Skip to main content

Camptothecin Radiation Sensitization

  • Chapter
Book cover Chemoradiation in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 129 Accesses

Abstract

The camptothecin analog CPT-11 has recently been approved for the treatment of 5-fluorouracil (5-FU)-resistant colorectal cancer (1), thus opening a new chapter in chemotherapeutic radiation sensitization. The camptothecins (CPT) are potent radiation sensitizers and are in their infancy in clinical studies. The combination of CPT with irradiation builds onto successful radiation-sensitization trials with 5-FU (2), because both classes of agents are cytotoxic for S-phase cells. They each have a defined role in the treatment of colorectal cancer, a site where radiation sensitization has improved local-regional control and overall survival (Table 1). Radiation sensitization with these agents is dose and schedule dependent and additional knowledge about this combination treatment, based on new laboratory data, may help optimize the use of the CPTs as radiosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rich TA, Kirichenko AV. Camptothecin radiation sensitization: mechanisms, schedules, and timing. Oncology (Huntingt) 1998; 12 (8 Suppl 6): 114–120.

    CAS  Google Scholar 

  2. Rich TA. Irradiation Plus 5-Fluorouracil: Cellular Mechanisms of Action and Treatment Schedules. Semin Radiat Oncol 1997; 7 (4): 267–273.

    Article  PubMed  Google Scholar 

  3. Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG. Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 1972; 56 (1): 95–101.

    PubMed  CAS  Google Scholar 

  4. Muggia FM, Creaven PJ, Hansen HH, Cohen MH, Selawry OS. Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical studies. Cancer Chemother Rep 1972; 56 (4): 515–521.

    PubMed  CAS  Google Scholar 

  5. Kunimoto T, Nitta K, Tanaka T, et al. Antitumor activity of 7-ethyl-l0-[4-(1-piperidino)-1piperidinolcarbonyloxy-camptothec in, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res 1987; 47 (22): 5944–5947.

    PubMed  CAS  Google Scholar 

  6. Kawato Y, Furuta T, Aonurna M, Yasuoka M, Yokokura T, Matsumoto K. Antitumor activity of a camptothecin derivative, CPT-11, against human tumor xenografts in nude mice. Cancer Chemother Pharmacol 1991; 28 (3): 192–198.

    Article  PubMed  CAS  Google Scholar 

  7. Rothenberg ML. Topoisomerase I inhibitors: review and update. Ann Oncol 1997; 8 (9): 837–855.

    Article  PubMed  CAS  Google Scholar 

  8. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. Mechanism of action of camptothecin. Ann NYAcad Sci 2000; 922: 1–10.

    Article  CAS  Google Scholar 

  9. Desai SD, Mao Y, Sun M, Li TK, Wu J, Liu LF. Ubiquitin, SUMO-1, and UCRP in camptothecin sensitivity and resistance. Ann NYAcad Sci 2000; 922: 306–308.

    Article  CAS  Google Scholar 

  10. Kohn KW, Pommier Y. Molecular and biological determinants of the cytotoxic actions of camptothecins. Perspective for the development of new topoisomerase I inhibitors. Ann NYAcad Sci 2000; 922: 11–26.

    Article  CAS  Google Scholar 

  11. Giovanella BC, Harris N, Mendoza J, Cao Z, Liehr J, Stehlin JS. Dependence of anticancer activity of camptothecins on maintaining their lactone function. Ann NYAcad Sci 2000; 922: 27–35.

    Article  CAS  Google Scholar 

  12. Takimoto CH. Why drugs fail: of mice and men revisited. Clin Cancer Res 2001; 7 (2): 229–230.

    PubMed  CAS  Google Scholar 

  13. Rothenberg ML, Cox JV, DeVore RF, et al. A multicenter, phase II trial of weekly irinotecan (CPT-11) in patients with previously treated colorectal carcinoma. Cancer 1999; 85 (4): 786–795.

    Article  PubMed  CAS  Google Scholar 

  14. Rothenberg ML. The current status of irinotecan (CPT-11) in the United States. Ann N YAcad Sci 1996; 803: 272–281.

    Article  CAS  Google Scholar 

  15. Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 1985; 260 (27): 14873–14878.

    PubMed  CAS  Google Scholar 

  16. Drengler RL, Kuhn JG, Schaaf LJ, et al. Phase I and pharmacokinetic trial of oral irinotecan administered daily for 5 days every 3 weeks in patients with solid tumors. J Clin Oncol 1999; 17 (2): 685–696.

    PubMed  CAS  Google Scholar 

  17. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 1994; 54 (14): 3723–3725.

    PubMed  CAS  Google Scholar 

  18. Rivory LP, Riou JF, Haaz MC, et al. Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res 1996; 56 (16): 3689–3694.

    PubMed  CAS  Google Scholar 

  19. Chastagner P, Merlin JL, Marchal C, et al. In vivo potentiation of radiation response by topotecan in human rhabdomyosarcoma xenografted into nude mice. Clin Cancer Res 2000; 6 (8): 3327–3333.

    PubMed  CAS  Google Scholar 

  20. Hennequin C, Giocanti N, Balosso J, Favaudon V. Interaction of ionizing radiation with the topoisomerase I poison camptothecin in growing V-79 and HeLa cells. Cancer Res 1994; 54(7):1720–1728.

    PubMed  CAS  Google Scholar 

  21. Kirichenko AV, Travis EL, Rich TA. Radiation enhancement by 9-aminocamptothecin. Evidence for improved therapeutic ratio with a multiple dose schedule. Ann NYAcad Sci 1996; 803: 312–314.

    Article  CAS  Google Scholar 

  22. Kirichenko AV, Rich TA, Newman RA, Travis EL. Potentiation of murine MCa-4 carcinoma radioresponse by 9-amino-20(S)-camptothecin. Cancer Res 1997; 57 (10): 1929–1933.

    PubMed  CAS  Google Scholar 

  23. Mattem MR, Hofmann GA, McCabe FL, Johnson RK. Synergistic cell killing by ionizing radiation and topoisomerase I inhibitor topotecan (SKF 104864). Cancer Res 1991; 51 (21): 5813–5816.

    Google Scholar 

  24. Zanier R, De Salvia R, Fiore M, Degrassi F. Topoisomerase I activity and cellular response to radiation in Chinese hamster cells. Int J Radiat Biol 1996; 70 (3): 251–259.

    Article  PubMed  CAS  Google Scholar 

  25. Huang TT, Wuerzberger-Davis SM, Seufzer BJ, et al. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem 2000; 275 (13): 9501–9509.

    Article  PubMed  CAS  Google Scholar 

  26. Kirichenko AV, Rich TA. Radiation enhancement by 9-aminocamptothecin: the effect of fractionation and timing of administration. Int J Radiat Oncol Biol Phys 1999; 44 (3): 659–664.

    Article  PubMed  CAS  Google Scholar 

  27. Furman WL, Stewart CF, Poquette CA, et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 1999; 17 (6): 1815–1824.

    PubMed  CAS  Google Scholar 

  28. Rodriguez-Galindo C, Radomski K, Stewart CF, Furman W, Santana VM, Houghton Pi. Clinical use of topoisomerase I inhibitors in anticancer treatment. Med Pediatr Oncol 2000; 35 (4): 385–402.

    Article  PubMed  CAS  Google Scholar 

  29. Ohdo S, Makinosumi T, Ishizaki T, et al. Cell cycle-dependent chronotoxicity of irinotecan hydrochloride in mice. J Pharmacol Exp Ther 1997; 283 (3): 1383–1388.

    PubMed  CAS  Google Scholar 

  30. Kirichenko AV, Mason K, Straume M, Teates CD, Rich TA. Nuclear scintigraphic assessment of intestinal dysfunction after combined treatment with 9-amino-20(S)-camptothecin (9-AC) and irradiation. Int J Radiat Oncol Biol Phys 2000; 47 (4): 1043–1049.

    Article  PubMed  CAS  Google Scholar 

  31. Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH. The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst 1993; 85 (4): 271–291.

    Article  PubMed  CAS  Google Scholar 

  32. O’Dwyer PJ, LaCreta FP, Haas NB, et al. Clinical, pharmacokinetic and biological studies of topotecan. Cancer Chemother Pharmacol 1994; 34 Suppl:S46–S52.

    Article  PubMed  Google Scholar 

  33. Perez-Soler R, Glisson BS, Lee JS, et al. Treatment of patients with small-cell lung cancer refractory to etoposide and cisplatin with the topoisomerase I poison topotecan. J Clin Oncol 1996; 14 (10): 2785–2790.

    PubMed  CAS  Google Scholar 

  34. Perez-Soler R, Fossella FV, Glisson BS, et al. Phase II study of topotecan in patients with advanced nonsmall-cell lung cancer previously untreated with chemotherapy. J Clin Oncol 1996; 14 (2): 503–513.

    PubMed  CAS  Google Scholar 

  35. Robert F, Soong SJ, Wheeler RH. A phase II study of topotecan in patients with recurrent head and neck cancer. Identification of an active new agent. Am J Clin Oncol 1997; 20 (3): 298–302.

    Article  PubMed  CAS  Google Scholar 

  36. Lamond JP, Wang M, Kinsella TJ, Boothman DA. Concentration and timing dependence of lethality enhancement between topotecan, a topoisomerase I inhibitor, and ionizing radiation. Int JRadiat Oncol Biol Phys 1996; 36 (2): 361–368.

    Article  CAS  Google Scholar 

  37. Kim JH, Kim SH, Kolozsvary A, Khil MS. Potentiation of radiation response in human carcinoma cells in vitro and murine fibrosarcoma in vivo by topotecan, an inhibitor of DNA topoisomerase I. Int J Radiat Oncol Biol Phys 1992; 22 (3): 515–518.

    Article  PubMed  CAS  Google Scholar 

  38. Boscia RE, Korbut T, Holden SA, Ara G, Teicher BA. Interaction of topoisomerase I inhibitors with radiation in cis-diamminedichloroplatinum(II)-sensitive and -resistant cells in vitro and in the FSAIIC fibrosarcoma in vivo. Int J Cancer 1993; 53 (1): 118–123.

    Article  PubMed  CAS  Google Scholar 

  39. Graham MV, Jahanzeb M, Dresler CM, Cooper JD, Emami B, Mortimer JE. Results of a trial with topotecan dose escalation and concurrent thoracic radiation therapy for locally advanced, inoperable nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys 1996; 36 (5): 1215–1220.

    Article  PubMed  CAS  Google Scholar 

  40. Rothenberg ML, Blanke CD. Topoisomerase I inhibitors in the treatment of colorectal cancer. Semin Oncol 1999; 26 (6): 632–639.

    PubMed  CAS  Google Scholar 

  41. Takeda K, Negoro S, Kudoh S, et al. Phase UII study of weekly irinotecan and concurrent radiation therapy for locally advanced non-small cell lung cancer. Br J Cancer 1999; 79 (9–10): 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  42. Tamura K, Takada M, Kawase I, et al. Enhancement of tumor radio-response by irinotecan in human lung tumor xenografts. Jpn J Cancer Res 1997; 88 (2): 218–223.

    Article  PubMed  CAS  Google Scholar 

  43. Omura M, Torigoe S, Kubota N. SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiother Oncol 1997; 43 (2): 197–201.

    Article  PubMed  CAS  Google Scholar 

  44. Pantazis P, Harris N, Mendoza J, Giovanella B. Conversion of 9-nitro-camptothecin to 9-aminocamptothecin by human blood cells in vitro. Eur J Haematol 1994; 53 (4): 246–248.

    Article  PubMed  CAS  Google Scholar 

  45. Bernacki RJ, Pera P, Gambacorta P, Brun Y, Greco WR. In vitro antitumor activity of 9-nitrocamptothecin as a single agent and in combination with other antitumor drugs. Ann N YAcad Sci 2000; 922: 293–297.

    Article  CAS  Google Scholar 

  46. Kobayashi K, Shinbara A, Kamimura M, et al. Irinotecan (CPT-11) in combination with weekly administration of cisplatin (CDDP) for non-small-cell lung cancer. Cancer Chemother Pharmacol 1998; 42 (1): 53–58.

    Article  PubMed  CAS  Google Scholar 

  47. Fukuoka M, Masuda N, Kudoh S, Negoro S. Irinotecan in small-cell lung cancer-Japanese trials. Oncology (Huntingt) 2000; 14 (7 Suppl 5): 57–62.

    CAS  Google Scholar 

  48. Komaki R, Janjan NA, Ajani JA, et al. Phase I study of irinotecan and concurrent radiation therapy for upper GI tumors. Oncology (Huntingt) 2000; 14 (12 Suppl 14): 34–37.

    CAS  Google Scholar 

  49. Mitchell EP. Irinotecan in preoperative combined-modality therapy for locally advanced rectal cancer. Oncology (Huntingt) 2000; 14 (12 Suppl 14): 56–59.

    CAS  Google Scholar 

  50. Saltz LB. Clinical Use of Irinotecan: Current Status and Future Considerations. Oncologist 1997; 2 (6): 402–409.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rich, T.A. (2003). Camptothecin Radiation Sensitization. In: Choy, H. (eds) Chemoradiation in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-325-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-325-5_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-313-8

  • Online ISBN: 978-1-59259-325-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics