Skip to main content

Induction and Reversal of Cognitive Deficits in a Primate Model of Huntington’s Disease

  • Chapter
  • 196 Accesses

Abstract

Huntington’s disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder characterized by involuntary choreiform movements, progressive cognitive decline, psychiatric manifestations, and a neuronal degeneration primarily affecting the striatum. Neuropathological examination indicates that striatal y-amino butyric acid (GABA)ergic projecting neurons are preferentially affected, whereas striatal interneurons are relatively spared (1). The gene responsible for the disease (IT15) has been cloned, and the molecular abnormality has been identified as an expanded polyglutamine tract in the N-terminal region of a protein of unknown function, named huntingtin (2). Recent studies showed that huntingtin interacts with a number of proteins; some of them with well identified functions. Thus, it has been suggested that alterations in glycolysis, vesicle trafficking, or apoptosis may play a role in the physiopathology of HD (3–6). Other data derived from positron emission tomography, magnetic resonance spectroscopy, and postmortem biochemistry, showing evidences for a defect in succinate oxidation, have suggested the potential implication of a primary impairment of mitochondrial energy metabolism (6). Based on this mitochondrial hypothesis, phenotypic animal models of HD have been elaborated both in rodents and nonhuman primates, employing a chronic blockade of succinate oxidation by systemic administration of the mitochondrial toxin, 3-nitropropionic acid (3-NP) (7–11). Historically, initial experimental studies in nonhuman primates used unilateral striatal injections of glutamatergic agonists, such as quinolinic and ibotenic acid, to induce abnormal movements. More recently, experimental studies used a systemic injection of 3-NP in nonhuman primates to induce both choreiform and dystonic movements associated with bilateral selective striatal lesions ressembling those observed in HD (12).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harper, P.S. (1991) Huntington’s Disease (Harper, P.S., ed.), WB Saunders Company Ltd, London.

    Google Scholar 

  2. The Huntington’s Disease Collaborative Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  3. Wellington, C.L., Brinkman, R.R., O’Kursky, J.R., and Hayden, M.R. (1997) Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol. 7, 979–1002.

    Article  Google Scholar 

  4. Li, X.J., Sharp, A.H., Li, S.H., Dawson, T.M., Snyder, S.H., and Ross, C.A. (1996) Huntingtin-associated protein (HAP 1): discrete neuronal localization resemble those of neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. USA 93, 4839–4844.

    Article  PubMed  CAS  Google Scholar 

  5. Burke, J.R., Enghild, J.J., Martin, M.E., et al. (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat. Med. 2, 347–350.

    Article  PubMed  CAS  Google Scholar 

  6. Brouillet, E., Condé, F., Beal, M.F., and Hantraye, P. (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog. Neurobiol. 59, 427–468.

    Article  PubMed  CAS  Google Scholar 

  7. Beal, M.F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31, 119–130.

    Article  PubMed  CAS  Google Scholar 

  8. Beal, M.F., Brouillet, E., Jenkins, B., et al. (1993) Neurochemical and histological characterization of the striatal excitotoxic lesions produced by the mitochondrial toxins 3-nitropropionic acid. J. Neurosci. 13, 1481–1492.

    Google Scholar 

  9. Brouillet, E., Jenkins, B., Hyman, B., et al. (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60, 356–359.

    Article  PubMed  CAS  Google Scholar 

  10. Guyot, M.-C., Hantraye, P., Dolan, R., Palfi, S., Mazière, M., and Brouillet, E. (1997) Quantifiable bradykinesia, gait abnormalities and Huntington’s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience 79, 45–56.

    Article  PubMed  CAS  Google Scholar 

  11. Ouary, S., Bizat, N., Alterac, S., et al. (2000) Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97, 521–530.

    Article  PubMed  CAS  Google Scholar 

  12. Brouillet, E., Hantraye, P., Ferrante, R.J., et al. (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. USA 92, 7105–7109.

    Article  PubMed  CAS  Google Scholar 

  13. McHugh, P.R. and Folstein, M.F. (1975) Psychiatric syndromes of Huntington’s chorea: a clinical and phenomenologic study, in Psychiatric Aspects of Neurologic Diseases (Benson, D.F. and Blumer, D., eds.), Grune & Stratton, New York, pp. 267–285.

    Google Scholar 

  14. Albert, M.L. (1978) Subcortical dementia, in Alzheimer’s Disease: Senile Dementia and Related Disorders (Katzman, R., Terry, R.D., and Bick, K.L., eds.), Raven Press, New York, pp. 173–180.

    Google Scholar 

  15. Albert, M.L., Feldman, R.G., and Willis, A.L. (1974) The “subcortical dementia” of progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 37, 121–130.

    Article  PubMed  CAS  Google Scholar 

  16. Cummings, J.L. (1993) Frontal-subcortical circuits and human behavior. Arch: Neurol. 50, 873–880.

    Article  CAS  Google Scholar 

  17. Butters, N., Sax, D., Montgomery, K., and Tarlow, S. (1978) Comparison of the neuropsychological deficits associated with early and advanced Huntington’s disease. Arch. Neurol. 35, 585–589.

    Article  PubMed  CAS  Google Scholar 

  18. Brandt, J., Folstein, S.E., and Folstein, M.F. (1988) Differential cognitive impairment in Alzheimer’s disease and Huntington’s disease. Ann. Neurol. 23, 555–561.

    Article  PubMed  CAS  Google Scholar 

  19. Pillon, B., Dubois, B., Ploska, A., and Agid, Y. (1991) Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s, and Parkinson’s diseases and progressive supranuclear palsy. Neurology 41, 634–643.

    Article  PubMed  CAS  Google Scholar 

  20. Alexander, G.M., De Long, M.R., and Strick, P.L. (1986) Parallel organization of functionnally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9, 357–381.

    Article  PubMed  CAS  Google Scholar 

  21. Parent, A. (1990) Extrinsic connections of the basal ganglia. Trends Neurosci. 13, 254–258.

    Article  PubMed  CAS  Google Scholar 

  22. Lawrence, A.D., Sahakian, B.J., Hodges, J.R., Rosser, A.E., Lange, K.W., and Robbins, T.W. (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 191, 633–1645.

    Google Scholar 

  23. Josiassen, R.C., Curry, L.M., and Mancall, E.L. (1983) Development of neuropsychological deficits in Huntington’s disease. Arch. Neurol. 40, 791–796.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts, A.C., De Salvia, M.A., Wilkinson, L.S., et al. (1994) 6-hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J. Neurosci. 14, 2531–2544.

    Google Scholar 

  25. Mendez, M.F., Astorna, N.E., and Skoog-Lewandowski, K. (1989) Neurobehavioral changes associated with caudate lesions. Neurology 39, 349–355.

    Article  PubMed  CAS  Google Scholar 

  26. Weinberger, D.R., Berman, K.F., Iadarola, M., Driesen, N., and Zec, R.F. (1988) Prefrontal cortical blood flow and cognitive function in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 51, 94–104.

    Article  PubMed  CAS  Google Scholar 

  27. Hantraye, P., Riche, D., Mazière, M., and Isacson, O. (1990) An experimental primate model of Huntington’s disease: anatomical and behavioural studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp. Neurol. 108, 91–104.

    Article  PubMed  CAS  Google Scholar 

  28. Diamond, A. (1990) Developmental time course in human infants and infant monkeys, and the neural bases of inhibitory control in reaching. Ann. NY Acad. Sci. 608, 637–669.

    Article  PubMed  CAS  Google Scholar 

  29. Palfi, S., Ferrante, R.J., Brouillet, E., et al. (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J. Neurosci. 16, 3019–3025.

    PubMed  CAS  Google Scholar 

  30. Palfi, S., Condé, F., Riche, D., et al. (1998) Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat. Med. 4, 963–966.

    Article  PubMed  CAS  Google Scholar 

  31. Diamond, A. and Goldman-Rakic, P.S. (1985) Evidence for involvement of prefrontal cortex in cognitive changes during the first year of life: comparison of performances of human infant and rhesus monkeys on a detour task with transparent barrier. Soc. Neurosci. Abstr. 11, 832.

    Google Scholar 

  32. Diamond, A., Zola-Morgan, S., and Squire, L.R. (1989) Successful performance by monkeys with lesions of the hippocampal formation on AB- and object retrieval, two tasks that mark developmental changes in human infants. Behav. Neurosci. 103, 526–537.

    Article  PubMed  CAS  Google Scholar 

  33. Taylor, J.R., Elsworth, J.D., Roth, R.H., Sladek, J.R. Jr., and Redmond, D.E. Jr. (1990a) Improvements in MPTPinduced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. Prog. Brain Res. 82, 543–559.

    Article  PubMed  CAS  Google Scholar 

  34. Taylor, J.R., Elsworth, J.D., Roth, R.H., Sladek, J.R. Jr., and Redmond, D.E. Jr. (1990b) Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 113, 617–637.

    Article  PubMed  Google Scholar 

  35. Schneider, J.S. (1992) Behavioral and neuropathological consequences of chronic exposure to low doses of the dopaminergic neurotoxin MPTP, in The Vulnerable Brain and Environmental Risks (Isaacson, R.L. and Jensen, K.F., eds.), Plenum Press, New York, pp. 293–308.

    Chapter  Google Scholar 

  36. Peschanski, M., Césaro, P., and Hantraye, P. (1995) Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington’s disease. Neuroscience 68, 273–285.

    Article  PubMed  CAS  Google Scholar 

  37. Hantraye, P., Riche, D., Mazière, M., and Isacson, O. (1992) Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 89, 4187–4191.

    Article  PubMed  CAS  Google Scholar 

  38. Kendall, L.A., Rayment, F.D., Torres, E.M., Baker, H.F., Ridley, R.M., and Dunnett, S.B. (1998) Functional integration of striatal allografts in a primate model of Huntington’s disease. Nat. Med. 4, 727–729.

    Article  PubMed  CAS  Google Scholar 

  39. Selemon, L.D. and Goldman-Rakic, P.S. (1985) Longitudinal topography and interdigitation of corticostriatal projections in the Rhesus monkey. J. Neurosci. 5, 776–794.

    PubMed  CAS  Google Scholar 

  40. Künzle, H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res. 88, 195–209.

    Article  PubMed  Google Scholar 

  41. Dunnett, S.B. and Iversen, S.D. (1981) Learning impairments following selective kainic acid induced lesions within the neostriatum of rats. Behav. Brain Res. 2, 189–209.

    Article  PubMed  CAS  Google Scholar 

  42. Bachoud-Levi, A.C., Rémy, P., Nguyen, J.P., et al. (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356. 1975–1979.

    Article  PubMed  CAS  Google Scholar 

  43. Emerich, D.F., Lindner, M.D., Winn, S.R., Chen, E.Y., Frydel, B.R., and Kordower, J.H. (1996) Implants of encapsulated CNTF-producing fibroblasts prevent biological deficits and striatal degeneration in a rodent model of Huntington’s disease. J. Neurosci. 16, 5168–5181.

    PubMed  CAS  Google Scholar 

  44. Emerich, D.F., Winn, R.S., Hantraye, P.M., et al. (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386, 395–399.

    Article  PubMed  CAS  Google Scholar 

  45. Mittoux, V., Joseph, J.M., Condé, F., et al. (2000). Restoration of cognitive and motor functions with ciliary neurotrophic factor in a primate model of Huntington’s disease. Hum. Gene Ther. 11, 1177–1187.

    Article  PubMed  CAS  Google Scholar 

  46. Anderson, K.D., Panayotatos, N., Cordoran, T.L., Lindsay, R.M., and Wiegan, S.J. (1996) Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 93, 7346–7351.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palfi, S., Brouillet, E., Condé, F., Hantraye, P. (2003). Induction and Reversal of Cognitive Deficits in a Primate Model of Huntington’s Disease. In: Bédard, MA., Agid, Y., Chouinard, S., Fahn, S., Korczyn, A.D., Lespérance, P. (eds) Mental and Behavioral Dysfunction in Movement Disorders. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-326-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-326-2_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-372-5

  • Online ISBN: 978-1-59259-326-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics