Skip to main content

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 322 Accesses

Abstract

Local anesthetics (LAs) are drugs primarily utilized in clinic settings to induce local anesthesia. The term local anesthesia, unlike general anesthesia, is defined as loss of sensation within a confined region without loss of the patient’s consciousness. LAs are purposely used for relief of pain and induction of numbness during surgical procedures and are normally applied by local injection. Selected LAs such as lidocaine may also be used intravenously or taken orally as antiarrhythmics, anticonvulsants, and antiepileptics. The first report of the use of a LA by Carl Koller appeared in 1884 (1). For an operation on glaucoma, Koller applied the only naturally occurring LA, cocaine, topically on the cornea. Cocaine is isolated from the leaves of the coca shrub, Erythroxylon coca. His discovery of cocaine as a surface LA for relatively painless surgery was followed by the steady development of novel synthetic LAs spanning the last century. Along the course of this development came various new techniques of local/regional anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Jong, R. H. (1994) Local anesthetics: from cocaine to xylocaine, in Local Anesthetics, Mosby Yearbook, St. Louis, pp. 1–8.

    Google Scholar 

  2. Lipka, L. J., Jiang, M., and Tseng, G. N. (1998) Differential effects of bupivacaine on cardiac K channels: role of channel inactivation and subunit composition in drug-channel interaction. J. Cardiovasc. Electrophysiol. 9, 727–742.

    Article  PubMed  CAS  Google Scholar 

  3. Goldin, A. L., Barchi, R. L., Caldwell, J. H., et al. (2000) Nomenclature of voltage-gated sodium channels. Neuron 28, 365–368.

    Article  PubMed  CAS  Google Scholar 

  4. de Jong, R. H. (1994) On the horizon, in Local Anesthetics, Mosby Yearbook, Inc., St. Louis, pp. 381–401.

    Google Scholar 

  5. Akopian, A. N., Souslova V., England, S., et al. (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2, 541–548.

    Article  PubMed  CAS  Google Scholar 

  6. Gottlieb, R. (1923) Pharmakologische untersuchungen Ă¼ber die stereoisomerie der cocaine. Archiv fĂ¼r Experimentelle Pathologie und Pharmacologie 97, 113–146.

    CAS  Google Scholar 

  7. Skou, J. C. (1954) Local anesthetics: VI. relation between blocking potency and penetration of a monomolecular layer of lipoids from nerves. Acta Pharmacol. Toxicol. 10, 325–337.

    Article  CAS  Google Scholar 

  8. Taylor, R. E. (1959) Effect of procaine on electrical properties of squid axon membrane. Am. J. Physiol. 196, 1071–1078.

    PubMed  CAS  Google Scholar 

  9. Aldrich, R. W., Corey, D. P., and Stevens C. F. (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306, 436–441.

    Article  PubMed  CAS  Google Scholar 

  10. Hille, B. (1992) Gating mechanisms, in Ionic Channels of Excitable Membranes. Sinauer, Sunderland, Massachusetts, pp. 472–503.

    Google Scholar 

  11. Starmer, C. F., Grant A. 0., and Strauss H. C. (1984) Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys. J. 46, 15–27.

    CAS  Google Scholar 

  12. Valenzuela, C., Snyders, D. J., Bennett, P. B., Tamargo, J., and Hondeghem, L. M. (1995) Stereoselective block of cardiac sodium channels by bupivacaine in guinea pig ventricular myocytes. Circulation 92, 3014–3024.

    Article  PubMed  CAS  Google Scholar 

  13. Hodgkin, A. L. and Huxley, A. E. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.

    CAS  Google Scholar 

  14. Hille, B. (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction. J. Gen. Physiol. 69, 497–515.

    Article  PubMed  CAS  Google Scholar 

  15. Hondeghem, L. M. and Katzung, B. G. (1977) Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta 472, 373–398.

    Article  PubMed  CAS  Google Scholar 

  16. Devor, M. (1984) The pathophysiology and anatomy of damaged nerve, in Textbook of Pain ( Wall P. D. and Melzack R., eds.), Churchill Livingstone, New York, pp. 49–64.

    Google Scholar 

  17. Bennett, P. B., Valenzuela, C., Chen, L.-Q., and Kallen, R. G. (1995) On the molecular nature of the lidocaine receptor of cardiac Na’ channels• modification of block by alterations in the a-subunit III-IV interdomain. Circulation Res. 77, 584–592.

    Article  PubMed  CAS  Google Scholar 

  18. Grant, A. O., Chandra, R., Keller, C., Carboni, M., and Starmer, C. F. (2000) Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cells. Biophys. J. 79, 3019–3035.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, G. K., Brodwick, M. S., Eaton, D. C., and Strichartz, G. R. (1987) Inhibition of sodium currents by local anesthetics in chloramine-T treated squid axons. J. Gen. Physiol. 89, 645–667.

    Article  PubMed  CAS  Google Scholar 

  20. Vedantham, V. and Cannon, S. C. (1999) The position of the fast-inactivation gate during lidocaine block of voltage-gated Na’ channels. J. Gen. Physiol. 113, 7–16.

    Article  PubMed  CAS  Google Scholar 

  21. Khodorov, B. I., Shishkova, L., Peganov, E., and Revenko, S. (1976) Inhibition of sodium currents in frog Ranvier node treated with local anesthetics. Role of slow sodium inactivation. Biochim. Biophys. Acta 433, 409–435.

    Article  CAS  Google Scholar 

  22. Ong, B.-H., Tomaselli, G. F., and Balser, J. R. (2000) A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J. Gen. Physiol: 116, 653–661.

    Article  PubMed  CAS  Google Scholar 

  23. Guo, X., Castle, N. A., Chernoff, D. M., and Strichartz, G. R. (1991) Comparative inhibition of voltage-gated cation channels by local anesthetics. Ann NY Acad Sci 625, 181–199.

    Article  PubMed  CAS  Google Scholar 

  24. Fodor, A. A., Gordon, S. E., and Zagotta, W. N. (1997) Mechanism of tetracaine block of cyclic nucleotide-gated channels. J. Gen. Physiol. 109, 3–14.

    Article  PubMed  CAS  Google Scholar 

  25. Fleming, J. A., Byck, R., and Barash, P. G. (1990) Pharmacology and therapeutic applications of cocaine. Anesthesiology 73, 518–531.

    Article  PubMed  CAS  Google Scholar 

  26. Hille, B. (1992) Mechanisms of block, in Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA, pp. 390–422.

    Google Scholar 

  27. Strichartz, G. R. (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. Gen. Physiol. 62, 37–57.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, G. K. (1988) Cocaine-induced closures of single batrachotoxin-activated Na’ channels in planar lipid bilayers. J. Gen. Physiol. 92, 747–765.

    Article  PubMed  CAS  Google Scholar 

  29. Armstrong, C. M. (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437.

    Article  PubMed  CAS  Google Scholar 

  30. Narahashi, T. and Frazier, D. T. (1971) Site of action and active form of local anesthetics. Neurosci. Res. 4, 65–99.

    PubMed  CAS  Google Scholar 

  31. Courtney, K. R. and Strichartz, G. R. (1987) Structural elements which determine local anesthetic activity, in Local Anesthetics ( Strichartz G. R., ed.), Springer-Verlag, New York, pp. 53–94.

    Chapter  Google Scholar 

  32. Postma, S. W. and Catterall, W. A. (1984) Inhibition of binding of H3 batrachotoxin A 20-a-benzoate to Na channels by local anesthetics. Mol. Pharmacol. 25, 219–227.

    PubMed  CAS  Google Scholar 

  33. Moczydlowski, E., Uehara, A., and Hall, S. (1986) Blocking pharmacology of batrachotoxin activated sodium channels, in Ion channel reconstitution. ( Miller C., ed.), Plenum Press, New York, pp. 405–428.

    Google Scholar 

  34. Wang, G. K. and Wang, S.-Y. (1992) Altered stereoselectivity of cocaine and bupivacaine isomers in normal and BTX-modified Na` channels. J. Gen. Physiol. 100, 1003–1020.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, G. K. (1990) Binding affinity and stereoselectivity of local anesthetics in single batrachotoxin-activated Na+ channels. J. Gen. Physiol. 96, 105–1127.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, G. K., Simon, R., and Wang, S. Y. (1991) Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels. J. Gen. Physiol. 98, 1005–1024.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, G. K., Simon, R., Bell, D., and Wang, S. Y. (1993) Structural determinants of quaternary ammonium blockers for BTX- modified Na’ channels. Mol. Pharmacol. 44, 667–676.

    PubMed  CAS  Google Scholar 

  38. Wang, S.-Y. and Wang, G. K. (1999) Batrachotoxin-resistant Na’ channels derived from point mutations in transmembrane segment D4–S6. Biophys. J. 76, 3141–3149.

    Article  PubMed  CAS  Google Scholar 

  39. McNeal, E. T., Lewandowski, G. A., Daly, J. W., and Creveling, C. R. (1985) [33H]Batrachotoxinin A 20-alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs. J. Med. Chem. 28, 381–388.

    Google Scholar 

  40. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na` channels. Proc. Natl. Acad. Sci. USA 93, 9270–9275.

    Article  PubMed  CAS  Google Scholar 

  41. Catterall, W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25.

    Article  PubMed  CAS  Google Scholar 

  42. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. (1994) Molecular determinants of state-dependent block of Na` channels by local anesthetics. Science 265, 1724–1728.

    Article  PubMed  CAS  Google Scholar 

  43. Catterall, W. A. and Mackie, K. (1996) Local Anesthetics, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics. ( Hardman J G, Limbird L. E., Molinoff P. B., Ruddon R. W., and Gilman A. G., eds.), Macmillan, New York, pp. 331–347.

    Google Scholar 

  44. Li, H.-L., Galue, A., Meadous, L., and Ragsdale, D. S. (1999) A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel. Mol. Pharmacol. 55, 134–141.

    PubMed  CAS  Google Scholar 

  45. Yarov-Yarovoy, V., Brown, J., Sharp, E., Clare, J. J., Scheuer, T., and Catterall, W. A. (2001) Molcular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment III56 of the Na+ channel is subunit. J. Biol. Chem. 276, 20–27.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, G. K., Quan, C., and Wang, S.-Y. (1998) Local anesthetic block of batrachotoxin-resistant muscle Na` channels. Mol. Pharmacol. 54, 89–396.

    PubMed  CAS  Google Scholar 

  47. Wang, S.-Y., Nau, C., and Wang, G. K. (2000) Residues in Na` channel D3–S6 segment modulate batrachotoxin as well as local anesthetic binding affinities. Biophys. J. 79, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  48. Sunami, A., Dudley, S. C., and Fozzard, H. A. (1997) Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc. Natl. Acad. Sci. USA 94, 14,126–14, 131.

    Google Scholar 

  49. Wang, S.-Y. and Wang, G. K. (1998) Point mutations in segment I-S6 render voltage-gated Na’ channels resistant to batrachotoxin. Proc. Natl. Acad. Sci. USA 95, 2653–2658.

    Article  PubMed  CAS  Google Scholar 

  50. Linford, N. J., Cantrell, A. R., Qu, Y., Scheuer, T., and Catterall, W. A. (1998) Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 95, 13,947–13, 952.

    Google Scholar 

  51. Monod, J., Changeux, J. P., and Jacob, F. (1963) Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329.

    Article  PubMed  CAS  Google Scholar 

  52. Bean, B. P., Cohen, C. J., and Tsien, R. W. (1983) Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81, 613–642.

    Article  PubMed  CAS  Google Scholar 

  53. Meeder, T. and Ulbricht, W. (1987) Action of benzocaine on sodium channels of frog nodes of Ranvier treated with chloramine-T. Pflugers Arch 4092, 265–273.

    PubMed  CAS  Google Scholar 

  54. Wright, S. N., Wang, S.-Y., Xiao, Y.-F., and Wang, G. K. (1999) State-dependent cocaine block of sodium channel isoforms, chimeras, and channels coexpressed with the 13-subunit. Biophys. J. 76, 233–245.

    Article  PubMed  CAS  Google Scholar 

  55. Popitz-Bergez, F. A., Leeson, S., Strichartz, G. R., and Thalhammer, J. G. (1995) Relation between functional deficit and intraneural local anesthetic during peripheral nerve block. A study in the rat sciatic nerve. Anesthesiology 83, 583–592.

    Article  PubMed  CAS  Google Scholar 

  56. Ross, S. B. and Akerman, S. B. A. (1972) Cyclization of three N-w-haloalkyl-N-methylaminoaceto-2,6-xylidide derivatives in relation to their local anesthetic effect in vitro and in vivo. J. Pharmac. Exp. Ther. 182, 351–361.

    CAS  Google Scholar 

  57. Wang, G. K., Quan, C., Vladimirov, M., Mok, W.-M., and Thalhammer, J. G. (1995) Quaternary ammonium derivative of lidocaine as a long acting local anesthetic. Anesthesiology 83, 1293–1301.

    Article  PubMed  CAS  Google Scholar 

  58. Wang, G. K., Vladimirov, M., Quan, C., Mok, W.-M., Thalhammer, J. G., and Anthony, D. C. (1996) N-butyl tetracaine as a neurolytic agent for ultralong sciatic nerve block. Anesthesiology 85, 1386–1394.

    Article  PubMed  CAS  Google Scholar 

  59. Ritchie, J. M. and Greene, N. M. (1985) Local anesthetics, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics. ( Gilman, A. G., Goodman, L. S., Rall, T. A., and Murad, F., eds.), MacMillan, New York, pp. 302–321.

    Google Scholar 

  60. Gerner, P., Mujtaba, M., Sinnot, C. J., and Wang, G. K. (2001) Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology 94, 661–667.

    Article  PubMed  CAS  Google Scholar 

  61. Nau, C., Seaver, M., Wang, S.-Y., and Wang, G. K. (2000) Block of human heart hHl sodium channels by amitriptyline. J. Pharmacol. Exp. Ther. 292, 1015–1023.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, G.K. (2003). Local Anesthetics. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_25

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics