Skip to main content

Genetic Dissection of Anesthetic Action

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 319 Accesses

Abstract

In vitro model systems are inarguably of great utility, but all in vitro systems suffer from an obvious inability to accurately model the behavioral state of general anesthesia. Because general anesthesia is characterized by amnesia and immobility, the only truly accurate system to model such a state is the whole, intact living organism. To date, several different model organisms and numerous genetic approaches have been utilized to gain an understanding of mechanisms of general anesthesia. The model organisms include the roundworm Caenorhabditis elegans, the fruit fly Drosophilia melanogaster, the laboratory mouse, and the laboratory rat. The genetic approaches are quite varied and range from analyzing existing animal lines to creating genetically engineered organisms that harbor precise, predetermined mutations (see Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The C. Elegans Sequencing Consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.

    Google Scholar 

  2. Crowder, C. M., Shebester, L. D., and Schedi, T. (1996) Behavioral effects of volatile anesthetics in Caenorhabditis elegans. Anesthesiology 85, 901–912.

    Article  PubMed  CAS  Google Scholar 

  3. Adams, M. D., Celniker, S. E., Holt, R. H., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  4. Silver, L. (1995) Mouse Genetics: Concepts and Applications, Oxford University Press, Inc., New York, pp. 207–226.

    Google Scholar 

  5. Crabbe, J. C., Belknap, J. K., and Buck, K. J. (1994) Genetic animal models of alcohol and drug abuse. Science 264, 1715–1723.

    Article  PubMed  CAS  Google Scholar 

  6. Crabbe, J. C. and Belknap, J. K. (1992) Genetic approaches to drug dependence. Trends Pharmacol. Sci. 13, 212–219.

    Article  PubMed  CAS  Google Scholar 

  7. Sonner, J. M., Gong, D., and Eger, E. I., 2nd (2000) Naturally occurring variability in anesthetic potency among inbred mouse strains. Anesth. Analg. 91, 720–726.

    Google Scholar 

  8. Crabbe, J. C. and Harris, R. A. (1991) ( Plenum Press) The genetic basis of alcohol and drug actions, New York.

    Google Scholar 

  9. Crowder, C. M. (1998) Mapping anesthesia genes: why and how? Anesthesiology 88, 293–296.

    Article  PubMed  CAS  Google Scholar 

  10. Crabbe, J. C., Phillips, T. J., Buck, K. J., Cunningham, C. L., and Belknap, J. K. (1999) Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends Neurosci. 22, 173–179.

    Article  PubMed  CAS  Google Scholar 

  11. van Swinderen, B., Shook, D. R., Ebert, R. H., et al. (1997) Quantitative trait loci controlling halothane sensitivity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94, 8232–8237.

    Article  PubMed  CAS  Google Scholar 

  12. Simpson, V. J., Rikke, B. A., Costello, J. M., Corley, R., and Johnson, T. E. (1998) Identification of a genetic region in mice that specifies sensitivity to propofol. Anesthesiology 88, 379–389.

    Article  PubMed  CAS  Google Scholar 

  13. Krishnan, K. S. and Nash, H. A. (1990) A genetic study of the anesthetic response: mutants of Drosophila melanogaster altered in sensitivity to halothane. Proc. Natl. Acad. Sci. USA 87, 8632–8636.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell, D. B. and Nash, H. A. (1994) Use of Drosophila mutants to distinguish among volatile general anesthetics. Proc. Natl. Acad. Sci. USA 91, 2135–2139.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi, J. S., Pinto, L. H., and Vitaterna, M. H. (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724–1733.

    Article  PubMed  CAS  Google Scholar 

  16. Nolan, P. M., Kapfhamer, D., and Bucan, M. (1997) Random mutagenesis screen for dominant behavioral mutations in mice. Methods 13, 379–395.

    Article  PubMed  CAS  Google Scholar 

  17. van Swinderen, B., Saifee, O., Shebester, L., Roberson, R., Nonet, M. L., and Crowder, C. M. (1999) A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 96, 2479 2484.

    Google Scholar 

  18. Eriksson, K. and Rusi, M. (1981) in Development of animal models as pharmacogenetic tools, (McCLearn, G. E., Deitrich, G. E., and Erwin, G., eds.) ( US Government Printing Office, Washington DC ), pp. 87–117.

    Google Scholar 

  19. Hellevuo, K., Kiianmaa, K., Juhakoski, A., and Kim, C. (1987) Intoxicating effects of lorazepam and barbital in rat lines selected for differential sensitivity to ethanol. Psychopharmacology 91, 263–267.

    Article  PubMed  CAS  Google Scholar 

  20. Korpi, E. R., Kleingoor, C., Kettenmann, H., and Seeburg, P. H. (1993) Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABA-A receptor. Nature 361, 356–359.

    Article  PubMed  CAS  Google Scholar 

  21. Firestone, L. L., Korpi, E. R., Niemi, L., Rosenberg, P. H., Homanics, G. E., and Quinlan, J. J. (2000) Halothane and desflurane requirements in alcohol-tolerant and -nontolerant rats. Br. J. Anaesth. 85, 757–762.

    Article  PubMed  CAS  Google Scholar 

  22. Rajaram, S., Sedensky, M. M., and Morgan, P. G. (1998) Unc-1: a stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 8761–8766.

    Article  PubMed  CAS  Google Scholar 

  23. Rajaram, S., Spangler, T. L., Sedensky, M. M., and Morgan, P. G. (1999) A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. Genetics 153, 1673–1682.

    PubMed  CAS  Google Scholar 

  24. Engel, S. R. and Allan, A. M. (1999) 5-HT3 receptor over-expression enhances ethanol sensitivity in mice. Psychopharmacology (Berl) 144, 411–415.

    Google Scholar 

  25. Galli-Taliadoros, L. A., Sedgwick, J. D., Wood, S. A., and Korner, H. (1995) Gene knock-out technology: a methodological overview for the interested novice. J. Immunol. Methods 181, 1–15.

    Article  PubMed  CAS  Google Scholar 

  26. Wasserman, P. M. and DePamphilis, M. L. (1993) in Methods in Enzymology, (Abelson, J. N. and Simon, M. I., eds.) (Academic Press, Inc., New York ), Vol. 225.

    Google Scholar 

  27. Homanics, G. E., Quinlan, J. J., Mihalek, R. M., and Firestone, L. L. (1998) Alcohol and anesthetic mechanisms in genetically engineered mice. Front. Biosci. 3, d548 - d558.

    PubMed  CAS  Google Scholar 

  28. Homanics, G. E. (2000) In Genetic manipulation of receptor expression and function, (Accili, D., ed.) (John Wiley & Sons, Inc., New York ), pp. 93–110.

    Google Scholar 

  29. Mihalek, R. M., Banjeree, P. K., Korpi, E., et al. (1999) Attenuated sensitivity to neuroactive steroids in GABA type A receptor delta subunit knockout mice. Proc. Natl. Acad. Sci. USA 96, 12,905–12, 910.

    Google Scholar 

  30. Tretter, V., Hauer, B., Nusser, Z., et al. (2001) Targeted disruption of the GABAa receptor delta subunit gene leads to upregulation of gamma2 subunit-containing receptors in cerebellar granule cells. JBC 276, 10, 532–10, 538.

    Google Scholar 

  31. Homanics, G. E., Delorey, T. M., Firestone, L. L., et al. (1997) Mice devoid of y-aminobutyrate type A receptor (33 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl. Acad. Sci. USA 94, 4143–4148.

    Article  PubMed  CAS  Google Scholar 

  32. Quinlan, J. J., Homanics, G. E., and Firestone, L. L. (1998) Anesthesia sensitivity in mice lacking the (33 subunit of the GABA, receptor. Anesthesiology 88, 775–780.

    Article  PubMed  CAS  Google Scholar 

  33. Antognini, J. F., and Carstens, E. (1998) Macroscopic sites of anesthetic action: brain versus spinal cord. Toxicol. Lett. 100–101, 51–58.

    Article  Google Scholar 

  34. Wong, S. M. E., Cheng, G., Homanics, G., E., and Kendig, J. J. (2001) Enflurane actions on spinal cords from mice that lack the B3 subunit of the GABA„ receptor. Anesthesiology 95, 154–164.

    CAS  Google Scholar 

  35. Ugarte, S.D., Homanics, G. E., Firestone, L. L., and Hammond, D. L. (2000) Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the (33 subunit of the GABA„ receptor. Neuroscience 95, 795–806.

    Article  PubMed  CAS  Google Scholar 

  36. McKernan, R. M., Rosahl, T. W., Reynolds, D. S., et al. (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA„ receptor alphal subtype. Nat. Neurosci. 3, 587–592.

    Article  PubMed  CAS  Google Scholar 

  37. Rudolph, U., Crestani, F., Benke, D., et al. (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401, 796–800.

    Article  PubMed  CAS  Google Scholar 

  38. Low, K., Crestani, F., Keist, R., et al. (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131–134.

    Article  PubMed  CAS  Google Scholar 

  39. Mihic, S., Ye, Q., Wick, M., et al. (1997) Molecular sites of volatile anesthetic action on GABA„ and glycine receptors. Nature 389, 385–389.

    Article  PubMed  CAS  Google Scholar 

  40. Moody, E. J., Knauer, C., Granja, R., Strakhova, M., and Skolnick, P. (1997) Distinct loci mediate the direct and indirect actions of the anesthetic etomidate at GABA,, receptors. J. Neurochem. 69, 1310–1313.

    Article  PubMed  CAS  Google Scholar 

  41. Belelli, D., Lambert, J. J., Peters, J. A., Wafford, K., and Whiting, P. J. (1997) The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. USA 94, 11,031–11, 036.

    Google Scholar 

  42. Tones, R. M. and Kuhn, R. (1997) Laboratory protocols for conditional gene targeting (Oxford University Press, Oxford).

    Google Scholar 

  43. Tsien, J. Z., Chen, D. F., Gerber, D., et al. (1996) Subregion-and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  44. Tsien, J. Z., Huerta, P. T., and Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  45. Bruning, J. C., Gautam, D., Burks, D. J., et al. (2000) Role of brain insulin receptor in control of body weight and reproduction Science 289, 2122–2125.

    Article  PubMed  CAS  Google Scholar 

  46. Shimizu, E., Tang, Y. P., Rampon, C., and Tsien, J. Z. (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170–1174.

    Article  PubMed  CAS  Google Scholar 

  47. Davies, P. A., Hanna, M. C., Hales, T. G., and Kirkness, E. F. (1997) Insensitivity to Anaesthetic Agents Conferred By a Class Of GABA, Receptor Subunit. Nature 385, 820–823.

    Article  PubMed  CAS  Google Scholar 

  48. Lewohl, J. M., Wang, L., Miles, M. F., Zhang, L., Dodd, P. R., and Harris, R. A. (2000) Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol. Clin. Exp. Res. 24, 1873–1882.

    Article  PubMed  CAS  Google Scholar 

  49. Mimics, K., Middleton, F. A., Marquez, A., Lewis, D. A., and Levitt, P. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Homanics, G.E., Firestone, L.L. (2003). Genetic Dissection of Anesthetic Action. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics