Skip to main content

Actions of General Anesthetic on Voltage-Gated Ion Channels

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 332 Accesses

Abstract

Neuronal signaling depends on rapid changes in electrical fields across cell membranes mediated by ion channels. Three important properties of these transmembrane proteins facilitate the rapid changes in membrane potential: passive conduction of ions, ion selectivity, and open and closing (gating) in response to electrical, mechanical, or chemical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., et al. (1998) The structure of the potassium channel: molecular basis of K’ conduction and selectivity. Science 280, 69–77.

    PubMed  CAS  Google Scholar 

  2. Sato, C., Veno, Y., Asai, K., et al. (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409, 1047–1051.

    PubMed  CAS  Google Scholar 

  3. Catterall, W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25.

    PubMed  CAS  Google Scholar 

  4. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na’ channels. Proc. Natl. Acad. Sci. USA 93, 9270–9275.

    PubMed  CAS  Google Scholar 

  5. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. (1994) Molecular determinants of state-dependent block of Na’ channels by local anesthetics. Science 265, 1724–1728.

    PubMed  CAS  Google Scholar 

  6. Cestele, S. and Catterall, W. A. (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883–892.

    PubMed  CAS  Google Scholar 

  7. Backx, P. H., Yue, D. T., Lawrence, J. H., Marban, E., and Tomaselli, G. F. (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257, 248–251.

    PubMed  CAS  Google Scholar 

  8. Satin, J., Kyle, J. W., Chen, M., et al. (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256, 1202–1205.

    PubMed  CAS  Google Scholar 

  9. Sivilotti, L., Okuse, K., Akopian, A. N., Noss, S., and Wood, J. N. (1997) A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Lett. 409, 49–52.

    PubMed  CAS  Google Scholar 

  10. Hartshorne, R. P. and Catterall, W. A. (1981) Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natl. Acad. Sci. USA 78, 4620–4624.

    PubMed  CAS  Google Scholar 

  11. Hartshorne, R. P. Messner, D. J. Coppersmith, J. C., and Catterall, W. A. (1982) The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. J. Biol. Chem. 257 13,888–13,891.

    Google Scholar 

  12. Noda, M., Shimizu, S., Tanabe, T., et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127.

    PubMed  CAS  Google Scholar 

  13. Isom, L. L., De Jongh, K. S., Patton, D. E., et al. (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256, 839–842.

    PubMed  CAS  Google Scholar 

  14. Isom, L. L., Ragsdale, D. S., De Jongh, K. S., et al. (1995) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83, 433–442.

    PubMed  CAS  Google Scholar 

  15. Srinivasan, J., Schachner, M., and Catterall, W. A. (1998) Interaction of voltage-gated sodium channels with the extra-cellular matrix molecules tenascin-C and tenascin-R. Proc. Natl. Acad. Sci. USA 95, 15,753–15, 757.

    Google Scholar 

  16. Miller, J. A., Agnew, W. S., and Levinson, S. R. (1983) Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry 22, 462–470.

    PubMed  CAS  Google Scholar 

  17. Barchi, R. L. (1983) Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neurochem. 40, 1377–1385.

    PubMed  CAS  Google Scholar 

  18. Noda, M., Ikeda, T., Suzuki, H., et al. (1986) Expression of functional sodium channels from cloned cDNA. Nature 322, 826–828.

    PubMed  CAS  Google Scholar 

  19. Goldin, A. L., Snutch, T., Lubbert, H., et al. (1986) Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 83, 7503–7507.

    PubMed  CAS  Google Scholar 

  20. Catterall, W. A. (1991) Functional subunit structure of voltage-gated calcium channels. Science 253, 1499, 1500.

    Google Scholar 

  21. Terlau, H. Heinmann, S. H., Stuhmer, W., et al. (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293 93–96.

    Google Scholar 

  22. Benitah, J. P., Chen, Z., Balser, J. R., Tomaselli, G. F., and Marban, E. (1999) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. J. Neurosci. 19, 1577–1585.

    PubMed  CAS  Google Scholar 

  23. Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K., and Numa, S. (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443.

    Google Scholar 

  24. Armstrong, C. M. (1981) Sodium channels and gating currents. Physiol. Rev. 61, 644–683.

    PubMed  CAS  Google Scholar 

  25. Hirschberg, B., Rovner, A., Liberman, M., and Patlak, J. (1995) Transfer of twelve charges is needed to open skeletal muscle Na’ channels. J. Gen. Physiol. 106, 1053–1068.

    PubMed  CAS  Google Scholar 

  26. Stuhmer, W., Conti, F., Suzuki, H., et al. (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603.

    PubMed  CAS  Google Scholar 

  27. Catterall, W. A. (1986) Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985.

    PubMed  CAS  Google Scholar 

  28. Guy, H. R. and Seetharamulu, P. (1986) Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83, 508–512.

    PubMed  CAS  Google Scholar 

  29. Wang, M. H., Yusaf, S. P., Elliott, D. J. Wray, D., and Sivaprasadaro, A. (1999) Effect of cysteine substitutions on the topology of the S4 segment of the Shaker potassium channel: implications for molecular models of gating. J. Physiol. (Loud.) 521 Pt 2 315–326.

    Google Scholar 

  30. Cestele, S., Qu, Y., Rogers, J. C., Rochat, H., Scheuer, T., and Catterall, W. A. (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3—S4 loop in domain II. Neuron 21, 919–931.

    PubMed  CAS  Google Scholar 

  31. Armstrong, C. M. (1975) Evidence for ionic pores in excitable membranes. Biophys. J. 15, 932–933.

    PubMed  CAS  Google Scholar 

  32. West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L., and Catterall, W. A. (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)- channel inactivation. Proc. Natl. Acad. Sci. USA 89, 10,910–10, 914.

    Google Scholar 

  33. Kellenberger, S., West, J. W., Scheuer, T., and Catterall, W. A. (1997) Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J. Gen. Physiol. 109, 589–605.

    Google Scholar 

  34. Kellenberger, S., West, J. W., Scheuer, T., and Catterall, W. A. (1997) Molecular analysis of potential hinge residues in the inactivation gate of brain type IIA Na’ channels. J. Gen. Physiol. 109, 607–617.

    PubMed  CAS  Google Scholar 

  35. Cha, A., Ruben, P. C., George, A. L., Jr., Fujimoto, E., and Bezanilla, F. (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na’ channel fast inactivation. Neuron 22, 73–87.

    PubMed  CAS  Google Scholar 

  36. Zhang, X. F., Hu, X. T., and White, F. J. (1998) Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J. Neurosci. 18, 488–498.

    PubMed  Google Scholar 

  37. Calabresi, P., Mercuri, N., Stanzione, P., Stefani, A., and Bernardi, G. (1987) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for Dl receptor involvement. Neuroscience 20, 757–771.

    PubMed  CAS  Google Scholar 

  38. Rossie, S. and Catterall, W. A. (1987) Cyclic-AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. J. Biol. Chem. 262, 12,735–12, 744.

    Google Scholar 

  39. Hilborn, M. D., Vaillancourt, R. R., and Rane, S. G. (1998) Growth factor receptor tyrosine kinases acutely regulate neuronal sodium channels through the src signaling pathway. J. Neurosci. 18, 590–600.

    PubMed  CAS  Google Scholar 

  40. Costa, M. R. and Catterall, W. A. (1984) Phosphorylation of the alpha subunit of the sodium channel by protein kinase C. Cell. Mol. Neurobiol. 4, 291–297.

    PubMed  CAS  Google Scholar 

  41. Cantrell, A. R., Ma, J. Y., Scheuer, T., and Catterall, W. A. (1996) Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16, 1019–1026.

    PubMed  CAS  Google Scholar 

  42. Ratcliffe, C. F., Qu, Y., Mc Cormick, K. A., et al. (2000) A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase beta. Nat. Neurosci. 3, 437–444.

    PubMed  CAS  Google Scholar 

  43. Franks, N. P. and Lieb, W. R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614.

    PubMed  CAS  Google Scholar 

  44. Haydon, D. A. and Urban, B. W. (1986) The actions of some general anaesthetics on the potassium current of the squid giant axon. J. Physiol. 373, 311–327.

    PubMed  CAS  Google Scholar 

  45. Grossman, Y. and Kendig, J. J. (1982) General anesthetic block of a bifurcating axon. Brain Res. 245, 148–153.

    PubMed  CAS  Google Scholar 

  46. Langmoen, I. A., Larsen, M., and Berg-Johnsen, J. (1995) Volatile anaesthetics: cellular mechanisms of action. Eur. J. Anaesthesiol. 12, 51–58.

    PubMed  CAS  Google Scholar 

  47. Frenkel, C., Duch, D. S., and Urban, B. W. (1990) Molecular actions of pentobarbital isomers on sodium channels from human brain cortex. Anesthesiology 72, 640–649.

    PubMed  CAS  Google Scholar 

  48. Duch, D. S., Wartenberg, H. C., and Urban, B. W. (1995) Dissecting pentobarbitone actions on single voltage-gated sodium channels. Eur. J. Anaesthesiol. 12, 71–81.

    PubMed  CAS  Google Scholar 

  49. Rehberg, B. and Duch, D. S. (1999) Suppression of central nervous system sodium channels by propofol. Anesthesiology 91, 512–520.

    PubMed  CAS  Google Scholar 

  50. Rehberg, B., Xiao, Y. H., and Duch, D. S. (1996) Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology, discussion 27A 84, 1223–1233.

    CAS  Google Scholar 

  51. Schlame, M. and Hemmings, H. C., Jr. (1995) Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology 82, 1406–1416.

    PubMed  CAS  Google Scholar 

  52. Hemmings, H. C. (1998) General anesthetic effects on protein kinase C. Toxicol. Lett. 100–101, 89–95.

    Google Scholar 

  53. Kindler, C. H., Eilers, H., Donohoe, P., Ozer, S., and Bickler, P. E. (1999) Volatile anesthetics increase intracellular calcium in cerebrocortical and hippocampal neurons. Anesthesiology 90, 1137–1145.

    PubMed  CAS  Google Scholar 

  54. Perez-Pinzon, M. A., Rosenthal, M., Sick, T. J., Lutz, P. L., Pablo, J., and Mash, D. (1992) Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain. Am. J. Physiol. 262, R712 - R715.

    Google Scholar 

  55. Cummins, T. R., Jiang, C., and Haddad, G. G. (1993) Human neocortical excitability is decreased during anoxia via sodium channel modulation. J. Clin. Invest. 91, 608–615.

    PubMed  CAS  Google Scholar 

  56. Taylor, C. P. and Meldrum, B. S. (1995) Na+ channels as targets for neuroprotective drugs. Trends Pharmacol. Sci. 16, 309–316.

    PubMed  CAS  Google Scholar 

  57. Hemmings, H. (1997) Neuroprotection by Sodium Channel Blockade and Inhibition of Glutamate Release, in Neuroprotection, T. Blanck, Editor, Williams and Wilkins: New York. pp. 23–46.

    Google Scholar 

  58. Tan, H. L., Bink-Boelkins, M. T., Bezzina, C. R., et al. (2001) A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409, 1043–1047.

    PubMed  CAS  Google Scholar 

  59. Weigt, H. U., Kwok, W. M., Rehmert, G. C., and Bosnjak, Z. J. (1998) Sensitization of the cardiac Na channel to alphal-adrenergic stimulation by inhalation anesthetics: evidence for distinct modulatory pathways. Anesthesiology 88, 125–133.

    PubMed  CAS  Google Scholar 

  60. Weigt, H. U., Kwok, W. M., Rehmert, G. C., and Bosnjak, Z. J. (1998) Modulation of the cardiac sodium current by inhalational anesthetics in the absence and presence of beta-stimulation. Anesthesiology 88, 114–124.

    PubMed  CAS  Google Scholar 

  61. Wagner, L. E., 2“d, Eaton, M., Sabnis, S. S., and Gingrich, K. J. (1999) Meperidine and lidocaine block of recombinant voltage-dependent Na+ channels: evidence that meperidine is a local anesthetic. Anesthesiology 91, 1481–1490.

    Google Scholar 

  62. Brau, M. E., Sander, F., Vogel, W., and Hempelmann, G. (1997) Blocking mechanisms of ketamine and its enantiomers in enzymatically demyelinated peripheral nerve as revealed by single-channel experiments. Anesthesiology 86, 394–404.

    PubMed  CAS  Google Scholar 

  63. Tetzlaff, J. E. (2000) The pharmacology of local anesthetics. Anesthesiol. Clin. N. A. 18, 217–233.

    CAS  Google Scholar 

  64. Novakovic, S. D., Tzoumaka, E., McGivern, J. G., et al. (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 18, 2174–2187.

    PubMed  CAS  Google Scholar 

  65. Sleeper, A. A., Cummins, T. R., Dib-Hajj, S. D., et al. (2000) Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy.. 1. Neurosci. 20, 7279–7289.

    CAS  Google Scholar 

  66. Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262.

    PubMed  CAS  Google Scholar 

  67. Porreca, F., Lai, J., Bian, D., et al. (1999) A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain [published erratum appears in Proc. Natl. Acad. Sci. USA 1999 96, 10,548]. Proc. Natl. Acad. Sci. USA 96, 7640–7644.

    Google Scholar 

  68. Hille, B. (1984) Ionic Channels of Excitable Membranes. Vol. First.: Sinauer Associates Incorporated, Sunderland, Mass.

    Google Scholar 

  69. Birnbaumer, L., Campbell, K. P., Catterall, W. A., et al. (1994) The naming of voltage-gated calcium channels. Neuron 13, 505–506.

    PubMed  CAS  Google Scholar 

  70. Ertel, E. A., Campbell, K. P., Harpold, M. M., et al. (2000) Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535.

    PubMed  CAS  Google Scholar 

  71. Westenbroek, R. E., Ahlijanian, M. K., and Catterall, W. A. (1990) Clustering of L-type Cat+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284.

    PubMed  CAS  Google Scholar 

  72. Moreno, D. H. (1999) Molecular and functional diversity of voltage-gated calcium channels. Ann. NY Acad. Sci. 868, 102–117.

    Google Scholar 

  73. Peterson, B. Z., Lee, J. S., Mulle, J. G., et al. (2000) Critical determinants of Ca(2+)-dependent inactivation within an EF- hand motif of L-type Ca(2+) channels. Biophys. J. 78, 1906–1920.

    PubMed  CAS  Google Scholar 

  74. Westenbroek, R. E., Hell, J. W., Warner, C., Dtibel, S. J., Snatch, T. P., and Catterall, W. A. (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9, 1099–1115.

    PubMed  CAS  Google Scholar 

  75. Wheeler, D. B., Randall, A., and Tsien, R. W. (1994) Roles of N-type and Q-type Ca’’ channels in supporting hippocampal synaptic transmission. Science 264, 107–111.

    PubMed  CAS  Google Scholar 

  76. Westenbroek, R. E., Sakurai, T., Elliott, E. M. et al. (1995) Immunochemical identification and subcellular distribution of the alpha IA subunits of brain calcium channels. J. Neurosci. 15, 6403–6418.

    PubMed  CAS  Google Scholar 

  77. Yokoyama, C. T., Westenbroek, R. E., Hell, J. W., et al. (1995) Biochemical properties and subcellular distribution of the neuronal class E calcium channel alpha 1 subunit. J. Neurosci. 15, 6419–6432.

    CAS  Google Scholar 

  78. Randall, A. and Tsien, R. W. (1997) Contrasting biophysical and pharmacological properties of T type and R type calcium channels. Neuropharmacology 36, 879–893.

    PubMed  CAS  Google Scholar 

  79. Westenbroek, R. E., Hoskins, L., and Catterall, W. A. (1998) Localization of Cat channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 18, 6319–6330.

    PubMed  CAS  Google Scholar 

  80. McDowell, T. S., Pancrazio, J. J., Barrett, P. Q., and Lynch, C., 3rd (1999) Volatile anesthetic sensitivity of T-type calcium currents in various cell types. Anesth. Analg. 88, 168–173.

    PubMed  CAS  Google Scholar 

  81. Lynch, C., 3rd, Vogel, S., and Sperelakis, N. (1981) Halothane depression of myocardial slow action potentials. Anesthesiology 55, 360–368.

    PubMed  CAS  Google Scholar 

  82. Bosnjak, Z. J. and Kampine, J. P. (1983) Effects of halothane, enflurane, and isoflurane on calcium currents in the SA node. Anesthesiology 58, 314–321.

    PubMed  CAS  Google Scholar 

  83. Drenger, B., Quigg, M., and Blanck, T. J. (1991) Volatile anesthetics depress calcium channel blocker binding to bovine cardiac sarcolemma. Anesthesiology 74, 155–163.

    PubMed  CAS  Google Scholar 

  84. Lee, D. L., Zhang, J., and Blanck, T. J. (1994) The effects of halothane on voltage-dependent calcium channels in isolated Langendorff-perfused rat heart. Anesthesiology 81, 1212–1219.

    PubMed  CAS  Google Scholar 

  85. Hoehner, P. and Blanck, T. J. (1991) Halothane depresses D600 binding to bovine heart sarcolemma. Anesthesiology 75, 1019–1024.

    PubMed  CAS  Google Scholar 

  86. Dolin, S. and Little, H. (1986) Augmentation by calcium channel antagonists of general anesthetic potency in mice. Brit. J. Pharmacol. 88, 909–914.

    CAS  Google Scholar 

  87. Herrington, J., Stern, R. C., Evers, A. S., and Lingle, C. J. (1991) Halothane inhibits two components of calcium current in clonal (GH3) pituitary cells. J. Neurosci. 11, 2226–2240.

    PubMed  CAS  Google Scholar 

  88. Study, R. E. (1994) Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81, 104–116.

    PubMed  CAS  Google Scholar 

  89. Takenoshita, M. and Steinbach, J. H. (1991) Halothane blocks low-voltage-activated calcium current in rat sensory neurons. J. Neurosci. 11, 1404–1412.

    PubMed  CAS  Google Scholar 

  90. Pancrazio, J. J., Park, W. K., and Lynch, C., 3rd (1993) Inhalational anesthetic actions on voltage-gated ion currents of bovine adrenal chromaffin cells. Mol. Pharmacol. 43, 783–794.

    PubMed  CAS  Google Scholar 

  91. Charlesworth, P., Pocock, G., and Richards, C. D. (1994) Calcium channel currents in bovine adrenal chromaffin cells and their modulation by anaesthetic agents. J. Physiol. 481 (Pt 3), 543–553.

    Google Scholar 

  92. Krnjevic, K. and Puil, E. (1988) Halothane suppresses slow inward currents in hippocampal slices. Can. J. Physiol. Pharmacol. 66, 1570–1575.

    PubMed  CAS  Google Scholar 

  93. Nikonorov, I. M., Blanck, T. J., and Recio-Pinto, E. (1998) The effects of halothane on single human neuronal L-type calcium channels. Anesth. Analg. 86, 885–895.

    PubMed  CAS  Google Scholar 

  94. Kamatchi, G. L., Chan, C. K., Snutch, T., Durieux, M. E., and Lynch, C., 3rd (1999) Volatile anesthetic inhibition of neuronal Ca channel currents expressed in Xenopus oocytes. Brain Res. 831, 85–96.

    Google Scholar 

  95. Miller, R. J. (1987) Multiple calcium channels and neuronal function. Science 235, 46–52.

    PubMed  CAS  Google Scholar 

  96. Hirota, K., Fujimura, J., Wakasugi, M., and Ito, Y. (1996) Isoflurane and sevoflurane modulate inactivation kinetics of Ca’ currents in single bullfrog atrial myocytes. Anesthesiology 84, 377–383.

    PubMed  CAS  Google Scholar 

  97. Bohm, M., Schmidt, U., Gierschik, P., Schwinger, R. H., Bohm, S., and Erdmann, E. (1994) Sensitization of adenylate cyclase by halothane in human myocardium and S49 lymphoma wild-type and cyc-cells: evidence for inactivation of the inhibitory G protein Gi alpha. Mol. Pharmacol. 45, 380–389.

    Google Scholar 

  98. Rooney, T. A., Hager, R., Stubbs, C. D., and Thomas, A. P. (1993) Halothane regulates G-protein-dependent phospholipase C activity in turkey erythrocyte membranes. J. Biol. Chem. 268, 15,550–15, 556.

    Google Scholar 

  99. Puig, M. M., Turndorf, H., and Warner, W. (1990) Effect of pertussis toxin on the interaction of azepexole and halothane. J. Pharmacol. Exp. Ther. 252, 1156–1159.

    PubMed  CAS  Google Scholar 

  100. Puig, M. M., Turndorf, H., and Warner, W. (1990) Synergistic interaction of morphine and halothane in the guinea pig ileum: effects of pertussis toxin. Anesthesiology 72, 699–703.

    PubMed  CAS  Google Scholar 

  101. Yamakage (2001) Different Inhibitory Effects of Volatile Anesthetics on T- and L-type voltage dependent Ca channels. Anesthesiology 94, 683.

    PubMed  CAS  Google Scholar 

  102. Buljubasic, N., Marijic, J., Berczi, V., Supan, D. F., Kampine, J. P., and Bosnjak, Z. J. (1996) Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells. Anesthesiology 85, 1092–1099.

    PubMed  CAS  Google Scholar 

  103. Zhou, W., Fontenot, H. J., Liu, S., and Kennedy, R. H. (1997) Modulation of cardiac calcium channels by propofol. Anesthesiology 86, 670–675.

    Google Scholar 

  104. Hirota, K. and Lambert, D. G. (2000) Effects of intravenous and local anesthetic agents on omega-conotoxin MVII(A) binding to rat cerebrocortex. Can. J. Anaesth. 47, 467–470.

    PubMed  CAS  Google Scholar 

  105. Xuan, Y. T. and Glass, P. S. (1996) Propofol regulation of calcium entry pathways in cultured A10 and rat aortic smooth muscle cells. Brit. J. Pharmacol. 117, 5–12.

    CAS  Google Scholar 

  106. Luk, H. N., Yu, C. C., Lin, C. L., and Yang, C. Y. (1995) Electropharmacological actions of propofol on calcium current in guinea-pig ventricular myocytes. J. Electrocardiol. 28, 332–333.

    PubMed  CAS  Google Scholar 

  107. Hirota, K., Browne, T., Appadu, B. L., and Lambert, D. G. (1997) Do local anaesthetics interact with dihydropyridine binding sites on neuronal L-type Cat+ channels? Brit. J. Anaesth. 78 (2), 185–188.

    PubMed  CAS  Google Scholar 

  108. Bence-Hanulec, K. K., Marshall, J., and Blair, L. A. (2000) Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the alphal subunit on a specific tyrosine residue. Neuron 27, 121–131.

    PubMed  CAS  Google Scholar 

  109. Bargmann, C. I. (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033.

    PubMed  CAS  Google Scholar 

  110. Robertson, B. (1997) The real life of voltage-gated K+ channels: more than model behaviour. Trends Pharmacol. Sci. 18, 474–483.

    PubMed  CAS  Google Scholar 

  111. Garcia, M. L., Harmer, M., Knaus, H. G., et al. (1997) Pharmacology of potassium channels. Adv. Pharmacol. 39, 425–471.

    PubMed  CAS  Google Scholar 

  112. Miller, C. (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15, 5–10.

    PubMed  CAS  Google Scholar 

  113. Smart, S. L., Lopantsev, V., Zhang, C. L., et al. (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20 (4), 809–819.

    PubMed  CAS  Google Scholar 

  114. Meiri, N., Ghelardini, C., Tesco, G., et al. (1997) Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat. Proc. Natl. Acad. Sci. USA 94, 4430–4434.

    PubMed  CAS  Google Scholar 

  115. Clark, J. D. and Tempel, B. L. (1998) Hyperalgesia in mice lacking the Kv1.1 potassium channel gene. Neurosci. Lett. 251, 121–124.

    PubMed  CAS  Google Scholar 

  116. Brandt, T. and Strupp, M. (1997) Episodic ataxia type 1 and 2 (familial periodic ataxia/vertigo). Audiol. Neurootol. 2, 373–383.

    PubMed  CAS  Google Scholar 

  117. Ruppersberg, J. P., Schroter, K. H., Sakmann, B., Stocker, M., Sewing, S., and Pongs., O. Z. (1990) Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature 345, 535–537.

    PubMed  CAS  Google Scholar 

  118. Hopkins, W. F. (1998) Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 285, 1051–1060.

    PubMed  CAS  Google Scholar 

  119. Rettig, J. Heinemann, S. H. Wunder, F., et al. (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369 289–294.

    Google Scholar 

  120. Salinas, M., Duprat, F., Heurteaux, C., Hugnot, J. P., and Lazdunski, M. (1997) New modulatory alpha subunits for mammalian Shab K+ channels. J. Biol. Chem. 272, 24,371–24, 379.

    Google Scholar 

  121. Isacoff, E. Y., Jan, Y. N. and Jan, L. Y. (1991) Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353, 86–90.

    PubMed  CAS  Google Scholar 

  122. Liu, Y., Jurman, M. E., and Yellen, G. (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867.

    PubMed  CAS  Google Scholar 

  123. Kaczorowski, G. J. and Garcia, M. L. (1999) Pharmacology of voltage-gated and calcium-activated potassium channels. Curr. Opin. Chem. Biol. 3, 448–458.

    PubMed  CAS  Google Scholar 

  124. Cui, J., Cox, D. H., and Aldrich, R. W. (1997) Intrinsic voltage dependence and Cat+ regulation of mslo large conductance Ca-activated K+ channels../. Gen. Physiol. 109, 647–673.

    CAS  Google Scholar 

  125. Meera, P., Wallner, M., Song, M., and Toro, L. (1997) Large conductance voltage-and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–6S6), an extracellular N terminus, and an intracellular (S9–6S 10) C terminus. Proc. Natl. Acad. Sci. USA 94, 14,066–14, 071.

    Google Scholar 

  126. Schreiber, M. and Salkoff, L. (1997) A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355–1363.

    PubMed  CAS  Google Scholar 

  127. Diaz, L., Meera, P, Amigo, J., et al. (1998) Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J. Biol. Chem. 273, 32,430–32, 436.

    Google Scholar 

  128. Wanner, S. G., Koch, R. O., Koschak, A., et al. (1999) High-conductance calcium-activated potassium channels in rat brain: pharmacology, distribution, and subunit composition. Biochemistry 38, 5392–5400.

    PubMed  CAS  Google Scholar 

  129. Wallner, M., Meera, P., and Toro, L. (1999) Molecular basis of fast inactivation in voltage and Cat+-activated K+ channels: a transmembrane beta-subunit homolog. Proc. Natl. Acad. Sci. USA 96, 4137–4142.

    PubMed  CAS  Google Scholar 

  130. Reimann, F. and Ashcroft, F. M. (1999) Inwardly rectifying potassium channels Curr. Opin. Cell Biol. 11, 503–508.

    PubMed  CAS  Google Scholar 

  131. Yamada, M., Inanobe, A., and Kurachi, Y. (1998) G protein regulation of potassium ion channels. Pharmacol. Rev. 50, 723–760.

    Google Scholar 

  132. Inagaki, N., Gonoi, T., Clement, J. P., 4th, et al. (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170.

    PubMed  CAS  Google Scholar 

  133. Ammala, C., Moorhouse, A., Gribble, F., et al. (1996) Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature 379, 545–548.

    PubMed  CAS  Google Scholar 

  134. Kersten, J. R., Gross, G. J., Pagel, P. S., and Warltier, D. C. (1998) Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology 88, 495–513.

    PubMed  CAS  Google Scholar 

  135. Doupnik, C. A., Davidson, N., and Lester, H. A. (1995) The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5, 268–277.

    PubMed  CAS  Google Scholar 

  136. Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., and Goldstein, S. A. (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376, 690–695.

    PubMed  CAS  Google Scholar 

  137. Fink, M., Lesage, F., Duprat, F., et al. (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. Embo. J. 17, 3297–3308.

    PubMed  CAS  Google Scholar 

  138. Patel, A. J., Honore, E., Maingret, F., et al. (1998) A mammalian two pore domain mechano-gated S-like K+ channel. Embo J. 17 (15), 4283–4290.

    PubMed  CAS  Google Scholar 

  139. Goldstein, S. A., Wang, K. W., Ilan, N., and Pausch, M. H. (1998) Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J. Mol. Med. 76, 13–20.

    PubMed  CAS  Google Scholar 

  140. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M., and Honore, E. (2000) Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10,128–10, 133.

    Google Scholar 

  141. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M., and Honore, E. (1999) Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26,691–26, 696.

    Google Scholar 

  142. Gray, A. T., Zhao, B. B., Kindler, C. H., et al. (2000) Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 92, 1722–1730.

    PubMed  CAS  Google Scholar 

  143. Bang, H., Kim, Y., and Kim, D. (2000) TREK-2, a new member of the mechanosensitive tandem-pore K’ channel family. J. Biol. Chem. 275, 17,412–17, 419.

    Google Scholar 

  144. Yost, C. S. (1999) Potassium channels: basic aspects, functional roles, and medical significance. Anesthesiology 90, 1186–1203.

    PubMed  CAS  Google Scholar 

  145. North, R. A. (1989) Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Brit. J. Pharmacol. 98, 13–28.

    CAS  Google Scholar 

  146. Nicoll, R. A. and Madison, D. V. (1982) General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217, 1055–1057.

    PubMed  CAS  Google Scholar 

  147. Berg-Johnsen, J. and Langmoen, I. A. (1987) Isoflurane hyperpolarizes neurones in rat and human cerebral cortex. Acta Physiol. Scand. 130, 679–685.

    Google Scholar 

  148. Berg-Johnsen, J. and Langmoen, I. A. (1990) Mechanisms concerned in the direct effect of isoflurane on rat hippocampal and human neocortical neurons. Brain Res. 507, 28–34.

    PubMed  CAS  Google Scholar 

  149. Southan, A. P. and Wann, K. T. (1989) Inhalation anaesthetics block accommodation of pyramidal cell discharge in the rat hippocampus. Brit. J. Anaesth. 63, 581–586.

    PubMed  Google Scholar 

  150. Franks, N. P. and Lieb, W. R. (1988) Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333, 662–664.

    PubMed  CAS  Google Scholar 

  151. Winegar, B. D., Owen, D. F., Yost, C. S., Forsayeth, J. R., and Mayeri, E. (1996) Volatile general anesthetics produce hyperpolarization of Aplysia neurons by activation of a discrete population of baseline potassium channels. Anesthesiology 85, 889–900.

    PubMed  CAS  Google Scholar 

  152. Winegar, B. D. and Yost, C. S. (1998) Volatile anesthetics directly activate baseline S K` channels in aplysia neurons. Brain Res. 807, 255–262.

    PubMed  CAS  Google Scholar 

  153. Nacif-Coelho, C., Correa-Sales, C., Chang, L. L., and Maze, M. (1994) Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology 81, 1527–1534.

    PubMed  CAS  Google Scholar 

  154. Correa, A. M. (1998) Gating kinetics of Shaker K+ channels are differentially modified by general anesthetics. Am. J. Physiol. 275 (4 Pt 1), C1009 — C1021.

    PubMed  CAS  Google Scholar 

  155. Friederich, P. and Urban, B. W. (1999) Interaction of intravenous anesthetics with human neuronal potassium currents in relation to clinical concentrations. Anesthesiology 91, 1853–1860.

    PubMed  CAS  Google Scholar 

  156. McLarnon, J. and Sawyer, D. (1998) Effects of volatile anaesthetics on a high conductance calcium dependent potassium channel in cultured hippocampal neurons. Toxicol. Lett. 100–101, 271–276.

    Google Scholar 

  157. Hong, Y., Puil, E., and Mathers, D. A. (1994) Effect of halothane on large-conductance calcium-dependent potassium channels in cerebrovascular smooth muscle cells of the rat. Anesthesiology 81, 649–656.

    PubMed  CAS  Google Scholar 

  158. Dreixler, J. C., Jenkins, A., Lao, Y. J., Roizen, J. D., and Houamed, K. M. (2000) Patch-clamp analysis of anesthetic interactions with recombinant SK2 subtype neuronal calcium-activated potassium channels. Anesth. Analg. 90, 727–732.

    PubMed  CAS  Google Scholar 

  159. Gibbons, S. J., Nuez-Hernandez, R., Maze, G., and Harrison, N. L. (1996) Inhibition of a fast inwardly rectifying potassium conductance by barbiturates. Anesth. Analg. 82, 1242–1246.

    PubMed  CAS  Google Scholar 

  160. Gray, A. T., Winegar, B. D., Leonoudakis, D. J., Forsayeth, J. R., and Yost, C. S. (1998) TOK1 is a volatile anesthetic stimulated K+ channel. Anesthesiology 88, 1076–1084.

    PubMed  CAS  Google Scholar 

  161. Patel, A. J., Honore, E., Lesage, F., Fink, M., Romey, G., and Lazdunski, M. (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci. 2, 422–426.

    PubMed  CAS  Google Scholar 

  162. Sirois, J. E., Lei, Q„ Talley, E. M., Lynch, C., 3`d, and Bayliss, D. A. (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci. 20, 6347–6354.

    Google Scholar 

  163. Zorn, L., Kulkarni, R., Anantharam, V., Bayley, H., and Treistman, S. N. (1993) Halothane acts on many potassium channels, including a minimal potassium channel. Neurosci. Lett. 161, 81–84.

    PubMed  CAS  Google Scholar 

  164. Larach, D. R. and Schuler, H. G. (1993) Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries. J. Pharmacol. Exp. Ther. 267, 72–81.

    PubMed  CAS  Google Scholar 

  165. Cason, B. A., Shubayev, I. and Hickey, R. F. (1994) Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation. Anesthesiology 81 1245–1255; discussion 27A–28A.

    Google Scholar 

  166. Cason, B.A., Gordon, H. J., Avery, E. G., 4`h, and Hickey, R. F. (1995) The role of ATP sensitive potassium channels in myocardial protection. J. Card. Surg. 10, 441–444.

    Google Scholar 

  167. Kersten, J. R., Schmeling, T. J., Hettrick, D. A., Pagel, P. S., Gross, G. J., and Warltier, D. C. (1996) Mechanism of myocardial protection by isoflurane. Role of adenosine triphosphate-regulated potassium (KATP) channels. Anesthesiology 85, 794–807.

    PubMed  CAS  Google Scholar 

  168. Crystal, G. J., Gurevicius, J., Salem, M. R., and Zhous, X. (1997) Role of adenosine triphosphate-sensitive potassium channels in coronary vasodilation by halothane, isoflurane, and enflurane. Anesthesiology 86, 448–458.

    PubMed  CAS  Google Scholar 

  169. Han, J., Kim, E., Ho, W. K., and Earm, Y. E. (1996) Effects of volatile anesthetic isoflurane on ATP-sensitive K+ channels in rabbit ventricular myocytes. Biochem. Biophys. Res. Commun. 229, 852–856.

    PubMed  CAS  Google Scholar 

  170. Kersten, J. R., Orth, K. G., Pagel, P. S., Mei, D. A., and Gross, G. J., (1997) Role of adenosine in isoflurane-induced cardioprotection. Anesthesiology 86, 1128–1139.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Topf, N., Recio-Pinto, E., Blanck, T.J.J., Hemmings, H.C. (2003). Actions of General Anesthetic on Voltage-Gated Ion Channels. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics