Skip to main content

Cerebral Cortex—Anesthetic Action on the Electroencephalogram

Cellular and Synaptic Mechanisms and Clinical Monitoring

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 328 Accesses

Abstract

No one will argue with the statement that general anesthetics exert their action by affecting normal brain function. This then begs the question: what exactly is “normal brain function” and how is it affected by general anesthetics? At a reductionist level one may attempt to understand anesthetic effects on the brain by examining anesthetic actions on individual neurons (e.g., spike train frequency), synapses (e.g., amplitude and time course of synaptic currents), and/or ion channels (e.g., activation and inactivation kinetics). While this mode of study will no doubt yield a plethora of useful information (as is documented in Neural Mechanisms of Anesthesia), it is likely to tell only part of the story of how general anesthetics evoke their myriad of consciousness altering effects. A more complete understanding of anesthetic effects on the brain will necessitate hypotheses that explain how anesthetics disrupt synchronous and coordinate neuronal network activities that are thought to give rise to emergent brain properties such as consciousness, learning and memory, and the perception of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nunez, P. L. (1995) Neocortical Dynamics and Human EEG Rhythms. Chapter 1, Oxford University Press, New York.

    Google Scholar 

  2. Clark, D. L. and Rosner, B. S. (1973) Neurophysiologie effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology 38, 564–582.

    Article  PubMed  CAS  Google Scholar 

  3. Stanski, D. R. (1994) Monitoring depth of anesthesia. In: Miller, R. D., (ed.), Anesthesia, Churchill Livingstone, New York, pp. 1127–1159.

    Google Scholar 

  4. Bovill, J. G., Sebel, P. S., Wauquier, A., Rog, P., and Schuyt, H. C. (1983) Influence of high-dose alfentanil anaesthesia on the electroencephalogram: correlation with plasma concentrations. Brit. J. Anaesth. 55 Suppl. 2, 1995–209S.

    Google Scholar 

  5. Black, S., Mahla, M. E., and Cucchiara, R. F. (2000) Neurologic Monitoring, In: Miller, R. D. (ed.), Anesthesia, Churchill Livingstone, New York, pp. 1324–1350.

    Google Scholar 

  6. Winters, W. D. (1982) A review of the continuum of drug-induced states of excitation and depresssion. Prog. Drug Res. 26, 225–258.

    PubMed  CAS  Google Scholar 

  7. Levy, W. J. (1986) Power spectrum correlates of changes in consciousness during anesthetic induction with enflurane. Anesthesiology 64, 688–693.

    Article  PubMed  CAS  Google Scholar 

  8. Reddy, R. V., Moorthy, S. S., Mattice, T., Dierdorf, S. F., and Deitch, R. D., Jr. (1992) An electroencephalographic comparison of effects of propofol and methohexital. Electroencephalogr. Clin. Neurophysiol. 83, 162–168.

    Article  PubMed  CAS  Google Scholar 

  9. Tomoda, K., Shingu, K., Osawa, M., Murakawa, M., and Mori, K. (1993) Comparison of CNS effects of propofol and thiopentone in cats. Brit. J. Anaesth. 71, 383–387.

    Article  PubMed  CAS  Google Scholar 

  10. Thomsen, C. E. and Prior, P. F. (1996) Quantitative EEG in assessment of anaesthetic depth: comparative study of methodology. Brit. J. Anaesth. 77, 172–178.

    Article  PubMed  CAS  Google Scholar 

  11. Stanski, D. R., Hudson, R. J., Homer, T. D., Saidman, L. J., and Meathe, E. (1984) Pharmacodynamic modeling of thiopental anesthesia. J. Pharmacokinet. Biopharm. 12, 223–240.

    PubMed  CAS  Google Scholar 

  12. Gustafsson, L. L., Ebling, W. F., Osaki, E., and Stanski, D. R. (1996) Quantitation of depth of thiopental anesthesia in the rat. Anesthesiology 84, 415–427.

    Article  PubMed  CAS  Google Scholar 

  13. Maclver, M. B., Mandema, J. W., Stanski, D. R., and Bland, B. H. (1996) Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity. Anesthesiology 84, 1411–1424.

    Article  CAS  Google Scholar 

  14. Ebling, W. F., Danhof, M., and Stanski, D. R. (1991) Pharmacodynamic characterization of the electroencephalographic effects of thiopental in rats. J. Pharmacokinet. Biopharm. 19, 123–143.

    PubMed  CAS  Google Scholar 

  15. Buhrer, M., Maitre, P. 0., Hung, O. R., Ebling, W. F., Shafer, S. L., and Stanski, D. R. (1992) Thiopental pharmacodynamics. I. Defining the pseudo-steady-state serum concentration-EEG effect relationship. Anesthesiology 77, 226–236.

    CAS  Google Scholar 

  16. Nicoll, R. A., Eccles, J. C., Oshima, T., and Rubia, F. (1975) Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature 258, 625–627.

    Article  PubMed  CAS  Google Scholar 

  17. Barker, J. L. and Mathers, D. A. (1981) GABA receptors and the depressant action of pentobarbital. Tins 4, 10–13.

    CAS  Google Scholar 

  18. Jones, M. V. and Harrison, N. L. (1993) Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J. Neurophysiol. 70, 1339–1349.

    PubMed  CAS  Google Scholar 

  19. Lukatch, H. S. and MacIver, M. B. (1997) Voltage-clamp analysis of halothane effects on GABA(A fast) and GABA(A slow) inhibitory currents. Brain Res. 765, 108–112.

    Article  PubMed  CAS  Google Scholar 

  20. MacIver, M. B., Amagasu, S. M., Mikulec, A. A., and Monroe, F. A. (1996) Riluzole anesthesia: use-dependent block of presynaptic glutamate fibers. Anesthesiology 85, 626–634.

    Article  PubMed  CAS  Google Scholar 

  21. Nicoll, R. A. and Madison, D. V. (1982) General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217, 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  22. MacIver, M. B. and Kendig, J. J. (1991) Anesthetic effects on resting membrane potential are voltage-dependent and agent-specific. Anesthesiology 74, 83–88.

    Article  PubMed  CAS  Google Scholar 

  23. Mody, I., Tanelian, D. L., and MacIver, M. B. (1991) Halothane enhances tonic neuronal inhibition by elevating intracellular calcium. Brain Res. 538, 319–323.

    Article  PubMed  CAS  Google Scholar 

  24. Larsen, M., Grtndahl, T. O., Haugstad, T. S., and Langmoen, I. A. (1994) The effect of the volatile anesthetic isoflurane on Ca(e+)-dependent glutamate release from rat cerebral cortex. Brain Res. 663, 335–337.

    Article  PubMed  CAS  Google Scholar 

  25. Carlen, P. L., Gurevich, N., Davies, M. F., Blaxter, T. J., and O’Beirne, M. (1985) Enhanced neuronal K+ conductance: a possible common mechanism for sedative-hypnotic drug action. Can. J. Physiol. Pharmacol. 63, 831–837.

    Article  PubMed  CAS  Google Scholar 

  26. Franks, N. P. and Lieb, W. R. (1988) Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333, 662–664.

    Article  PubMed  CAS  Google Scholar 

  27. Pinsker, M. C. (1986) Anesthesia: a pragmatic construct. Anesth. Analg. 65, 819–820.

    Article  PubMed  CAS  Google Scholar 

  28. Kissin, I. (1993) General anesthetic action: an obsolete notion? Anesth. Analg. 76, 215–218.

    Article  PubMed  CAS  Google Scholar 

  29. Amzica, F. and Steriade, M. (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 107, 69–83.

    Article  PubMed  CAS  Google Scholar 

  30. Lukatch, H. S. and Maclver, M. B. (1996) Synaptic mechanisms of thiopental-induced alterations in synchronized cortical activity. Anesthesiology 84, 1425–1434.

    Article  PubMed  CAS  Google Scholar 

  31. MacIver, M. B., Tanelian, D. L., and Mody, I. (1991) Two mechanisms for anesthetic-induced enhancement of GABA Amediated neuronal inhibition. Ann. N. Y. Acad. Sci. 625, 91–96.

    Article  PubMed  CAS  Google Scholar 

  32. Tanelian, D. L., Kosek, P., Mody, I., and MacIver, M. B. (1993) The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757–776.

    Article  PubMed  CAS  Google Scholar 

  33. Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995) Erosion of inhibition contributes to the progression of low magnesium bursts in rat hippocampal slices. J. Physiol. (Land.) 486, 723–734.

    CAS  Google Scholar 

  34. Jefferys, J. G., Traub, R. D., and Whittington, M. A. (1996) Neuronal networks for induced “40 Hz” rhythms. Trends Neurosci. 19, 202–208.

    Article  PubMed  CAS  Google Scholar 

  35. Sannita, W. G. (2000) Stimulus-specific oscillatory responses of the brain: a time/frequency-related coding process. Clin. Neurophysiol. 111, 565–583.

    Article  PubMed  CAS  Google Scholar 

  36. Bland, B. H. (1986) The physiology and pharmacology of hippocampal formation theta rhythms. Prog. Neurobiol. 26, 1–54.

    Article  PubMed  CAS  Google Scholar 

  37. Lopes da Silva, F. (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79, 81–93.

    Article  Google Scholar 

  38. Mori, K. (1973) Excitation and depression of CNS electrical activities induced by general anesthetics. In: Miyasaki, M., Iwatsuki, K., and Fujita, M., (eds.), Proceedings of the 5th World Congress of Anaesthesiology, Excerpta Medica, Amsterdam, pp. 40–53.

    Google Scholar 

  39. Steriade, M., Amzica, F., and Contreras, D. (1994) Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr. Clin. Neurophysiol. 90, 1–16.

    PubMed  CAS  Google Scholar 

  40. Schulz, D. W. and Macdonald, R. L. (1981) Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain Res. 209, 177–188.

    Article  PubMed  CAS  Google Scholar 

  41. Sato, M., Austin, G. M., and Yai, H. (1967) Increase in permeability of the postsynaptic membrane to potassium produced by “nembutal”. Nature 215, 1506–1508.

    Article  PubMed  CAS  Google Scholar 

  42. Berg-Johnsen, J. and Langmoen, I. A. (1990) Mechanisms concerned in the direct effect of isoflurane on rat hippocampal and human neocortical neurons. Brain Res. 507, 28–34.

    Article  PubMed  CAS  Google Scholar 

  43. Yost, C. S., Gray, A. T., Winegar, B. D., and Leonoudakis, D. (1998) Baseline K+ channels as targets of general anesthetics: studies of the action of volatile anesthetics on TOK1. Toxicol. Lett. 100–101, 293–300.

    Article  Google Scholar 

  44. Hille, B. (1992) Classical biophysics of the squid giant axon, Na and K channels of axons, calcium channels, Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  45. Llinâs, R., and Jahnsen, H. (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297, 406–408.

    Article  PubMed  Google Scholar 

  46. Llinâs, R. and Yarom, Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J. Physiol. (Lond.) 376, 163–182.

    Google Scholar 

  47. Steriade, M., Gloor, P., Llinâs, R. R., Lopes de Silva, F. H., and Mesulam, M. M. (1990) Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol. 76, 481–508.

    Article  PubMed  CAS  Google Scholar 

  48. Swank, R. L. (1949) Synchronization of spontaneous electrical activity of cerebrum by barbiturate narcosis. J. Neurophysiol. 12, 161–172.

    PubMed  CAS  Google Scholar 

  49. Henry, C. E. and Scoville, W. B. (1952) Supression-burst activity from isolated cerebral cortex in man. Electroencephalogr. Clin. Neurophysiol. 4, 1–22.

    Article  PubMed  CAS  Google Scholar 

  50. Richards, C. D. and White, A. E. (1975) The actions of volatile anaesthetics on synaptic transmission in the dentate gyms. J. Physiol. (Land.) 252, 241–257.

    CAS  Google Scholar 

  51. Richards, C. D., Russell, W. J., and Smaje, J. C. (1975) The action of ether and methoxyflurane on synaptic transmission in isolated preparations of the mammalian cortex. J. Physiol. (Lond.) 248, 121–142.

    CAS  Google Scholar 

  52. Berg-Johnsen, J. and Langmoen, I. A. (1992) The effect of isoflurane on excitatory synaptic transmission in the rat hippocampus. Acta Anaesthesiol. Scand. 36, 350–355.

    Article  PubMed  CAS  Google Scholar 

  53. Gage, P. W. and Robertson, B. (1985) Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA 1 pyramidal cells in rat hippocampus. Brit. J. Pharmacol. 85, 675–681.

    Article  CAS  Google Scholar 

  54. Barker, J. L. (1975) Selective depression of postsynaptic excitation by general anesthetics. In: Fink, B. R. (ed.), Molecular Mechanisms of Anesthesia, Progress in Anesthesiology, Raven Press, New York, pp. 135–153.

    Google Scholar 

  55. Anis, N. A., Berry, S. C., Burton, N. R., and Lodge, D. (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Brit. J. Pharmacol. 79, 565–575.

    Article  CAS  Google Scholar 

  56. Kullmann, D. M., Martin, R. L., and Redman, S. J. (1989) Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J. Physiol. (Lond.) 412, 277–296.

    CAS  Google Scholar 

  57. Kissin, I., Mason, J. O. D. and Bradley, E. L., Jr. (1987) Pentobarbital and thiopental anesthetic interactions with midazolam. Anesthesiology 67, 26–31.

    Article  PubMed  CAS  Google Scholar 

  58. MacIver, M. B. and Roth, S. H. (1988) Inhalation anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro. Brit. J. Anaesth. 60, 680–691.

    Article  PubMed  CAS  Google Scholar 

  59. Maclver, M. B., Tauck, D. L., and Kendig, J. J. (1989) General anaesthetic modification of synaptic facilitation and long-term potentiation in hippocampus. Brit. J. Anaesth. 62, 301–310.

    Article  Google Scholar 

  60. Struys, M., Versichelen, L., Mortier, E., et al. (1998) Comparison of spontaneous frontal EMG, EEG power spectrum and bispectral index to monitor propofol drug effect and emergence. Acta Anaesthesiol. Scand. 42, 628–636.

    Article  PubMed  CAS  Google Scholar 

  61. Gibbs, F. A., Gibbs, E. L., and Lennox, W. G. (1937) Effect on the electroencephalogram of certain drugs which influence nervous activity. Arch. Intern. Med. 60, 154–166.

    Article  Google Scholar 

  62. Sebel, P. S., Lang, E., Rampil, I. J., et al. (1997) A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth. Analg. 84, 891–899.

    PubMed  CAS  Google Scholar 

  63. Flaishon, R., Windsor, A., Sigl, J., and Sebel, P. S. (1997) Recovery of consciousness after thiopental or propofol. Bispectral index and isolated forearm technique. Anesthesiology 86, 613–619.

    Article  PubMed  CAS  Google Scholar 

  64. Antognini, J. F. and Schwartz, K. (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79, 1244–1249.

    Article  PubMed  CAS  Google Scholar 

  65. Rampil, I. J., Mason, P., and Singh, H. (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78, 707–712.

    Article  PubMed  CAS  Google Scholar 

  66. Glass, P. S., Bloom, M., Kearse, L., Rosow, C., Sebel, P., and Manberg, P. (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86, 836–847.

    Article  PubMed  CAS  Google Scholar 

  67. Liu, J., Singh, H., and White, P. F. (1997) Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth. Analg. 84, 185–189.

    PubMed  CAS  Google Scholar 

  68. Leslie, K., Sessler, D. I., Schroeder, M., and Walters, K. (1995) Propofol blood concentration and the Bispectral Index predict suppression of learning during propofol/epidural anesthesia in volunteers. Anesth. Analg. 81, 1269–1274.

    PubMed  CAS  Google Scholar 

  69. Lubke, G. H., Kerssens, C., Phaf, H., and Sebel, P. S. (1999) Dependence of explicit and implicit memory on hypnotic state in trauma patients. Anesthesiology 90, 670–680.

    Article  PubMed  CAS  Google Scholar 

  70. Sigl, J. C. and Chamoun, N. G. (1994) An introduction to bispectral analysis for the electroencephalogram. J. Clin. Monit. 10, 392–404.

    Article  PubMed  CAS  Google Scholar 

  71. Rampil, I. J. (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89, 980–1002.

    Article  PubMed  CAS  Google Scholar 

  72. Johansen, J. W. and Sebel, P. S. (2000) Development and clinical application of EEG bispectrum monitoring. Anesthesiology 93, 1336–1344.

    Article  PubMed  CAS  Google Scholar 

  73. Johansen, J. W. (2000) Monitoring pharmacologic effects of anesthesia. Current Anesthesiology Reports 2, 369–376.

    Google Scholar 

  74. Kissin, I. (2000) Depth of anesthesia and bispectral index monitoring. Anesth. Analg. 90, 1114–1117.

    Article  PubMed  CAS  Google Scholar 

  75. Schneider, G., and Sebel, P. S. (1997) Monitoring depth of anaesthesia. Eur. J. Anaesthesiol. Suppl. 15, 21–28.

    Article  PubMed  CAS  Google Scholar 

  76. Rosow, C. E. and Manberg, P. J. (1998) Bispectral Index Monitoring. In: Hines, R. and Bowdle, T. A. (eds.), Annual of Anesthetic Pharmacology: Anesthesiology Clinics of North America, W. B. Saunders, Philadelphia, pp. 89–107.

    Google Scholar 

  77. Sakai, T., Singh, H., Mi, W. D., Kudo, T., and Matsuki, A. (1999) The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion. Acta Anaesthesiol. Scand. 43, 212–216.

    Article  PubMed  CAS  Google Scholar 

  78. Gan, T. J., Glass, P. S., Windsor, A., et al. (1997) Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology 87, 808–815.

    Article  PubMed  CAS  Google Scholar 

  79. Bloom, M. J. (2001) Electroencephalography and monitoring of anesthetic depth. In: Lake, C. L., Hines, R. L., and Blitt, C. D. (eds.), Clinical Monitoring: Practical Applications for Anesthesia and Critical Care, WB Saunders Company, New York, pp. 92–101.

    Google Scholar 

  80. Pincus, S. M., Gladstone, I. M., and Ehrenkranz, R. A. (1991) A regularity statistic for medical data analysis. J. Clin. Monit. 7, 335–345.

    Article  PubMed  CAS  Google Scholar 

  81. Shannon, C. and Weaver, W. (1964) The Mathematical Theory of Communication, University of Illinois Press, Urbana.

    Google Scholar 

  82. Rezek, I. A. and Roberts, S. J. (1998) Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 45, 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  83. Sleigh, J. W. and Donovan, J. (1999) Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Brit. J. Anaesth. 82, 666–671.

    Article  PubMed  CAS  Google Scholar 

  84. Bruhn, J., Röpcke, H., and Hoeft, A. (2000) Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 92, 715–726.

    Article  PubMed  CAS  Google Scholar 

  85. Smith, W. D., Dutton, R. C., and Smith, N. T. (1996) Measuring the performance of anesthetic depth indicators. Anesthesiology 84, 38–51.

    Article  PubMed  CAS  Google Scholar 

  86. Bruhn, J., Lehmann, L. E., Roepcke, H., Bouillin, T. W., and Hoeft, A. (2000) Shannon entropy applied to measurement of the EEG effects of desflurane. Anesthesiology 93, A265.

    Article  Google Scholar 

  87. Roy, R. J. and Zhang, X. S. (2000) Evaluation of EEG complexity measure for depth of anesthesia estimation. Anesthesiology 93, A1367.

    Article  Google Scholar 

  88. Pritchard, W. S. and Duke, D. W. (1995) Measuring “chaos” in the brain: a tutorial review of EEG dimension estimation. Brain Cogn. 27, 353–397.

    Article  PubMed  CAS  Google Scholar 

  89. Widman, G., Schreiber, T., Rehberg, B., Hoeft, A., and Eiger, C. E. (2000) Quantification of Depth of Anesthesia by Nonlinear Time Series Analysis of Brain Electrical Activity. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 62, 4898–4903.

    Article  PubMed  CAS  Google Scholar 

  90. Viertio-Oja, H., Sarkela, M., Talja, P., Tolvansen-Laakso, H., and Yli-Hankala, A. (2000) Entropy of the EEG signal is a robust index for depth of hypnosis. Anesthesiology 93, A1369.

    Article  Google Scholar 

  91. Pockett, S. (1999) Anesthesia and the electrophysiology of auditory consciousness. Conscious. Cogn. 8, 45–61.

    Article  PubMed  CAS  Google Scholar 

  92. Capitanio, L., Jensen, E. W., Filligoi, G. C., et al. (1997) On-line analysis of AEP and EEG for monitoring depth of anaesthesia. Methods Inf. Med. 36, 311–314.

    PubMed  CAS  Google Scholar 

  93. Ghoneim, M. M., Block, R. I., Dhanaraj, V. J., Todd, M. M., Choi, W. W., and Brown, C. K. (2000) Auditory evoked responses and learning and awareness during general anesthesia. Acta Anaesthesiol. Scand. 44, 133–143.

    Article  PubMed  CAS  Google Scholar 

  94. Thornton, C. and Sharpe, R. M. (1998) Evoked responses in anaesthesia. Brit. J. Anaesth. 81, 771–781.

    Article  PubMed  CAS  Google Scholar 

  95. Drummond, J. C. (2000) Monitoring depth of anesthesia: with emphasis on the application of the bispectral index and the middle latency auditory evoked response to the prevention of recall. Anesthesiology 93, 876–882.

    Article  PubMed  CAS  Google Scholar 

  96. Dutton, R. C., Smith, W. D., Rampil, I. J., Chortkoff, B. S., and Eger, E. I., 2nd (1999) Forty-hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. Anesthesiology 91, 1209–1220.

    Article  PubMed  CAS  Google Scholar 

  97. Iselin-Chaves, I. A., El Moalem, H. E., Gan, T. J., Ginsberg, B., and Glass, P. S. (2000) Changes in the auditory evoked potentials and the bispectral index following propofol or propofol and alfentanil. Anesthesiology 92, 1300–1310.

    Article  PubMed  CAS  Google Scholar 

  98. Mantzaridis, H. and Kenny, G. N. (1997) Auditory evoked potential index: a quantitative measure of changes in auditory evoked potentials during general anaesthesia. Anaesthesia 52, 1030–1036.

    Article  PubMed  CAS  Google Scholar 

  99. Jensen, E. W., Litvan, H., Caminal, P., Campos, J. M., and Villar-Landeira, J. (2000) Comparison of the BIS and the auditory evoked potentials index (AAI) during propofol anesthesia for cardiac surgery. Anesthesiology 93, A1370.

    Article  Google Scholar 

  100. Alpiger, S., Helbo-Hansen, H. S., and Jensen, E. W. (2000) Effect of sevoflurane on the middle latency auditory evoked potentials measured by a fast extracting montor. Anesthesiology 93, A261.

    Article  Google Scholar 

  101. Gajraj, R. J., Doi, M., Mantzaridis, H., and Kenny, G. N. (1998) Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spectrum during repeated transitions from consciousness to unconsciousness. Brit. J. Anaesth. 80, 46–52.

    Article  PubMed  CAS  Google Scholar 

  102. Doi, M., Gajraj, R. J., Mantzaridis, H., and Kenny, G. N. (1997) Relationship between calculated blood concentration of propofol and electrophysiological variables during emergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked potential index. Brit. J. Anaesth. 78, 180–184.

    Article  PubMed  CAS  Google Scholar 

  103. Gajraj, R. J., Doi, M., Mantzaridis, H., and Kenny, G. N. (1999) Comparison of bispectral EEG analysis and auditory evoked potentials for monitoring depth of anaesthesia during propofol anaesthesia. Brit. J. Anaesth. 82, 672–678.

    Article  PubMed  CAS  Google Scholar 

  104. Martin, J. H. (1991) The collective electrical behavior of cortical neurons: the electroencephalogram and the mechanisms of epilepsy. In: Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (eds.), Principles of Neural Science, Elsevier, New York, pp. 777–791.

    Google Scholar 

  105. Gevins, A. (1998) The future of electroencephalography in assessing neurocognitive functioning. Electroencephalogr. Clin. Neurophysiol. 106, 165–172.

    Article  PubMed  CAS  Google Scholar 

  106. Morison, R. S., Finley, K. H., and Lothrop, G. N. (1943) Spontaneous electrical activity of the thalamus and other forebrain structures. J. Neurophysiol. 6, 243–254.

    Google Scholar 

  107. Bremer, F. (1949) Considerations sur l’origine et la nature des ondes cerebrales. Electroencephalogr. Clin. Neurophysiol. 1, 177–193.

    PubMed  CAS  Google Scholar 

  108. Morison, R. S., Dempsey, E. W., and Morison, B. R. (1941) On the propagation of certain cortical potentials. Amer. J. Physiol. 131, 744–751.

    Google Scholar 

  109. Kennard, M. (1943) Effects on EEG of chronic lessions of basal ganglia, thalamus and hypothalamus of monkeys. J. Neurophysiol. 6, 405–415.

    Google Scholar 

  110. Kristiansen, K. and Courtois, G. (1949) Rhythmic electrical activity from isolated cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 1, 265–272.

    PubMed  CAS  Google Scholar 

  111. Fujita, Y. and Sato, T. (1964) Intracellular recordings from hippocampal pyramidal cells in rabbit during theta rhythm activity. J. Neurophysiol. 27, 1011–1025.

    Google Scholar 

  112. Bland, B. H. and Vanderwolf, C. H. (1972) Electrical stimulation of the hippocampal formation: behavioral and bio-electrical effects. Brain Res. 43, 89–106.

    Article  PubMed  CAS  Google Scholar 

  113. Vanderwolf, C. H. (1975) Neocortical and hippocampal activation relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J. Comp. Physiol. Psychol. 88, 300–323.

    Article  PubMed  CAS  Google Scholar 

  114. Fox, S. E., Wolfson, S., and Ranck, J. B., Jr. (1986) Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Exp. Brain. Res. 62, 495–508.

    Article  PubMed  CAS  Google Scholar 

  115. Bland, B. H. and Colom, L. V. (1993) Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog. Neurobiol. 41, 157–208.

    Article  PubMed  CAS  Google Scholar 

  116. Oddie, S. D., Bland, B. H., Colom, L. V., and Vertes, R. P. (1994) The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway. Hippocampus 4, 454–473.

    Article  PubMed  CAS  Google Scholar 

  117. Rappelsberger, P., Pockberger, H., and Petsche, H. (1982) The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit’s visual cortex. Electroencephalogr. Clin. Neurophysiol. 53, 254–269.

    Article  PubMed  CAS  Google Scholar 

  118. Petsche, H., Pockberger, H., and Rappelsberger, P. (1984) On the search for the sources of the electroencephalogram. Neuroscience 11, 1–27.

    Article  PubMed  CAS  Google Scholar 

  119. Steriade, M., Dossi, R. C., and Nunez, A. (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci. 11, 3200–3217.

    PubMed  CAS  Google Scholar 

  120. Nunez, A., Amzica, F., and Steriade, M. (1992) Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events. Neuroscience 51, 269–284.

    Article  PubMed  CAS  Google Scholar 

  121. Leung, L. S. and Yim, C. Y. (1993) Rhythmic delta-frequency activities in the nucleus accumbens of anesthetized and freely moving rats. Can. J. Physiol. Pharmacol. 71, 311–320.

    Article  PubMed  CAS  Google Scholar 

  122. Steriade, M., McCormick, D. A., and Sejnowski, T. J. (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685.

    Article  PubMed  CAS  Google Scholar 

  123. Destexhe, A., Contreras, D., and Steriade, M. (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016.

    PubMed  CAS  Google Scholar 

  124. Steriade, M., Nunez, A., and Amzica, F. (1993) A novel slow ( 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265.

    PubMed  CAS  Google Scholar 

  125. Amzica, F. and Steriade, M. (1995) Short-and long-range neuronal synchronization of the slow (1 Hz) cortical oscillation. J. Neurophysiol. 73, 20–38.

    PubMed  CAS  Google Scholar 

  126. Contreras, D. and Steriade, M. (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15, 604–622.

    PubMed  CAS  Google Scholar 

  127. Maclver, M. B., Harris, D. P., Konopacki, J., Roth, S. H., and Bland, B. H. (1986) Carbachol induced rhythmical slow wave activity recorded from dentate granule neurons in vitro. Proc. West. Pharmacol. Soc. 29, 159–161.

    Google Scholar 

  128. Konopacki, J., Maclver, M. B., Bland, B. H., and Roth, S. H. (1987) Carbachol-induced EEG `theta’ activity in hippocampal brain slices. Brain Res. 405, 196–198.

    Article  PubMed  CAS  Google Scholar 

  129. MacVicar, B. A. and Tse, F. W. (1989) Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J. Physiol. (Lond.) 417, 197–212.

    CAS  Google Scholar 

  130. Tell, F. and Jean, A. (1993) Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii. J. Neurophysiol. 70, 2379–2390.

    PubMed  CAS  Google Scholar 

  131. Huguenard, J. R. and Prince, D. A. (1994) Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J. Neurosci. 14, 5485–5502.

    PubMed  CAS  Google Scholar 

  132. Bal, T., von Krosigk, M., and McCormick, D. A. (1995) Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J. Physiol. (Lond.) 483, 641–663.

    CAS  Google Scholar 

  133. Kim, U., Bal, T., and McCormick, D. A. (1995) Spindle waves are propagating synchronized oscillations in the ferret LGND in vitro. J. Neurophysiol. 74, 1301–1323.

    PubMed  CAS  Google Scholar 

  134. Taylor, G. W., Merlin, L. R., and Wong, R. K. (1995) Synchronized oscillations in hippocampal CA3 neurons induced by metabotropic glutamate receptor activation. J. Neurosci. 15, 8039–8052.

    PubMed  CAS  Google Scholar 

  135. Metherate, R., and Ashe, J. H. (1993) Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo. J. Neurosci. 13, 5312–5323.

    PubMed  CAS  Google Scholar 

  136. Richter, D. W., Pierrefiche, O., Lalley, P. M., and Polder, H. R. (1996) Voltage-clamp analysis of neurons within deep layers of the brain. J. Neurosci. Meth. 67, 121–123.

    Article  CAS  Google Scholar 

  137. Ndfiez, A., García-Austt, E., and Buíïo, W. (1990) Synaptic contributions to theta rhythm genesis in rat CA1–CA3 hippocampal pyramidal neurons in vivo. Brain Res. 533, 176–179.

    Article  Google Scholar 

  138. Metherate, R., Cox, C. L., and Ashe, J. H. (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12, 4701–4711.

    PubMed  CAS  Google Scholar 

  139. Soltesz, I. and Deschênes, M. (1993) Low-and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70, 97–116.

    PubMed  CAS  Google Scholar 

  140. Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615.

    Article  PubMed  CAS  Google Scholar 

  141. Flint, A. C. and Connors, B. W. (1996) Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations. J. Neurophysiol. 75, 951–957.

    PubMed  CAS  Google Scholar 

  142. Stanski, D. R. (1991) Pharmacodynamic modeling of thiopental depth of anesthesia. In: D’Argenio, (ed.), Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis, Plenum Press, New York, pp. 79–85.

    Google Scholar 

  143. Gray, C. M. and Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  144. Steriade, M. (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb. Cortex 7, 583–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lukatch, H., Greenwald, S. (2003). Cerebral Cortex—Anesthetic Action on the Electroencephalogram. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics