

  43. McFarland, N.R. and Haber, S.N. (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J. Neurosci. 20, 3798–3813.

    PubMed  CAS  Google Scholar 

  44. Selemon, L.D. and Goldman-Rakic, P.S. (1988) Common cortical and subcortical targets of the dorsolateral prefronal and posterior parietal cortices in the Rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 8, 4049–4068.

    PubMed  CAS  Google Scholar 

  45. Kunishio, K. and Haber, S.N. (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J. Comp. Neurol. 350, 337–356.

    Article  PubMed  CAS  Google Scholar 

  46. Chikama, M., McFarland, N., Amaral, D.G., and Haber, S.N. (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J. Neurosci. 17, 9686–9705.

    PubMed  CAS  Google Scholar 

  47. Haber, S.N., Kunishio, K., Mizobuchi, M., and Lynd-Balta, E. (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J. Neurosci. 15, 4851–4867.

    PubMed  CAS  Google Scholar 

  48. Wilson, C.J. and Phelan, K.D. (1982) Dual topographic representation of neostriatum in the globus pallidus of rats. Brain Res. 243, 354–359.

    Article  PubMed  CAS  Google Scholar 

  49. Shink, E., Sidibé, M., and Smith, Y. (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunclulopontine nucleus. J. Comp. Neurol. 382, 348–363.

    Article  PubMed  CAS  Google Scholar 

  50. Shammah-Lagnado, S.J., Alheid, G.F., and Heimer, L. (1996) Efferent connections of the caudal part of the globus pallidus in the rat. J. Comp. Neurol. 376, 489–507.

    Article  PubMed  CAS  Google Scholar 

  51. Kim, R., Nakano, K., Jayaraman, A., and Carpenter, M.B. (1975) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J. Comp. Neurol. 169, 263–290.

    Article  Google Scholar 

  52. Inase, M. and Tanji, J. (1994) Projections from the globus pallidus to the thalamic areas projecting to the dorsal area 6 of the macaque monkey: a multiple tracing study. Neurosci. Lett. 180, 135–137.

    Article  PubMed  CAS  Google Scholar 

  53. Haber, S.N., Groenewegen, H.J., Grove, E.A., and Nauta, W.J.H. (1985) Efferent connections of the ventral pallidum. Evidence of a dual striatopallidofugal pathway. J. Comp. Neurol. 235, 322–335.

    Article  PubMed  CAS  Google Scholar 

  54. Maurice, N., Deniau, J.M., Menetrey, A., Glowinski, J., and Thierry, A.M. (1997) Position of the ventral pallidum in the rat prefrontal cortex-basal ganglia circuit. Neuroscience 80, 523–534.

    Article  PubMed  CAS  Google Scholar 

  55. Maurice, N., Deniau, J.M., Menetrey, A., Glowinski, J., and Thierry, A.M. (1998) Prefrontal cortex-basal ganglia circuits in the rat: involvement of ventral pallidum and subthalamic nucleus. Synapse 29, 363–370.

    Article  PubMed  CAS  Google Scholar 

  56. Parent, A. and De Bellefeuille, L. (1982) Organization of efferent projections from the internal segment of the globus pallidus in the primate as revealed by fluorescence retrograde labeling method. Brain Res. 245, 201–213.

    Article  PubMed  CAS  Google Scholar 

  57. Vogt, B.A., Pandya, D.N., and Rosene, D.L. (1987) Cingulate cortex of the Rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270.

    Article  PubMed  CAS  Google Scholar 

  58. Schell, G.R. and Strick, P.L. (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci. 4, 539–560.

    PubMed  CAS  Google Scholar 

  59. Wiesendanger, R. and Wiesendanger, M. (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (macaca fascicularis). Exp. Brain Res. 59, 91–104.

    PubMed  CAS  Google Scholar 

  60. Matelli, M., Luppino, G., Fogassi, L., and Rizzolatti, G. (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J. Comp. Neurol. 280, 468–488.

    Article  PubMed  CAS  Google Scholar 

  61. Holsapple, J.W., Preston, J.B., and Strick, P.L. (1991) The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J. Neurosci. 11, 2644–2654.

    PubMed  CAS  Google Scholar 

  62. Kurata, K. (1994) Site of origin of projections from the thalamus to dorsal versus ventral aspects of the premotor cortex of monkeys. Neurosci. Res. 21, 71–76.

    Article  PubMed  CAS  Google Scholar 

  63. Matelli, M. and Luppino, G. (1996) Thalamic input to mesial and superior area 6 in the Macaque monkey. J. Comp. Neurol. 372, 59–87.

    Article  PubMed  CAS  Google Scholar 

  64. Nakano, K., Tokushige, A., Kohno, M., Hasegawa, Y., Kayahara, T., and Sasaki, K. (1992) An autoradiographic study of cortical projections from motor thalamic nuclei in the macaque monkey. Neurosci. Res. 13, 119–137.

    Article  PubMed  CAS  Google Scholar 

  65. Goldman-Rakic, P.S. and Porrino, L.J. (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol. 242, 535–560.

    Article  PubMed  CAS  Google Scholar 

  66. Garver, D.L. and Sladek, J.R. (1875) Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brain stem of macaca speciosa. J. Comp. Neurol. 159, 289–304.

    Article  Google Scholar 

  67. Schofield, S.P.M. and Everitt, B.J. (1981) The organization of catecholamine-containing neurons in the brain of the rhesus monkey (macaca mulatta). J. Anat. 132, 391–418.

    PubMed  CAS  Google Scholar 

  68. Pearson, J., Goldstein, M., Markey, K., and Brandeis, L. (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8, 3–32.

    Article  PubMed  CAS  Google Scholar 

  69. Tanaka, C. (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res. Bull. 9, 255–270.

    Article  PubMed  CAS  Google Scholar 

  70. Olszewski, J. and Baxter, D. (1954) Cytoarchitecture of the Human Brain Stem, S. Karger, Basil.

    Google Scholar 

  71. Lynd-Balta, E. and Haber, S.N. (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59, 625–640.

    Article  PubMed  CAS  Google Scholar 

  72. Poirier, L.J., Giguere, M., and Marchand, R. (1983) Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat. Brain Res. Bull. 11, 371–397.

    Article  PubMed  CAS  Google Scholar 

  73. Lavoie, B. and Parent, A. (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 2, 601–604.

    Article  PubMed  CAS  Google Scholar 

  74. McRitchie, D.A. and Halliday, G.M. (1995) Calbindin D28K-containing neurons are restricted to the medial substantia nigra in humans. Neuroscience 65, 87–91.

    Article  PubMed  CAS  Google Scholar 

  75. Haber, S.N., Ryoo, H., Cox, C., and Lu, W. (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J. Comp. Neurol. 362, 400–410.

    Article  PubMed  CAS  Google Scholar 

  76. Ciliax, B.J., Heilman, C., Demchyschyn, L.L., et al. (1995) The dopamine transporter: immunochemical characterization and localization in brain. J. Neurosci. 15, 1714–1723.

    PubMed  CAS  Google Scholar 

  77. Freed, C., Revay, R., Vaughan, RA., et al. (1995) Dopamine transporter immunoreactivity in rat brain..1. Comp. Neurol. 359, 340–349.

    Article  CAS  Google Scholar 

  78. Pifl, C., Schingnitz, G., and Hornykiewicz, O. (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44, No. 3,591–605.

    Article  PubMed  CAS  Google Scholar 

  79. Schneider, J.S., Yuwiler, A., and Markham, C.H. (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res. 411, 144–150.

    Article  PubMed  CAS  Google Scholar 

  80. Parent, A. and Lavoie, B. (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and Parkinsonian monkeys. Adv. Neurol. 60, 25–20.

    PubMed  CAS  Google Scholar 

  81. Deniau, J.M., Menetrey, A., and Charpier, S. (1996) The lamellar organization of the rat substantia nigra pars reticulata: segretated patterns of striatal afferents and relationship to the topography of corticostriatal projections. Neuroscience 73, 761–781.

    Article  PubMed  CAS  Google Scholar 

  82. Szabo, J. (1967) The efferent projections of the putamen in the monkey. Exp. Neurol. 19, 463–416.

    Article  PubMed  CAS  Google Scholar 

  83. Szabo, J. (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp. Neurol. 27, 1–15.

    Article  PubMed  CAS  Google Scholar 

  84. Selemon, L.D. and Goldman-Rakic, P.S. (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J. Comp. Neurol. 297, 359–376…

    Article  PubMed  CAS  Google Scholar 

  85. Lynd-Balta, E. and Haber, S.N. (1994) Primate striatonigral projections: a comparison ot the sensorimotor-related striatum and the ventral striatum. J. Comp. Neurol. 343, 1–17.

    Article  Google Scholar 

  86. Szabo, J. (1980) Organization of the ascending striatal afferents in monkeys..1. Comp. Neurol. 189, 307–321.

    Article  CAS  Google Scholar 

  87. Parent, A. and Hazrati, L.-N. (1994) Multiple striatal representation in primate substantia nigra. J. Comp. Neurol. 344, 305–320.

    Article  PubMed  CAS  Google Scholar 

  88. Carpenter, M.B. and Peter, P. (1971) Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J. Comp. Neurol. 144, 93–116.

    Article  Google Scholar 

  89. Parent, A., Mackey, A., and De Bellefeuille, L. (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10, 1137–1150.

    Article  PubMed  CAS  Google Scholar 

  90. Magee, J.C. and Johnston, D. (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons [see comments]. Science 275, 209–213.

    Article  PubMed  CAS  Google Scholar 

  91. Spruston, N., Jaffe, D.B., and Johnston, D. (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci. 17, 161–166.

    Article  PubMed  CAS  Google Scholar 

  92. Schultz, W. (1992) Activity of dopamine neurons in the behaving primate. Semin. Neurosci. 4, 129–138.

    Article  Google Scholar 

  93. Schultz, W., Apicella, P., and Ljungberg, T. (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913.

    PubMed  CAS  Google Scholar 

  94. Wilson, C., Nomikos, G.G., Collu, M., and Fibiger, H.C. (1995) Dopaminergic correlates of motivated behavior: importance of drive. J. Neurosci. 15, 5169–5178. • •

    PubMed  CAS  Google Scholar 

  95. Richardson, N.R. and Gratton, A. (1996) Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J. Neurosci. 16, 8160–8169.

    PubMed  CAS  Google Scholar 

  96. Smith, I.D. and Grace, A.A. (1992) Role of subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12, 287–303.

    Article  PubMed  CAS  Google Scholar 

  97. Grace, A.A. and Bunney, B.S. (1995) Electrophysiological properties of midbrain dopamine neurons, in Psychopharmacology: The Fourth Generation of Progress (Bloom, F.E. and Kupfer, D.J., eds.), Raven Press, New York, pp. 163–177.

    Google Scholar 

  98. Francois, C., Percheron, G., Yelnik, J., and Heyner, S. (1979) Demonstration of the existence of small local circuit neurons in the Golgi-stained primate substantia nigra. Brain Res. 172, 160–164.

    Article  PubMed  CAS  Google Scholar 

  99. Johnson, S.W. and North, R.A. (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J. Physiol. 450, 455–468.

    PubMed  CAS  Google Scholar 

  100. Cepeda, C. and Levine, M.S. (1998) Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev. Neurosci. 20, 1–18.

    Article  PubMed  CAS  Google Scholar 

  101. Mogenson, G.J., Brudzynski, S.M., Wu, M., Yang, C.R., and Yim, C.C.Y. (1993) From motiviation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-pedunculopontine nucleus circuitries involved in limbic-motor integration, in Limbic Motor Circuits and Neuropsychiatry (Kalivas, P.W. and Barnes, C.D., eds.), CRC Press, Boca Raton, pp. 193–236.

    Google Scholar 

  102. Groenewegen, H.J., Wright, C.I., and Beijer, A.V.J. (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? in Progress in Brain Research (Holstege, G., Bandler, R., and Saper, C.P., eds.), Amsterdam, Elsevier Science, pp. 485–511.

    Google Scholar 

  103. Schultz, W., Dayan, P., and Montague, P.R. (1997) A neural substrate of prediction and reward [review]. Science 275, 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  104. Ljungberg, T., Apicella, P., and Schultz, W. (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163.

    PubMed  CAS  Google Scholar 

  105. Parent, A. and Hazrati, L.N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamocortical loop. Brain Res. Brain Res. Rev. 20, 91–127.

    Article  PubMed  CAS  Google Scholar 

  106. Sherman, S.M. and Guillery, R.W. (1996) Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395.

    PubMed  CAS  Google Scholar 

  107. Pare, D., Curro’Dossi, R., and Steriade, M. (1990) Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35, 217–226.

    Article  PubMed  CAS  Google Scholar 

  108. Jones, E.G. (1998) The thalamus of primates, in The Primate Nervous System, Part II, Vol. 14 (Bloom, F. E., Björklund, A., and Hökfelt, T., eds.), Elsevier Science, Amsterdam, pp. 1–298.

    Chapter  Google Scholar 

  109. Contreras, D. and Steriade, M. (1997) Synchronization of low-frequency rhythms in corticothalamic networks. Neuroscience 76, 11–24.

    Article  PubMed  CAS  Google Scholar 

  110. Steriade, M. (1999) Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci. 22, 337–345.

    Article  PubMed  CAS  Google Scholar 

  111. Destexhe, A., Contreras, D., and Steriade, M. (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016.

    PubMed  CAS  Google Scholar 

  112. Bal, T., Debay, D., and Destexhe, A. (2000) Cortical feedback controls the frequency and synchrony of oscillation in the visual thalamus. J. Neurosci. 20, 7478–7488.

    PubMed  CAS  Google Scholar 

  113. Catsman-Berrevoets, C.E. and Kuypers, H.G. (1978) Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey. Brain Res. 154, 359–365.

    Article  PubMed  CAS  Google Scholar 

  114. Deschenes, M., Veinante, P., and Zhang, Z.W. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res. Brain Res. Rev. 28, 286–308.

    Article  PubMed  CAS  Google Scholar 

  115. Murphy, P.C. and Sillito, A.M. (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J. Neurosci. 16. 1180–1192.

    PubMed  CAS  Google Scholar 

  116. Hoogland, P.V., Welker, E., and Van der Loos, H. (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Exp. Brain Res. 68, 73–87.

    Article  PubMed  CAS  Google Scholar 

  117. Darian-Smith, C., Tan, A., and Edwards, S. (1999) Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J. Comp. Neurol. 410, 211–234.

    Article  PubMed  CAS  Google Scholar 

  118. Jones, E.G. and Wise, S.P. (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J. Comp. Neurol. 175, 391–438.

    Article  PubMed  CAS  Google Scholar 

  119. Giguere, M. and Goldman-Rakic, P.S. (1988) Mediodorsal nucleus: area 1 laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J. Comp. Neurol. 277, 195–213.

    Article  PubMed  CAS  Google Scholar 

  120. Arikuni, T. and Kubota, K. (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel. J. Comp. Neurol. 244, 492–510.

    Article  PubMed  CAS  Google Scholar 

  121. Chmielowska, J. and Pons, T.P. (1995) Patterns of thalamocortical degeneration after ablation of somatosensory cortex in monkeys. J. Comp. Neurol. 360, 377–392.

    Article  PubMed  CAS  Google Scholar 

  122. Destexhe, A., Contreras, D., and Steriade, M. (1999) Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience 92, 427–443.

    Article  PubMed  CAS  Google Scholar 

  123. Ray, J.P. and Price, J.L. (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in Macaque monkeys. J. Comp. Neurol. 337, 1–31.

    Article  PubMed  CAS  Google Scholar 

  124. Russchen, F.T., Amaral, D.G., and Price, J.L. (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J. Comp. Neurol. 256, 175–210.

    Article  PubMed  CAS  Google Scholar 

  125. Nakajima, S. (1984) Serotonergic mediation of habenular self-stimulation in the rat. Pharmacol. Biochem. Behav. 20, 859–862.

    Article  PubMed  CAS  Google Scholar 

  126. McFarland, N.R. and Haber, S.N. (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections linking multiple frontal cortical areas. J. Neurosci. 22, 8117–8132.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haber, S.N. (2003). Integrating Cognition and Motivation into the Basal Ganglia Pathways of Action. In: Bédard, MA., Agid, Y., Chouinard, S., Fahn, S., Korczyn, A.D., Lespérance, P. (eds) Mental and Behavioral Dysfunction in Movement Disorders. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-326-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-326-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-372-5

  • Online ISBN: 978-1-59259-326-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics