Skip to main content

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 318 Accesses

Abstract

The hippocampus has been used for studies of anesthetic mechanisms of action for at least twenty years, and has been better studied than any other brain region in this regard. This is because hippocampal cortex is anatomically quite simple, and it is relatively easy to access this brain region in vivo. It is especially well suited for brain slice experiments because several important synaptic connections can be preserved in thin sections. Much has been learned about how various anesthetics alter hippocampal function, and much of this appears to be generalizable to other brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milner, B., Squire, L. R., and Kandel, E. R. (1998) Cognitive neuroscience and the study of memory. Neuron 20, 445–468.

    Article  PubMed  CAS  Google Scholar 

  2. Bannerman, D. M., Yee, B. K., Good, M. A., Heupel, M. J., Iversen, S. D., and Rawlins, J. N. (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behavioral Neuroscience 113, 1170–1188.

    Article  PubMed  CAS  Google Scholar 

  3. Vanderwolf, C. H. (1998) Brain, behavior, and mind: what do we know and what can we know? Neurosci. Biobehay. Rev. 22, 125–142.

    Article  CAS  Google Scholar 

  4. Bland, B. H. and Colom, L. V. (1993) Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog. Neurobiol. 41, 157–208.

    Article  PubMed  CAS  Google Scholar 

  5. Oddie, S. D. and Bland, B. H. (1998) Hippocampal formation theta activity and movement selection. Neurosci. Biobehay. Rev. 22, 221–231.

    Article  CAS  Google Scholar 

  6. Nicoll, R. A., Eccles, J. C., Oshima, T., and Rubia, F. (1975) Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature 258, 625–627.

    Article  PubMed  CAS  Google Scholar 

  7. Leung, L. S. (1981) Differential effects of pentobarbital and ether on the synaptic transmission of the hippocampal CA 1 region in the rat. Electroencephalogr. Clin. Neurophysiol. 51, 291–305.

    Article  PubMed  CAS  Google Scholar 

  8. Tomoda, K., Shingu, K., Osawa, M., Murakawa, M., and Mori, K. (1993) Comparison of CNS effects of propofol and thiopentone in cats. Brit. J. Anaesth. 71, 383–387.

    Article  PubMed  CAS  Google Scholar 

  9. Maclver, M. B., Mandema, J. W., Stanski, D. R., and Bland, B. H. (1996) Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity. Anesthesiology 84, 1411–1424.

    Article  CAS  Google Scholar 

  10. Lukatch, H. S. and Greenwald, S. (2002) Chapter 6. Cerebral Cortex–Anesthetic action on the electroencephalogram: Cellular and synaptic mechanisms and clinical monitoring, in Neural Nechanisms of Anesthesia, (Antognini, J., ed.) Humana Press Inc., Totowa, NJ.

    Google Scholar 

  11. Malenka, R. C. and Nicoll, R. A. (1999) Long-term potentiation—a decade of progress? Science 285, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  12. Ameri, A., Wilhelm, A., and Simmet, T. (1999) Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. Brit. J. Pharmacol. 126, 1831–1839.

    Article  CAS  Google Scholar 

  13. Wilson, R. I. and Nicoll, R. A. (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592.

    Article  PubMed  CAS  Google Scholar 

  14. Pearce, R. A. (1993) Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200.

    Article  PubMed  CAS  Google Scholar 

  15. Banks, M. I., White, J. A., and Pearce, R. A. (2000) Interactions between distinct GABA(A) circuits in hippocampus. Neuron 25, 449–457.

    Article  PubMed  CAS  Google Scholar 

  16. Shepherd, G. M. (1994) Neurobiology, Third Oxford University Press, New York, pp. 28–66.

    Google Scholar 

  17. Mellor, J. and Nicoll, R. A. (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat. Neurosci. 4, 125–126.

    Article  PubMed  CAS  Google Scholar 

  18. Montgomery, J. M., Pavlidis, P., and Madison, D. V. (2001) Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron 29, 691–701.

    Article  PubMed  CAS  Google Scholar 

  19. Seeburg, P. H. (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365.

    Article  PubMed  CAS  Google Scholar 

  20. Hollmann, M., and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  21. Nakanishi, S. and Masu, M. (1994) Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23, 319–348.

    Article  PubMed  CAS  Google Scholar 

  22. Sommer, B., Keinanen, K., Verdoorn, T. A., et al. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  23. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I., and Heinemann, S. (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745–748.

    Article  PubMed  CAS  Google Scholar 

  24. Herb, A., Burnashev, N., Werner, P., Sakmann, B., Wisden, W., and Seeburg, P. H. (1992) The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775–785.

    Google Scholar 

  25. Sugihara, H. Moriyoshi, K., Ishii, T., Masu, M., and Nakanishi, S. (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem. Biophys. Res. Commun. 185 826–832.

    Google Scholar 

  26. Hollmann, M., Boulter, J., Maron, C., et al. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943–954.

    Article  PubMed  CAS  Google Scholar 

  27. Monyer, H., Sprengel, R., Schoepfer, R., et al. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  28. Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  29. Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and et al. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843.

    PubMed  CAS  Google Scholar 

  30. Conn, P. J. and Pin, J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Article  PubMed  CAS  Google Scholar 

  31. Pin, J. P., De Colle, C., Bessis, A. S., and Acher, F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur. J. Pharmacol. 375, 277–294.

    Article  PubMed  CAS  Google Scholar 

  32. Amin, J. and Weiss, D. S. (1996) Insights into the activation mechanism of rhol GABA receptors obtained by coexpression of wild type and activation-impaired subunits. Proc. R. Soc. Lond. B. Biol. Sci. 263, 273–282.

    Article  CAS  Google Scholar 

  33. Carlson, B. X., Engblom, A. C., Kristiansen, U., Schousboe, A., and Olsen, R. W. (2000) A single glycine residue at the entrance to the first membrane-spanning domain of the gamma-aminobutyric acid type A receptor beta(2) subunit affects allosteric sensitivity to GABA and anesthetics. Mol. Pharmacol. 57, 474–484.

    PubMed  CAS  Google Scholar 

  34. Tretter, V., Ehya, N., Fuchs, K., and Sieghart, W. (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737.

    PubMed  CAS  Google Scholar 

  35. Banks, M. I. and Pearce, R. A. (2000) Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J. Neurosci. 20, 937–948.

    PubMed  CAS  Google Scholar 

  36. Bai, D., Zhu, G., Pennefather, P., Jackson, M. F., MacDonald, J. F., and Orser, B. A. (2001) Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol. Pharmacol. 59, 814–824.

    PubMed  CAS  Google Scholar 

  37. Bland, B. H., Oddie, S. D., and Colom, L. V. (1999) Mechanisms of neural synchrony in the septohippocampal pathways underlying hippocampal theta generation. J Neurosci. 19, 3223–3237.

    PubMed  CAS  Google Scholar 

  38. Bland, B. H. and Oddie, S. D. (1998) Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways. Neurosci. Biobehay. Rev. 22, 259–273.

    Article  CAS  Google Scholar 

  39. Gray, J. A. and Ball, G. G. (1970) Frequency-specific relation between hippocampal theta rhythm, behavior, and amobarbital action. Science 168, 1246–1248.

    Article  PubMed  CAS  Google Scholar 

  40. Kramis, R., Vanderwolf, C. H., and Bland, B. H. (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp. Neurol. 49, 58–85.

    Article  PubMed  CAS  Google Scholar 

  41. Stanski, D. R. and Watkins, W. D. (1982) Drug Disposition in Anesthesia, Grune & Stratton, New York, pp. 72–96.

    Google Scholar 

  42. Pearce, R. A., Stringer, J. L., and Lothman, E. W. (1989) Effect of volatile anesthetics on synaptic transmission in the rat hippocampus. Anesthesiology 71, 591–598.

    Article  PubMed  CAS  Google Scholar 

  43. Nicoll, R. A. and Madison, D. V. (1982) General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217, 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  44. Carlen, P. L., Gurevich, N., Davies, M. F., Blaxter, T. J., and O’Beirne, M. (1985) Enhanced neuronal K’ conductance: a possible common mechanism for sedative-hypnotic drug action. Can. J. Physiol. Pharmacol. 63, 831–837.

    Article  PubMed  CAS  Google Scholar 

  45. Ries, C. R. and Puil, E. (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J. Neurophysiol. 81, 1802–1809.

    PubMed  CAS  Google Scholar 

  46. Mody, L, Tanelian, D. L., and Maclver, M. B. (1991) Halothane enhances tonic neuronal inhibition by elevating intracellular calcium. Brain Res. 538, 319–323.

    Article  PubMed  CAS  Google Scholar 

  47. Nishikawa, K. and Maclver, M. B. (2001) Agent-selective effects of volatile anesthetics on GABA,, receptor-mediated synaptic inhibition in hippocampal interneurons. Anesthesiology 94, 340–347.

    Article  PubMed  CAS  Google Scholar 

  48. Nishikawa, K. and Maclver, M. B. (2000) Membrane and synaptic actions of halothane on rat hippocampal pyramidal neurons and inhibitory interneurons. J. Neurosci. 20, 5915–5923.

    PubMed  CAS  Google Scholar 

  49. Mactver, M. B. and Kendig, J. J. (1991) Anesthetic effects on resting membrane potential are voltage-dependent and agent-specific. Anesthesiology 74, 83–88.

    Article  Google Scholar 

  50. Langmoen, I. A. (1983) Some mechanisms controlling hippocampal pyramidal cells. Prog. Brain Res. 58, 61–69.

    Article  PubMed  CAS  Google Scholar 

  51. Mactver, M. B. and Kendig, J. J. (1989) Enflurane-induced burst discharge of hippocampal CA1 neurones is blocked by the NMDA receptor antagonist APV. Brit. J. Anaesth. 63, 296–305.

    Article  Google Scholar 

  52. Maclver, M. B. and Roth, S. H. (1988) Inhalation anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro. Brit. J. Anaesth. 60, 680–691.

    Article  Google Scholar 

  53. Maclver, M. B. and Roth, S. H. (1987) Barbiturate effects on hippocampal excitatory synaptic responses are selective and pathway specific. Can. J. Physiol. Pharmacol. 65, 385–394.

    Article  Google Scholar 

  54. Richards, C. D. and White, A. E. (1975) The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus. J. Physiol. 252, 241–257.

    PubMed  CAS  Google Scholar 

  55. Maclver, M. B. (1997) General anesthetic actions on transmission at glutamate and GABA synapses, in Anesthesia: Biological Foundations, (Biebuyck, J. F., Lynch III, C., Maze, M., Saidman, L. J., Yaksh, T. L., and Zapol, W. M., eds.) Lippincott-Raven Publishers, New York, pp. 277–286.

    Google Scholar 

  56. Hagan, C. E., Pearce, R. A., Trudell, J. R., and Maclver, M. B. (1998) Concentration measures of volatile anesthetics in the aqueous phase using calcium sensitive electrodes. J. Neurosci. Methods 81, 177–184.

    Article  PubMed  CAS  Google Scholar 

  57. MacIver, M. B., Amagasu, S. M., Mikulec, A. A., and Monroe, F. A. (1996) Riluzole anesthesia: use-dependent block of presynaptic glutamate fibers. Anesthesiology 85, 626–634.

    Article  PubMed  CAS  Google Scholar 

  58. Wakasugi, M., Hirota, K., Roth, S. H., and Ito, Y. (1999) The effects of general anesthetics on excitatory and inhibitory synaptic transmission in area CAl of the rat hippocampus in vitro. Anesthesia and Analgesia 88, 676–680.

    PubMed  CAS  Google Scholar 

  59. de Sousa, S. L., Dickinson, R., Lieb, W. R., and Franks, N. P. (2000) Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92, 1055–1066.

    Article  PubMed  Google Scholar 

  60. Richards, C. D. and Smaje, J. C. (1976) Anaesthetics depress the sensitivity of cortical neurones to L-glutamate. Brit. J. Pharmacol. 58, 347–357.

    Article  CAS  Google Scholar 

  61. Perouansky, M., Kirson, E. D., and Yaari, Y. (1998) Mechanism of action of volatile anesthetics: effects of halothane on glutamate receptors in vitro. Toxicol. Lett. 100–101, 65–69.

    Article  Google Scholar 

  62. MacIver, M. B., Mikulec, A. A., Amagasu, S. M., and Monroe, F. A. (1996) Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology 85, 823–834.

    Article  Google Scholar 

  63. Kirson, E. D., Yaari, Y., and Perouansky, M. (1998) Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Brit. J. Pharmacol. 124, 1607–1614.

    Article  CAS  Google Scholar 

  64. Nishikawa, K. and MacIver, M. B. (2000) Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor mediated responses. Anesthesiology 92, 228–236.

    Article  PubMed  CAS  Google Scholar 

  65. Ratnakumari, L. and Hemmings, H. C., Jr. (1998) Inhibition of presynaptic sodium channels by halothane. Anesthesiology 88, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  66. Mikulec, A. A., Pittson, S., Amagasu, S. M., Monroe, F. A., and MacIver, M. B. (1998) Halothane depresses action potential conduction in hippocampal axons. Brain Res. 796, 231–238.

    Article  PubMed  CAS  Google Scholar 

  67. Study, R. E. (1994) Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81, 104–116.

    Article  PubMed  CAS  Google Scholar 

  68. Hirota, K., Roth, S. H., Fujimura, J., Masuda, A., and Ito, Y. (1998) GABAergic mechanisms in the action of general anesthetics. Toxicol. Lett. 100–101, 203–207.

    Article  Google Scholar 

  69. Joo, D. T., Xiong, Z., MacDonald, J. F., Jia, Z., Roder, J., Sonner, J., and Orser, B. A. (1999) Blockade of glutamate receptors and barbiturate anesthesia: increased sensitivity to pentobarbital-induced anesthesia despite reduced inhibition of AMPA receptors in G1uR2 null mutant mice. Anesthesiology 91, 1329–1341.

    Article  PubMed  CAS  Google Scholar 

  70. Orser, B. A., Pennefather, P. S., and MacDonald, J. F. (1997) Multiple mechanisms of ketamine blockade of N-methylo-aspartate receptors. Anesthesiology 86, 903–917.

    Article  PubMed  CAS  Google Scholar 

  71. Duchen, M. R., Burton, N. R., and Biscoe, T. J. (1985) An intracellular study of the interactions of N-methyl-DLaspartate with ketamine in the mouse hippocampal slice. Brain Res. 342, 149–153.

    Article  PubMed  CAS  Google Scholar 

  72. Orser, B. A., Bertlik, M., Wang, L. Y., and MacDonald, J. F. (1995) Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-o-aspartate subtype of glutamate receptor in cultured hippocampal neurones. Brit. J. Pharmacol. 116, 1761–1768.

    Article  CAS  Google Scholar 

  73. Nicoll, R. A. (1972) The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J. Physiol. 223, 803–814.

    PubMed  CAS  Google Scholar 

  74. Tanelian, D. L., Kosek, P., Mody, I., and MacIver, M. B. (1993) The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757–776.

    Article  PubMed  CAS  Google Scholar 

  75. Pearce, R. A. (1996) Volatile anaesthetic enhancement of paired-pulse depression investigated in the rat hippocampus in vitro. J. Physiol. 492, 823–840.

    PubMed  CAS  Google Scholar 

  76. Lukatch, H. S. and MacIver, M. B. (1996) Synaptic mechanisms of thiopental-induced alterations in synchronized cortical activity. Anesthesiology 84, 1425–1434.

    Google Scholar 

  77. Otis, T. S. and Mody, I. (1992) Modulation of decay kinetics and frequency of GABAA receptor mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49, 13–32.

    Article  PubMed  CAS  Google Scholar 

  78. Otis, T. S. and Mody, I. (1992) Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. J. Neurophysiol. 67, 227–235.

    PubMed  CAS  Google Scholar 

  79. Doze, V. A., Monroe, F. A., and MacIver, M. B. (1997) Halothane enhances presynaptic GABA release by increasing internal calcium. Anesthesiology 87, A626.

    Article  Google Scholar 

  80. Banks, M. I. and Pearce, R. A. (1999) Dual actions of volatile anesthetics on GABA(A) IPSCs: dissociation of blocking and prolonging effects. Anesthesiology 90, 120–134.

    Article  PubMed  CAS  Google Scholar 

  81. Doze, V. A. and MacIver, M. B. (1998) Halothane acts on ryanodine sensitive calcium release channels to enhance GABA release. Anesthesiology 89, A722.

    Article  Google Scholar 

  82. Li, X., Czajkowski, C., and Pearce, R. A. (2000) Rapid and direct modulation of GABAA receptors by halothane. Anesthesiology 92, 1366–1375.

    Article  PubMed  CAS  Google Scholar 

  83. Li, X. and Pearce, R. A. (2000) Effects of halothane on GABA(A) receptor kinetics: evidence for slowed agonist unbinding. J. Neurosci. 20, 899–907.

    PubMed  CAS  Google Scholar 

  84. Perouansky, M., Kirson, E. D., and Yaari, Y. (1996) Halothane blocks synaptic excitation of inhibitory interneurons. Anesthesiology 85, 1431–1438; discussion 29A.

    Google Scholar 

  85. Mennerick, S., Jevtovic-Todorovic, V., Todorovic, S. M., Shen, W., Olney, J. W., and Zorumski, C. F. (1998) Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J. Neurosci. 18, 9716–9726.

    PubMed  CAS  Google Scholar 

  86. Yamakura, T., Chavez-Noriega, L. E., and Harris, R. A. (2000) Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand gated ion channels by dissociative anesthetics ketamine and dizocilpine. Anesthesiology 92, 1144–1153.

    Article  PubMed  CAS  Google Scholar 

  87. MacIver, M. B., Tauck, D. L., and Kendig, J. J. (1989) General anaesthetic modification of synaptic facilitation and long-term potentiation in hippocampus. Brit. J. Anaesth. 62, 301–310.

    Article  PubMed  CAS  Google Scholar 

  88. Simon, W., Hapfelmeier, G., Kochs, E., Zieglgänsberger, W., and Rammes, G. (2001) Isoflurane Blocks Synaptic Plasticity in the Mouse Hippocampus. Anesthesiology 94, 1058–1065.

    Article  PubMed  CAS  Google Scholar 

  89. Anderson, R. J., Hornung, B., Pittson, S., Monroe, F. A., and MacIver, M. B. (2000) Low concentrations of isoflurane block long term potentiation of hippocampal neuron synapses. Anesthesiology 93, A776.

    Article  Google Scholar 

  90. Lukatch, H. S. and MacIver, M. B. (1997) Voltage-clamp analysis of halothane effects on GABA(A fast) and GABA(A slow) inhibitory currents. Brain Res. 765, 108–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacIver, M.B. (2003). The Hippocampus. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics