Skip to main content

The Future of Anesthetic Mechanisms Research

  • Chapter
  • 321 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

This book began first describing what anesthesia is and is not, and then followed with the history of how prior researchers explored the mechanisms of anesthesia. We end the book with a look forward to what might occur in the future of research into anesthetic mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vitcha, J. F. (1971) A History of Forane. Anesthesiology 35, 4–7.

    Article  PubMed  CAS  Google Scholar 

  2. Sonner, J., Li, J., and Eger, E. I., 2“d. (1998) Desflurane and nitrous oxide, but not nonimmobilizers, affect nociceptive responses. Anesth. Analg. 86, 629–34.

    PubMed  CAS  Google Scholar 

  3. Hecker, J. G., Hall, L. L., and Irion, V. R. (2001) Nonviral delivery to the lateral ventricles in rat brain: evidence for widespread distribution and expression in the central nervous system. Molec. Ther. 3, 375–384.

    Article  CAS  Google Scholar 

  4. Zimmerman, S. A., Jones, M. V., and Harrison, N. L. (1994) Potentiation of gamma-aminobutyric acid A receptor Cl-current correlates with in vivo anesthetic potency. J. Pharmacol. Exp. Ther. 270, 987–991.

    PubMed  CAS  Google Scholar 

  5. Banks, M. I. and Pearce, R. A. (1999) Dual actions of volatile anesthetics on GABA(A) IPSCS: dissociation of blocking and prolonging effects. Anesthesiology 90, 120–134.

    Article  PubMed  CAS  Google Scholar 

  6. Mascia, M. P., Machu, T. K., and Harris, R. A. (1996) Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics. Brit. I. Pharmacol. 119, 1331–1336.

    Article  CAS  Google Scholar 

  7. Franks, N. P. and Lieb, W. R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614.

    Article  PubMed  CAS  Google Scholar 

  8. Flood, P., Ramirez, L. J., and Role, L. (1997) Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 86, 859–865.

    Article  PubMed  CAS  Google Scholar 

  9. Durieux, M. E. (1995) Halothane inhibits signaling through ml muscarinic receptors expressed in Xenopus oocytes. Anesthesiology 82, 174–182.

    Article  PubMed  CAS  Google Scholar 

  10. Rehberg, B., Xiao, Y. H., and Duch, D. S. (1996) Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology 84, 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  11. Raines, D. E., Claycomb, R. J., Scheller, M., and Forman, S. A. (2001) Nonhalogenated Alkane Anesthetics Fail to Potentiate Agonist Actions on Two Ligand-Gated Ion Channels. Anesthesiology 95, 470–477.

    Article  PubMed  CAS  Google Scholar 

  12. Yamakura, T. and Harris, R. A. (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels, comparison with isoflurane and ethanol. Anesthesiology 93, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  13. de Sousa, S. L., Dickenson, R., Lieb, W. R., and Franks, N. P. (2000) Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92, 1055–1066.

    Article  PubMed  Google Scholar 

  14. Cook, T. L., Smith, M., Winter, P. M., Starkweather, J. A., and Eger, E. I. (1978) Effect of subanesthetic concentration of enflurane and halothane on human behavior. Anesth. Analg. 57, 434–440.

    PubMed  CAS  Google Scholar 

  15. Mihalek, R. M., Banerjee, P. K., Korpi, E. R., Quinlan, J. J., Firestone, L. L., Mi, Z. P., Lagenaur, C., et al. (1999) Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc. Natl. Acad. Sci. USA 96, 12, 905–12, 910.

    Google Scholar 

  16. Quinlan, J. J., Homanies, G. E., and Firestone, L. L. (1998) Anesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor. Anesthesiology 88, 775–780.

    Article  PubMed  CAS  Google Scholar 

  17. Mihic, S. J., Ye, Q., Wick, M. J., Koltchine, V. V., Krasowski, M. D., Finn, S. E., Mascia, M. P., et al. (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389, 385–389.

    Article  PubMed  CAS  Google Scholar 

  18. Wick, M. J., Mihic, S. J., Veno, S., Mascia, M. P., Trudell, J. R., Brozowski, S. J., Ye, Q., et al. (1998) Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff. evidence for an alcohol receptor ? Proc. Natl. Acad. Sci. USA 95, 6504–6509.

    Article  PubMed  CAS  Google Scholar 

  19. Koltchine, V. V., Finn, S. E., Jenkins, A., Nikolaeva, N., Lin, A., and Harrison, N. L. (1999) Agonist gating and isoflurane potentiation in the human ganima-an-iinobutyric acid type A receptor determined by the volume of a second transmembrane domain residue. Mol. Pharmacol. 56, 1087–1093.

    PubMed  CAS  Google Scholar 

  20. Pratt, M. B., Husain, S. S., Miller, K. W., and Cohen, J. B. (2000) Identification of sites of incorporation in the nicotinic acetylcholine receptor of a photoactivatible general anesthetic. J. Biol. Chem. 275, 29,441–29, 451.

    Google Scholar 

  21. Fonnan, S. A., Miller, K. W., and Yellen, G. (1995) A discrete site for general anesthetics on a postsynaptic receptor. Mol. Pharmacol. 48, 574–581.

    Google Scholar 

  22. Schrattenholz, A., Pfeiffer, S., Pejovic, V., Rudolf, R., Godovac-Zimmerman, J., and Maelicke, A. (1998) Expression and renaturation of the N-terminal extracellular domain of torpedo nicotinic acetylcholine receptor alpha-subunit. J. Biol. Chem. 273, 32,393–32,399

    Google Scholar 

  23. Tierney, M. L. and Unwin, N. (2000) Electron microscopic evidence for the assembly of soluble pentameric extracellular domains of the nicotinic acetylcholine receptor. J. Mol. Biol. 303, 185–196.

    Article  PubMed  CAS  Google Scholar 

  24. Raines, D. E. (1996) Anesthetic and nonanesthetic halogenated volatile compounds have dissimilar activities on nicotinic acetylcholine receptor desensitization kinetics. Anesthesiology 84, 663–671.

    Article  PubMed  CAS  Google Scholar 

  25. Mihic, S. J., McQuilkin, S. J., Eger, E. I., Ionescu, P., and Harris, R. A. (1994) Potentiation of gamma-aminobutyric acid type A receptor-mediated chloride currents by novel halogenated compounds correlates with their abilities to induce general anesthesia. Mol. Pharmacol. 46, 851–857.

    PubMed  CAS  Google Scholar 

  26. Abraham, M. H., Lieb, W. R., and Franks, N. P. (1991) Role of hydrogen bonding in general anesthesia. J. Pharm. Sci. 80, 719–724.

    Article  PubMed  CAS  Google Scholar 

  27. North, C. and Cafiso, D. S. (1997) Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys. J. 72, 1754–1761.

    Article  PubMed  CAS  Google Scholar 

  28. Qin, Z., Szabo, G., and Cafiso, D. S. (1995) Anesthetics reduce the magnitude of the membrane dipole potential. Measurements in lipid vesicles using voltage-sensitive spin probes. Biochemistry 34, 5536–5543.

    Article  PubMed  CAS  Google Scholar 

  29. Cafiso, D. S. (1998) Dipole potentials and spontaneous curvature: membrane properties that could mediate anesthesia. Toxicol. Lett. 100–101, 431–439.

    Article  Google Scholar 

  30. Cantor, R. S. (1998) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Toxicol. Lett. 100–101, 451–458.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antognini, J.F., Raines, D.E., Carstens, E. (2003). The Future of Anesthetic Mechanisms Research. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics