Skip to main content

Fluoropyrimidines as Radiation Sensitizers

  • Chapter
Chemoradiation in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 127 Accesses

Abstract

Radiation sensitization with concurrent chemotherapy with an aim to improve radioresponse has long been a focus of investigation. As a result of these efforts, the concomitant use of cytostatic drugs and radiation has become the standard approach for many tumors including head and neck, rectal, anal, esophageal, pancreatic, and gastric cancers. The combined chemoradiation offers many potential advantages vs single modality treatment, such as reduction in local failure rates, eradication of micrometastases to enhance distant control, preservation of organ function, and decrease in tumor bulk prior to surgery to make complete resection possible and improve survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moertel CG, Frytak S, Hahn RG, et al. Therapy of locally unresectable pancreatic carcinoma: A randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation +5-fluorouracil. Cancer 1981; 48: 1705–1710.

    Article  PubMed  CAS  Google Scholar 

  2. Gastrointestinal Tumor Study Group. Prolongation of the disease-free interval in surgically treated rectal carcinoma. N Eng J Med 1985; 312: 1465–1472.

    Article  Google Scholar 

  3. Krook JE, Moertel CG, Gunderson LL, et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Eng J Med 1991; 324: 709–715.

    Article  CAS  Google Scholar 

  4. Minsky BD, Cohen AM, Kemeny N, et al. Enhancement of radiation-induced downstaging of rectal cancer by fluorouracil and high-dose leucovorin chemotherapy. J Clin Oncol 1992; 10: 79–84.

    PubMed  CAS  Google Scholar 

  5. Ensminger WD, Rosowsky A, Raso V, et al. A clinical pharmacological evaluation of hepatic arterial infusions of 5-fluoro-2’-deoxyuridine and 5-fluorouracil. Cancer Res 1978; 38: 3784–3792.

    PubMed  CAS  Google Scholar 

  6. Byfield JE, Barone RM, Frankel SS, et al. Treatment with combined intra-arterial 5-FUdR infusion and whole-liver radiation for colon carcinoma metastatic to the liver. Am J Clin Oncol 1984; 7: 319–325.

    Article  PubMed  CAS  Google Scholar 

  7. Raju PI, Maruyama Y, DeSimone P, et al. Treatment of liver metastases with a combination of chemotherapy and hyperfractionated external radiation therapy. Am J Clin Oncol 1987; 10: 41–43.

    Article  PubMed  CAS  Google Scholar 

  8. Lawrence TS, Tepper JE, Blackstock AW. Flouropyrimidine-radiation interaction in cells and tumors. Semin Radiat Oncol 1997; 7: 260–266.

    Article  PubMed  Google Scholar 

  9. Monreal M, Davant E. Thrombotic complications of central venous catheters in cancer patients. Acta Haematol 2001; 106 (1–2): 69–72.

    Article  PubMed  CAS  Google Scholar 

  10. Daher GC, Harris BE, Diasio RB. Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther 1990; 48: 189–222.

    Article  PubMed  CAS  Google Scholar 

  11. Parker WB, Cheg YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther 1990; 48: 381–395.

    Article  PubMed  CAS  Google Scholar 

  12. Miller EM, Kinsella TJ. Radiosensitization by fluorodeoxyuridine: Effects of thymidylate synthase inhibition and cell synchronization. Cancer Res 1992; 52: 1687–1694.

    PubMed  CAS  Google Scholar 

  13. Heimburger DK, Shewach DS, Lawrence TS. The effect of fluorodeoxyuridine on sublethal damage repair in human colon cancer cells. Int J Radiat Oncol Biol Phys 1991; 21: 983–987.

    Article  PubMed  CAS  Google Scholar 

  14. Kufe DW, Scott P, Fram R, et al. Biologic effect of 5-fluoro-2’-deoxyuridine incorporation in L1210 deoxyribonucleic acid. Biochem Pharmcol 1983; 32: 1337–1340.

    Article  CAS  Google Scholar 

  15. Danenberg PV, Heidelberger C, Mulkins MA, et al. The incorporation of 5-fluoro-2’-deoxyuridine into DNA of mammalian tumor cells. Biochem Biophys Res Commun 1981; 102: 654–658.

    Article  PubMed  CAS  Google Scholar 

  16. Goel R, Cleary SM, Horton C, et al. Selective intraperitoneal biochemical modulation of methotrexate by dipyridamole. J Clin Oncol 1989; 7: 262–269.

    PubMed  CAS  Google Scholar 

  17. Wilkinson DS, Pitot HC. Inhibition of ribosomal ribonucleic acid maturation in Novikoff hepatoma cells by 5-fluorouracil and 5-fluorouridine. J Biol Chem 1973; 248: 63–68.

    PubMed  CAS  Google Scholar 

  18. Greenhalgh DA, Parish JH. Effect of 5-fluorouracil combination therapy on RNA processing in human colonic carcinoma cells. Br J Cancer 1990; 61: 415–419.

    Article  PubMed  CAS  Google Scholar 

  19. Iwata T, Watanabe T, Kufe DW. Effects of 5-fluorouracil on globin mRNA synthesis in murine erythroleukemia cells. Biochemistry 1986; 25: 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  20. Dolnick BJ, Pink JJ. Effects of 5-fluorouracil in dihydrofolate reductase and dihydrofolate reductase mRNA from methotrexate-resistant KB cells. J Biol Chem 1985; 260: 3006–3014.

    PubMed  CAS  Google Scholar 

  21. Houghton JA, Houghton P, Wooten RS. Mechanism of induction of gastrointestinal toxicity in the mouse by 5-fluorouracil, 5-fluorourdine, and 5-fluoro-2’-deoxyuridine. Cancer Res 1979; 39: 2406–2413.

    PubMed  CAS  Google Scholar 

  22. Chu E, Zinn S. Boarman D, et al. Interaction of gamma interferon and 5-fluorouracil in the H630 human colon carinoma cell line. Cancer Res 1990; 50: 5834–5840.

    PubMed  CAS  Google Scholar 

  23. Wadler S, Wersto R, Weinberg V, et al. Interaction of fluorouracil and interferon in human colon cancer cell lines: Cytotoxic and cytokinetic effects. Cancer Res 1990; 50: 5735–5739.

    PubMed  CAS  Google Scholar 

  24. Grem, JL, Mulcahy T, Miller EM, et al. Interaction of deoxyuridine with fluorouracil and dipyridamole in a human colon cancer cell line. Biochem Pharmacol 1989; 38: 51–59.

    Article  PubMed  CAS  Google Scholar 

  25. Curtin NJ, Harris AL, Aherne GW. Mechanism of cell death following thymidylate synthase inhibition: 2-deoxyuridine-5-triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res 1991; 51: 2346–2352.

    PubMed  CAS  Google Scholar 

  26. Friedberg EC, Hanawalt PC (eds). DNA Repair, New York; Marcel Dekker, 1988.

    Google Scholar 

  27. Ingraham H. Dickey L, Goulian M. DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry 1986; 25: 3225–3230.

    Article  PubMed  CAS  Google Scholar 

  28. Hirota Y, Yoshioka A, Tanaka S, et al. Imbalance of deoxyribonucleoside triphosphates, DNA double-strand breaks and cell death caused by 2-chlorodeoxyadenosine in mouse FM3A cells. Cancer Res 1989; 49: 915–919.

    PubMed  CAS  Google Scholar 

  29. Yoshioka A. Tanaka S, Hiraoka O, et al. Deoxyribonucleoside triphosphate imbalance. 5-fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J Biol Chem 1987; 262: 8235–8241.

    PubMed  CAS  Google Scholar 

  30. Berger SH, Hakala MT. Relationship of dUMP and free FdUMP pools to inhibition of thymidylate synthase by 5-fluorouracil. Mol Pharmacol 1984; 25: 303–309.

    PubMed  CAS  Google Scholar 

  31. Sinclair WK. Cyclic X-ray responses in mammalian cells in vitro. Radiat Res 1968; 33: 620–643.

    Article  PubMed  CAS  Google Scholar 

  32. Terasima T, Tolmach Li. Variation in several responses of Hela cells to x-irradiation during the division cycle. Biophys J 1963; 3: 11–33.

    Article  PubMed  CAS  Google Scholar 

  33. Byfield JE, Sharp TR, Tang S, et al. Phase I and II trial of cyclical 5-day infused 5-fluorouracil and coincident radiation in advanced cancer of the head of neck. J Clin Oncol 1983; 2: 406–413.

    Google Scholar 

  34. Smalley SR, Kimler BF, Evans RG. 5-fluorouracil modulation of radiosensitivity in cultured human carcinoma cells. Int J Radiat Oncol Biol Phys 1991; 20: 207–211.

    Article  PubMed  CAS  Google Scholar 

  35. Lawrence TS, Davis M, Tang HY, et al. Fluorodeoxyuridine-mediated radiosensitization of human colon cancer cells is not caused by cell cycle redistribution. Proc AACR 1992; 33: 502, (abstr 3002).

    Google Scholar 

  36. Bruso CE, Shewach DS, Lawrence TS. Fluorodeoxyuridine-induced radiosensitization and inhibition of DNA double strand break repair in human colon cancer cells. Int J Radiat Oncol Biol Phys 1990; 19: 1411–1417.

    Article  PubMed  CAS  Google Scholar 

  37. Lawrence TS, Davis MA, Maybaum J, et al. The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res 1992; 52: 3698–3704.

    PubMed  CAS  Google Scholar 

  38. Chadwick M, Chang C. Comparative physiologic dispositions of 5-fluoro-2’-deoxyuridine and 5-fluorouracil in mice bearing solid L1210 lymphocytic leukemia. Cancer Treat Rep 1976; 60 (7): 845–855.

    PubMed  CAS  Google Scholar 

  39. Myers CE. The pharmacology of the fluoropyrimidines. Pharmacol Rev 1981; 33: 1–15.

    PubMed  CAS  Google Scholar 

  40. Byfield JE, Sharp TR, Frankel SS, et al. Phase I and pharmacologic study of 72-hour infused 5-fluorouracil in man. Amer J Clin Oncol 1985; 8: 429–440.

    Article  CAS  Google Scholar 

  41. Valerote F, Santelli G. 5-fluorouracil (FUra). Pharmacol Ther 1984; 24: 107–132.

    Article  Google Scholar 

  42. Byfield JE. 5-FU radiation sensitization. Invest New Drugs 1989; 7: 111–116.

    Article  PubMed  CAS  Google Scholar 

  43. Moertel CG, Schutt AJ, Reitemeier RJ, et al. A comparison of 5-fluorouracil administered by slow infusion and rapid injection. Cancer Res 1972; 32: 2717–2719.

    PubMed  CAS  Google Scholar 

  44. Seifert P, Baker LH, Reed ML, et al. A comparison of 5-fluorouracil administered by slow infusion and rapid injection. Cancer Res 1972; 32: 2717–2719.

    Google Scholar 

  45. Lokich J. Bothe A, Fine N, et al. Phase I study of protracted venous infusion of 5-fluorouracil. Cancer 1981; 48: 2565–2568.

    Article  PubMed  CAS  Google Scholar 

  46. Byfield JE. Theoretical basis and clinical applications of 5-fluorouracil used as a radiosensitizer. In: Rosenthal CJ, Rothman M (eds) Clinical Applications of Continuous Infusion Chemotherapy and Concomitant Radiation Therapy, Plenum Publishing Corp. New York, 1986, pp. 113–125.

    Chapter  Google Scholar 

  47. Byfield JE. The clinical use of 5-fluorouracil and other halopyrimidines as radiosensitizers in man. In: Lokich J (ed) Cancer Chemotherapy by Infusion. Precept Press, Chicago, 1987, pp. 479–501.

    Chapter  Google Scholar 

  48. Lowe SW, Schmitt EM, Smith SW, et al. p53 is required for radiation-inducted apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  PubMed  CAS  Google Scholar 

  49. Brachman DG, Beckett M, Graves D, et al. p53 mutation does not correlate with radiosensitivity n 24 head and neck cancer cell lines. Cancer Res 1993; 53: 3667–3669.

    PubMed  CAS  Google Scholar 

  50. Slichenmyer WJ, Nelson WG, Slebos RJ, et al. Loss of p53-associated GI checkpoint does not decrease cell survival following DNA damage. Cancer Res 1993; 53: 4164–4168.

    PubMed  CAS  Google Scholar 

  51. Zellars R, Naida J, Davis MA, et al. The effect of p53 overexpression on radiation sensitivity of human colon cancer cells. Radiat Oncol Investing 1997; 5: 43–49.

    Article  CAS  Google Scholar 

  52. Rodrigues NR, Rowan A, Smith MEF, et al. p53 mutations in colorectal cancer. Proc NatlAcad Sci USA 1990; 87: 7555–7559.

    Article  CAS  Google Scholar 

  53. Tishler RB, Calderwood SK, Coleman CN, et al. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res 1993; 53: 2212–2216, (suppl).

    PubMed  CAS  Google Scholar 

  54. Matsui S, Arrendondo A, Wrzosek C, et al. DNA damage and p53 induction do not cause ZD1694induced cell cycle arrest in human colon carcinoma cells. Cancer Res 1996; 56: 4715–4723.

    PubMed  CAS  Google Scholar 

  55. Huber BE, Austin EA, Richards CA, et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: Significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302–8306.

    Article  PubMed  CAS  Google Scholar 

  56. Khil MS, Kim JH, Mullen CA, et al. Radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells in culture transduced with cytosine deaminase gene. Clin Cancer Res 1996; 2: 53–57.

    PubMed  CAS  Google Scholar 

  57. Ng EY, Rehemtulla A, Laurence TS, et al. Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-flucytosine. Radiat Res Soc Proc 1977.

    Google Scholar 

  58. Hoff PM, Pazdur R, Benner SE, Canetta R. UFT and leucovorin: a review of its clinical development and therapeutic potential in the oral treatment of cancer. Anticancer Drugs 1998; 9: 479–490.

    PubMed  CAS  Google Scholar 

  59. Budman DR, Meropol NJ, Reigner B, et al. Preliminary studies of a novel oral fluoropyrimidine carbamate: capecitabine. J Clin Oncol 1998; 16: 1795–1802.

    PubMed  CAS  Google Scholar 

  60. Takahashi H, Yao K, Sawaki S, Kubota A, Tsukuda M, Miyake H, Horiuchi M, Takeyama I, Kikuchihara M, Kubota T, et al. Investigation of UFT and radiation combination therapy of head and neck cancer mainly in laryngeal cancer. Gan To Kagaku Ryoho 1990; 17: 2037–2042.

    PubMed  CAS  Google Scholar 

  61. Fujii M, Nameki H, Kawaura M, et al. A dose finding study of carboplatin (CBDCA) + UFT in head and neck cancer. Proc Am Soc Clin Oncol 1998; 18: 406a (abstr 1564).

    Google Scholar 

  62. Rivera F, Lopez-Brea M, Lopez-Vega J, Pascual C, Rubio A, et al. High activity of UFT vinorelbine and cisplatin (UFTVP) as induction chemotherapy for locally advanced squamous cell head and neck carcinoma (SCHNC). Proc Am Soc Clin Oncol 1997; 16: 386a (abstr 1376).

    Google Scholar 

  63. Gonzalez-Larriba J, Garcia Carbonero I, Sastre Valera J, Perez Segura P, Diaz-Rubino E. Neoadjuvant therapy with cisplatin/fluorouracil vs cisplatin/UFT in locally advanced squamous cell head and neck cancer. Oncology (Huntingt) 1997; 11 (9 Suppl 10): 90–97.

    CAS  Google Scholar 

  64. Ito H, Takeda Y, Uno T, et al. A Phase I/II trial of UFT and low-dose cisplatin plus concurrent thoracic radiotherapy (TRT) for resected P-N2 non-small cell lung cancer. Proc Am Soc Clin Oncol 1999; 18: 510a (abstr 1966).

    Google Scholar 

  65. Ichinose Y, Yano T, Asoh H, et al. UFT plus cisplatin with concurrent radiotherapy for locally advanced non-small-cell lung cancer. Oncology (Huntingt) 1999; 13 (7 Suppl 3): 98–101.

    CAS  Google Scholar 

  66. Tsukiyama I, Akine Y, Kajiura Y, et al. Radiation therapy for advanced gastric cancer. IntJRadiat Oncol Biol Phys 1988; 15: 123–127.

    Article  CAS  Google Scholar 

  67. Robert F, Raben D, Spencer S. UFT/oral calcium folinate plus radiation in pancreatic cancer. Oncology (Huntingt) 1999; 13 (7 Suppl 3): 127–128.

    CAS  Google Scholar 

  68. Hoff PM, Janjan N, Saad Ed, et al. Phase I study of preoperative oral uracil and tegafur plus leucovorin and radiation therapy in rectal cancer. J Clin Oncol 2000; 18: 3529–3534.

    PubMed  CAS  Google Scholar 

  69. de la Torre A, Ramos S, Valcarcel FJ, et al. Phase II study of radiochemotherapy with UFT and low-dose oral leucovorin in patients with unresectable rectal cancer. Int J Radiat Oncol Biol Phys 1999; 45: 629–634.

    Article  PubMed  Google Scholar 

  70. Sawada N, Ishikawa T, Sekiguchi F, Tanaka Y, Ishitsuka H. X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine in human xenografts. Clin Cancer Res 1999; 5 (10): 2948–2953.

    PubMed  CAS  Google Scholar 

  71. Dunst J, Reese T, Frings S. Phase I Study of Capecitabine Combined with Simultaneous Radiotherapy Rectal Cancer. ASCO 2001, 149a.

    Google Scholar 

  72. Yoon W-H, Choi J-H, Kim J-R, et al. Enhanced Tumoricidal Effect of Preoperative Chemoradiation Using Capecitabine for Locally Advanced Rectal Cancer. ASCO 2001, 104b.

    Google Scholar 

  73. Ben-Josef E, Vaishampayan UN, Vaitkevicius VK, et al. A Single Institution Experience with Concurrent Capecitabine and Radiation Therapy in Gastrointestinal Malignancies. ASCO 2001, 1436.

    Google Scholar 

  74. Byfield JE, Barone R, Mendelsohn J, et al. Infusional 5-fluorouracil and X-ray therapy for non-resectable esophageal cancer. Cancer 1980; 45: 703–708.

    Article  PubMed  CAS  Google Scholar 

  75. Coia LR, Engstrom PF, Paul AR, et al. Long-term results of infusional 5-FU, mitomycin-C, and radiation as primary management of esophageal carcinoma. Int J Radiat Oncol Biol Phys 1991; 20: 29–36.

    Article  PubMed  CAS  Google Scholar 

  76. Herskovic A, Martz K, al-Sarraf M, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 1992; 326: 1593–1598.

    Article  PubMed  CAS  Google Scholar 

  77. Al-Sarraf M, Pajak T, Herskovic A, et al. Progress report of combined chemo-radiotherapy (CT-RT) vs radiotherapy (RT) alone in patients with esophageal cancer. An intergroup study. Proc Annu Meet Am Soc Clin Oncol 1993; 12: 197.

    Google Scholar 

  78. Kalser MH, Ellenberg SS. Pancreatic cancer: adjuvant combined radiation and chemotherapy following curative resection. Arch Surg 1985; 120: 899–903.

    Article  PubMed  CAS  Google Scholar 

  79. Gastrointestinal Tumor Study Group. Treatment of locally unresectable carcinoma of the pancreas: comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone. J Natl Cancer Inst 1988; 80: 751–755.

    Article  Google Scholar 

  80. O’Connell MJ, Martenson JA, Wieand HS, et al. Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med 1994; 331: 502–507.

    Article  PubMed  Google Scholar 

  81. Nigro ND, Vaitkevicius VK, Considine B. Combined therapy for cancer of the anal canal: a preliminary report. Dis Colon Rectum 1974; 17: 354–356.

    Article  PubMed  CAS  Google Scholar 

  82. Flam MS, John JM, Pajak T, et al. Radiation (RT) and 5-fluorouracil (5-FU) vs radiation, 5-FU, mitomycin-C (MMC) in the treatment of anal carcinoma: results of a phase III randomized RTOG/ ECOG intergroup trial. Proc Annu Meet Am Soc Clin Oncol 1995; 14:191. Abstract A443.

    Google Scholar 

  83. Mahjoubi M, Sadek H, Francois E, et al. Epidermoid anal canal carcinoma (EACC): activity of cisplatin and continuous 5-fluorouracil in metastatic and/or local recurrent disease. Proc Annu Meet Am Soc Clin Oncol 1990; 9: 114.

    Google Scholar 

  84. Martenson JA, Lipitz S, Wagner H, et al. Phase II trial of radiation therapy, 5-fluorouracil and cisplatin in patients with anal cancer. Inr J Radiar Oncol Biol Phys 1995; 32 (suppl 1): 158.

    Article  Google Scholar 

  85. Robertson JM, Lawrence TS, Walker S. The treatment of colorectal liver metastases with conformal radiation therapy and regional chemotherapy. Int J Rad Oncol Biol Phys 1995; 32: 445–450.

    Article  CAS  Google Scholar 

  86. Russel KJ, Bioleau MA, Higano C. Combined 5-FU and irradiation for transitional cell carcinoma of the urinary bladder. Ina J Rad Oncol Biol Phys 1990; 19: 693–699.

    Article  Google Scholar 

  87. Rotman M, Macchia R, Silverstein M. Treatment of advanced bladder carcinoma with irradiation and concomitant 5-FU infusion. Cancer 1987; 59: 710–714.

    Article  PubMed  CAS  Google Scholar 

  88. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer: The Department of Veterans Affairs Laryngeal Cancer Study Group. N Eng J Med 1991; 324: 1685–1690.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saif, M.W., Diasio, R.B. (2003). Fluoropyrimidines as Radiation Sensitizers. In: Choy, H. (eds) Chemoradiation in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-325-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-325-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-313-8

  • Online ISBN: 978-1-59259-325-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics