Skip to main content

Anesthesia, the Spinal Cord and Motor Responses to Noxious Stimulation

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 321 Accesses

Abstract

The spinal cord has emerged as an important site of anesthetic action. For many decades, studies that examined the effects of anesthetics on spinal cord function had unknown impact, since it was unclear what clinical endpoint might be affected by such action. For example, when an anesthetic depresses spinal dorsal horn neuronal responses to tactile stimulation, what endpoint is achieved? Because the movement response that accompanies noxious stimulation is ablated in large part via a spinal cord action of anesthetics (1–3), there is renewed interest in the effects of anesthetics on the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rampil, I. J., Mason, P., and Singh, H. (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78, 707–712.

    PubMed  CAS  Google Scholar 

  2. Rampil, I. J. (1994) Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 80, 606–610.

    PubMed  CAS  Google Scholar 

  3. Antognini, J. F. and Schwartz, K. (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79, 1244–1249.

    PubMed  CAS  Google Scholar 

  4. Gilbert, S. G. (1989) Pictorial human embryology. University of Washington Press, Seattle, pp. 109–131.

    Google Scholar 

  5. Gregory, G. A., Eger, E. I., and Munson E. S. (1969) The relationship between age and halothane requirement in man. Anesthesiology 30, 488–491.

    PubMed  CAS  Google Scholar 

  6. LeDez, K. M. and Lerman, J. (1987) The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology 67, 301–307.

    PubMed  CAS  Google Scholar 

  7. Fitzgerald, M. and Jennings, E. (1999) The postnatal development of spinal sensory processing. Proc. Nat. Acad. Sci. USA 96, 7719–7722.

    PubMed  CAS  Google Scholar 

  8. Willis, W. D. and Coggeshall, R. E. (1991) Sensory Mechanisms of the Spinal Cord, 2nd Ed., Plenum NY, p. 575.

    Google Scholar 

  9. Jasmin, L., Carstens, E., and Basbaum, A.I. (1997) Interneurons presynaptic to rattail flick motoneurons as mapped by transneuronal transport of pseudorabies virus: few have long ascending collaterals. Neuroscience 76, 859–876.

    PubMed  CAS  Google Scholar 

  10. Willis, W. D. and Westlund, K. N. (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin.Neurophysiol. 14, 2–31.

    PubMed  CAS  Google Scholar 

  11. Grillner, S., Parker, D., and Manir, A. E. (1998) Vertebrate locomotion-a lamprey perspective. Ann. NY Acad. Sci. 860, 1–18.

    PubMed  CAS  Google Scholar 

  12. Ryan, J. M., Cushman, J., Jordan, B., Samuels, A., Frazer, H., and Baier, C. (1998) Topographic position of forelimb motoneuron pools is conserved in vertebrate evolution. Brain Behay. Evol. 51, 90–99.

    CAS  Google Scholar 

  13. Quasha, A. L., Eger, E. I., and Tinker, J. H. (1980) Determination and applications of MAC. Anesthesiology 53, 315–334.

    PubMed  CAS  Google Scholar 

  14. Furst, S. (1999) Transmitters involved in antinociception in the spinal cord. Brain Res. Bull. 48, 129–141.

    PubMed  CAS  Google Scholar 

  15. Lauretti, G. R., Hood, D. D., Eisenach, J. C., and Pfeifer, B. L. (1998) A multi-center study of intrathecal neostigmine for analgesia following vaginal hysterectomy. Anesthesiology 89, 913–918.

    PubMed  CAS  Google Scholar 

  16. De Felipe, C., Herrero, J. F., O’Brien, J. A., et al. (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392, 394–397.

    PubMed  Google Scholar 

  17. Cao, Y. Q., Mantyh, P. W., Carlson, E. J., Gillespie, A. M., Epstein, C. J., and Basbaum, A.I. (1998). Primary afferent tachykinins are required to experience moderate to intense pain [see comments]. Nature 392 (6674), 390–394.

    PubMed  CAS  Google Scholar 

  18. Mantyh, P. W., Rogers, S. D., Honore, P., et al. (1997). Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278 (5336), 275–279.

    PubMed  CAS  Google Scholar 

  19. Nichols, M. L., Allen, B. J, Rogers, S. D., et al. (1999) Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science 286(5444), 1558–1561.

    PubMed  CAS  Google Scholar 

  20. de Jong, R. H., Robles, R., and Morikawa, K. I. (1969) Actions of halothane and nitrous oxide on dorsal horn neurons (“The Spinal Gate”). Anesthesiology 31, 205–212.

    PubMed  Google Scholar 

  21. Woods, J. W. (1964) Behavior of chronic decerebrate rats. J. Neurophysiol. 27, 635–644

    PubMed  CAS  Google Scholar 

  22. Lovick, T. A. (1972) The behavioural repertoire of precollicular decerebrate rats. J. Physiol. 226, 4P - 6 P.

    PubMed  CAS  Google Scholar 

  23. Sessler, D. I., Israel, D., Pozos, R. S., Pozos, M., and Rubinstein, E. H. (1988) Spontaneous post-anesthetic tremor does not resemble thermoregulatory shivering. Anesthesiology 68, 843–850.

    PubMed  CAS  Google Scholar 

  24. Lang, E., Kapila, A., Shlugman, D., Hoke, J. F., Sebel, P. S., and Glass, P. S. (1996) Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85, 721–728.

    PubMed  CAS  Google Scholar 

  25. Drasner, K., Bernards, C. M., and Ozanne, G. M. (1988) Intrathecal morphine reduces the minimum alveolar concentration of halothane in humans. Anesthesiology 69, 310–312.

    PubMed  CAS  Google Scholar 

  26. Valverde, A., Dyson, D. H., and McDonell, W. N. (1989) Epidural morphine reduces halothane MAC in the dog. Can. J. Anesth. 36 (6), 629–632.

    PubMed  CAS  Google Scholar 

  27. Licina, M. G., Schubert, A., Tobin, J. E., Nicodemus, H. F., and Spitzer, L. (1991) Intrathecal morphine does not reduce minimum alveolar concentration of halothane in humans: results of a double-blind study. Anesthesiology 74, 660–663.

    PubMed  CAS  Google Scholar 

  28. Archer, D. P., Ewen, A., Roth, S. H., and Samanani, N. (1994) Plasma, brain, and spinal cord concentrations of thiopental associated with hyperalgesia in the rat. Anesthesiology 80, 168–176.

    PubMed  CAS  Google Scholar 

  29. Zhang, Y., Eger, E. I., 2nd, Dutton, R. C., and Sonner, J. M. (2000) Inhaled anesthetics have hyperalgesic effects at 0.1 minimum alveolar anesthetic concentration Anesthesia and Analgesia 91, 462–466.

    PubMed  CAS  Google Scholar 

  30. Petersen-Felix, S., Arendt-Nielsen, L., Bak, P., Fisher, M., and Zbinden, A. M. (1996) Psychophysical and electrophysiological responses to experimental pain may be influenced by sedation: comparison of the effects of a hypnotic (propofol) and an analgesic (alfentanil). Brit. J. Anaesth. 77, 165–171.

    PubMed  CAS  Google Scholar 

  31. Wilder-Smith, O. H. G., Kolletzki, M., and Wilder-Smith, C. H. (1995) Sedation with intravenous infusions of propofol or thiopentone. Effects on pain perception. Anaesthesia 50, 218–222.

    PubMed  CAS  Google Scholar 

  32. Campbell, J. N., Raja, S. N., and Meyer, R. A. (1984) Halothane sensitizes cutaneous nociceptors in monkeys. J. Neurophysiol. 52 (4), 762–770.

    PubMed  CAS  Google Scholar 

  33. Antognini, J. F., Wang, X. W., Piercy, M., and Carstens, E. (2000) Propofol directly depresses lumbar dorsal horn neuronal responses to noxious stimulation in goats. Canadian J. Anaesth. 47, 273–279.

    CAS  Google Scholar 

  34. Sudo, M., Sudo, S., Chen, X. G., Piercy, M., Carstens, E., and. Antognini, J. F. (2001) Thiopental directly depresses lumbar dorsal horn neuronal responses to noxious mechanical stimulation in goats. Acta Anaesthesiologica Scandinavica 45, 823–839.

    CAS  Google Scholar 

  35. de Jong, R. H., Hershey, W. N., and Wagman, I. H. (1967) Measurement of a spinal reflex response (H-reflex) during general anesthesia in man. Association between reflex depression and muscular relaxation. Anesthesiology 28, 382–389.

    PubMed  Google Scholar 

  36. Rampil, I. J. and King, B. S. (1996) Volatile anesthetics depress spinal motor neurons. Anesthesiology 85, 129–134.

    PubMed  CAS  Google Scholar 

  37. Leis, A. A., Stetkarova, I., Beric, A., and Stokic, D. S. (1996) The relative sensitivity of F wave and H reflex to changes in motoneuronal excitability. Muscle Nerve 19, 1342–1344.

    PubMed  CAS  Google Scholar 

  38. Friedman, Y., King, B. S., and Rampil, I. J. (1996) Nitrous oxide depresses spinal F waves in rats. Anesthesiology 85, 135–141.

    PubMed  CAS  Google Scholar 

  39. King, B. S. and Rampil, I. J. (1994) Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology 81, 1484–1492.

    PubMed  CAS  Google Scholar 

  40. Zhou, H. H., Jin, T. T., Qin, B., and Turndorf, H. (1998) Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anesthesia. Anesthesiology 88, 955–961.

    PubMed  CAS  Google Scholar 

  41. Zhou, H. H., Mehta, M., and Leis, A. A. (1997) Spinal cord motoneuron exci30tability during isoflurane and nitrous oxide anesthesia. Anesthesiology 86, 302–307.

    PubMed  CAS  Google Scholar 

  42. Kakinohana, M., Motonaga, E., Taira, Y., and Okuda, Y. (2000) [The effects of intravenous anesthetics, propofol, fentanyl and ketamine on the excitability of spinal motoneuron in human: an F-wave study] Masui. Japanese J. Anesthesiol. 49(6) 596–601.

    Google Scholar 

  43. Antognini, J. F., Carstens, E., and Buzin, V. (1999) Isoflurane depresses motoneuron excitability by a direct spinal action: an F-wave study. Anesth. Analg. 88, 681–685.

    PubMed  CAS  Google Scholar 

  44. Gupta, D. K., King, B., and Rampil, I. J. (2000) The effects of the Thiopental on spinal motor neurons. Anesth. Analg. S416.

    Google Scholar 

  45. Soriano, S. G., Logigian, E. L., Scott, R. M., Prahl, P. A., and Madsen, J. R. (1995) Nitrous oxide depresses the H-reflex in children with cerebral palsy. Anesthesia and Analgesia 80, 239–241.

    PubMed  CAS  Google Scholar 

  46. de Jong, R. H. and Wagman, I. H. (1968) Block of afferent impulses in the dorsal horn of monkey. A possible mechanism of anesthesia. Exp. Neurology 20, 352–358.

    Google Scholar 

  47. de Jong R. H., Robles, R., and Heavner, J. E. (1970) Suppression of impulse transmission in the cat’s dorsal horn by inhalation anesthetics. Anesthesiology 2, 440–445.

    Google Scholar 

  48. Antognini, J. F., Carstens, E., Tabo, E., and Buzin, V. (1998) The effect of differential delivery of isoflurane to head and torso on lumbar dorsal horn activity. Anesthesiol. 88, 1055–1061.

    CAS  Google Scholar 

  49. Jinks, S., Antognini, J. F., Carstens, E., Buzin, V., and Simons, C. (1999) Isoflurane can indirectly depress lumbar dorsal horn activity in the goat via action within the brain. Brit. J. Anaesth. 82, 244–249.

    PubMed  CAS  Google Scholar 

  50. Kitahata, L. M., Ghazi-Saidi, K., Yamashita, M., Kosaka, Y., Bonikos, C., and Taub, A. (1975) The depressant effect of halothane and sodium thiopental on the spontaneous and evoked activity of dorsal horn cells: lamina specificity, time course and dose dependence. J. Pharmacol. Exp. Therapeutics 195, 515–521.

    CAS  Google Scholar 

  51. Kishikawa, K., Uchida, H., Yamamori, Y., and Collins, J. G. (1995) Low-threshold neuronal activity of spinal dorsal horn neurons increases during REM sleep in cats: comparison with effects of anesthesia. J. Neurophysiol. 74, 763–769.

    PubMed  CAS  Google Scholar 

  52. Taub, A., Hoffert, M., and Kitahata, L. M. (1974) Lamina-specific suppression and acceleration of dorsal-horn unit activity by nitrous oxide: a statistical analysis. Anesthesiology 40, 24–31.

    PubMed  CAS  Google Scholar 

  53. Utsumi, J., Adachi, T., Miyazaki, Y., et al (1997). The effect of xenon on spinal dorsal horn neurons: a comparison with nitrous oxide, Anesthesia and Analgesia, 84, 1372–1376.

    PubMed  CAS  Google Scholar 

  54. Miyazaki,Y., Adachi, T., Utsumi, J., Shichino, T., and Segawa, H., (1999). Xenon has greater inhibitory effects on spinal dorsal horn neurons than nitrous oxide in spinal cord transected cats, Anesthesia and Analgesia 88, 893–897.

    PubMed  CAS  Google Scholar 

  55. Antognini, J. F., Chen, X. G., Sudo, M., Sudo, S., and Carstens, E. (2001) Variable effects of nitrous oxide at multiple levels of the central nervous system in goats Vet. Res. Comm. 25, 523–538.

    CAS  Google Scholar 

  56. Uchida, H., Kishikawa, K., and Collins, J. G. (1995) Effect of propofol on spinal dorsal horn neurons. Comparison with lack of ketamine effects. Anesthesiology 83 (6), 1312–1322.

    PubMed  CAS  Google Scholar 

  57. Sherrington, C. S. (1910) Flexion-reflex of the limb, crossed extension reflex and reflex stepping and standing. J. Physiol. 40, 28–121.

    PubMed  CAS  Google Scholar 

  58. Carstens, E. and Campbell, I. G. (1998) Parametric and pharmacological studies of midbrain suppression of the hindlimb flexion withdrawal reflex in the rat. Pain 33, 201–213.

    Google Scholar 

  59. Carstens, E. and Ansley, D. (1993) Hindlimb flexion withdrawal evoked by noxious heat in conscious rats: magnitude measurement of stimulus-response function, suppression by morphine, and habituation. J. Neurophysiol. 70, 621–629.

    PubMed  CAS  Google Scholar 

  60. Carstens, E. and Douglass, D. K. (1995) Midbrain suppression of limb withdrawal and tail flick reflexes in the rat: correlates with descending inhibition of sacral spinal neurons. J. Neurophys. 73, 2179–2194.

    CAS  Google Scholar 

  61. Carstens, E. and Wilson, C. G. (1993) Rattail flick reflex: magnitude measurement of stimulus-response function, suppression by morphine, and habituation. J. Neurophysiol. 70, 630–639.

    PubMed  CAS  Google Scholar 

  62. Carstens, E. (1993) Quantitative assessment of nocifensive behavioral responses and the underlying neuronal circuitry. Der Schmerz 7, 204–215.

    PubMed  CAS  Google Scholar 

  63. Carstens, E. and Campbell, I. G. (1992) Responses of motor units during the hind limb flexion withdrawal reflex evoked by noxious skin heating: phasic and prolonged suppression by midbrain stimulation and comparison with simultaneously recorded dorsal horn units. Pain 48, 215–226.

    Google Scholar 

  64. Carstens, E., Hartung, M., Stelzer, B., and Zimmermann, M. (1990) Suppression of a hindlimb flexion reflex by micro-injection of glutamate or morphine into the periaqueductal gray in the rat. Pain 43, 105–112.

    PubMed  CAS  Google Scholar 

  65. Schomburg, E. D. (1990) Spinal sensorimotor systems and their supraspinal control. Neurosci. Res. 7, 265–340.

    PubMed  CAS  Google Scholar 

  66. Schouenborg, J. and Kalliomäki, J. (1990) Functional organization of the nociceptive withdrawal reflexes. I. Activation of hindlimb muscles in the rat. Exper. Brain Res. 83 (1), 67–78.

    CAS  Google Scholar 

  67. Schouenborg, J., Weng, H. R., and Holmberg, H. (1994) Modular organization of spinal nociceptive reflexes. News Physiol. Sci. 9, 261–265.

    Google Scholar 

  68. Schouenborg, J. and Weng, H. R. (1994) Sensorimotor transformation in a spinal motor system. Exp. Brain Res. 100 (1), 170–174.

    PubMed  CAS  Google Scholar 

  69. Andersen, O. K., Sonnenborg, F. A., and Arendt-Nielsen, L. (1999) Modular organization of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle and Nerve 22 (11), 1520–1530.

    PubMed  CAS  Google Scholar 

  70. Sonnenborg, F. A., Andersen, O. K., and Arendt-Nielsen, L. (2000) Modular organization of excitatory and inhibitory reflex receptive fields elicited by electrical stimulation of the foot sole in man. Clin. Neurophysiol. 111 (12), 2160–2169.

    PubMed  CAS  Google Scholar 

  71. Willer, J. C. (1985) Studies on pain. Effects of morphine on a spinal nociceptive flexion reflex and related pain sensation in man. Brain Res. 331 (1), 105–114.

    PubMed  CAS  Google Scholar 

  72. Antognini J. F. and Kien N. D. (1995) Potency (minimum alveolar anesthetic concentration) of isoflurane is independent of peripheral anesthetic effects. Anesth. Analg. 81, 69–72.

    PubMed  CAS  Google Scholar 

  73. Weakly, J. N. (1969) Effect of barbiturates on `quantal’ synaptic transmission in spinal motoneurones. J. Physiol. 204 (1), 63–77.

    PubMed  CAS  Google Scholar 

  74. Bras, H., Cavallari, P., Jankowska, E., and Kubin, L. (1989) Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord. J. Comp. Neurol. 290, 1–15

    PubMed  CAS  Google Scholar 

  75. Jankowska, E. and Edgley, S. (1993) Interactions between pathways controlling posture and gait at the level of spinal interneurones in the cat. Progress in Brain Research 97, 161–171.

    PubMed  CAS  Google Scholar 

  76. Morgan, M. M. (1998) Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat. J. Neurophysiol. 79, 174–80.

    PubMed  CAS  Google Scholar 

  77. Schouenborg, J., Weng, H. R., Kalliomäki, J., and Holmberg, H. (1995) A survey of spinal dorsal horn neurones encoding the spatial organization of withdrawal reflexes in the rat. Exper. Brain Res. 106 (1), 19–27.

    CAS  Google Scholar 

  78. Nishioka, K., Harada, Y., Kitahata, L. M., Tsukahara, S., and Collins J. G. (1995) Role of WDR neurons in a hind limb noxious heat evoked flexion withdrawal reflex. Life Sci. 56, 485–489.

    PubMed  CAS  Google Scholar 

  79. Antognini, J. F., Wang, X. W., and Carstens, E. (1999) Quantitative and qualitative effects of isoflurane on movement occurring after noxious stimulation. Anesthesiology 91, 1064–1071.

    PubMed  CAS  Google Scholar 

  80. Antognini, J. F. and Carstens, E. (1999). Increasing isoflurane from 0.9 to 1.1 minimum alveolar concentration minimally affects dorsal horn cell responses to noxious stimulation. Anesthesiology 90, 208–214.

    PubMed  CAS  Google Scholar 

  81. Wheeler-Aceto, H. and Cowan, A. (1991) Standardization of the rat paw formalin test for the evaluation of analgesics. Psychopharmacology 104, 35–44.

    PubMed  CAS  Google Scholar 

  82. Cooper, B. Y. and Vierck, C. J., Jr. (1986) Measurement of pain and morphine hypalgesia in monkeys. Pain 26 (3), 361–392.

    PubMed  CAS  Google Scholar 

  83. Harris, J. A. (1998) Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1–8.

    PubMed  CAS  Google Scholar 

  84. Herrera, D. G. and Robertson, H. A. (1996) Activation of c-fos in the brain. Progr. Neurobiol. 50, 83–107.

    CAS  Google Scholar 

  85. Hunt, S. P., Pini, A., and Evan, G. (1987) Induction of c-fos-like protein in spinal cord neurones following sensory stimulation. Nature 328, 632–634.

    PubMed  CAS  Google Scholar 

  86. Sun, W. Z., Shyu, B. C., and Shieh, J. Y. (1996) Nitrous oxide or halothane, or both, fail to suppress c-fos expression in rat spinal cord dorsal horn neurones after subcutaneous formalin. Br. J. Anaesth. 76, 99–105.

    PubMed  CAS  Google Scholar 

  87. Hagihira, S., Taenaka, N., and Yoshiya, I. (1997) Inhalational anesthetics suppress expression of c-fos protein evoked by noxious somatic stimulation in the deeper layer of the spinal cord in the rat. Brain Res. 751, 124–130.

    PubMed  CAS  Google Scholar 

  88. Zhai, Q. Z. and Traub, R. J. (1999) The NMDA receptor antagonist MK-801 attenuates c-Fos expression in the lumbosacral spinal cord following repetitive noxious and non-noxious colorectal distention. Pain 83, 321–329.

    PubMed  CAS  Google Scholar 

  89. Huang, W. and Simpson, R. K. (1999) Intrathecal treatment with MK-801 suppresses thermal nociceptive responses and prevents c-fos immunoreactivity induced in rat lumbar spinal cord neurons. Neurol. Res. 21, 593–598.

    PubMed  CAS  Google Scholar 

  90. Scheller, M.S., Zornow, M. H., Fleischer, J. E., Shearman, G. T., and Greber, T. F. (1989) The noncompetitive N-methyl-D-aspartate receptor antagonist, MK-801 profoundly reduces volatile anesthetic requirements in rabbits. Neuropharmacology 28, 677–681.

    PubMed  CAS  Google Scholar 

  91. Munson, E. S., Saidman, L. J., and Eger, E. I. (1965) Effect of nitrous oxide and morphine on the minimum anesthetic concentration of fluroxene. Anesthesiology 26, 134–139.

    PubMed  CAS  Google Scholar 

  92. Loewy, A. D. (1998) Viruses as transneuronal tracers for defining neural circuits. Neurosci. Biobehay. Rev. 22 (6), 679–684.

    CAS  Google Scholar 

  93. Rotto-Percelay, D. M., Wheeler, J. G., Osorio, F. A., Platt, K. B., and Loewy, A. D. (1992) Transneuronal labeling of spinal interneurons and sympathetic preganglionic neurons after pseudorabies virus injections in the rat medial gastrocnemius muscle. Brain Research 574 (1–2), 291–306.

    PubMed  CAS  Google Scholar 

  94. Eger, E. I., Saidman, L. J., and Brandstater, B. (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26, 756–763.

    PubMed  Google Scholar 

  95. Gordon, J. (1991) Spinal mechanisms of motor coordination. In: Principles of Neuroscience, 3rd Ed. ( Kandel, E., Schwartz, and Jessel, eds.) Elsevier, NewYork. pp. 581–607.

    Google Scholar 

  96. Pearson, K. (1976) The control of walking. Scien. Amer. 235, 72–86.

    CAS  Google Scholar 

  97. Fukson, O. I., Berkinblit, M. B., and Feldman, A. G. (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209, 1261–1263.

    PubMed  CAS  Google Scholar 

  98. Christie, J. M., O’Lenic, T. D., and Cane, R. D. (1996) Head turning in brain death. J. Clin. Anesth. 8, 141–143.

    PubMed  CAS  Google Scholar 

  99. Grillner, S. and Wallen, P. (1985) Central pattern generators for locomotion, with special reference to vertebrates. Ann. Rev. Neurosci. 8, 233–2361.

    PubMed  CAS  Google Scholar 

  100. Sigvardt, K. A. and Williams, T. L. (1996) Effects of local oscillator frequency on intersegmental coordination in the lamprey locomotor CPG: Theory and experiment. J. Neurophysiol. 76, 4094–4103.

    PubMed  CAS  Google Scholar 

  101. Grillner, S. and Shik, M. L. (1973) On the descending control of lumborsacral spinal cord from the “mesencephalic locomotor region”. Acta Physiol. Scand. 87, 320–333.

    PubMed  CAS  Google Scholar 

  102. Yamamura, T., Stevens, W. C., Okamura, A., Harada, K., and Kemmotsu, O. (1993) Correlative study of behavior and synaptic events during halothane anesthesia in the lampry. Anesth. Analg. 76, 342–347.

    PubMed  CAS  Google Scholar 

  103. Franks, N. P., and Lieb, W. R. (1996) Temperature dependence of the potency of volatile general anesthetics. Implications for in vitro experiments. Anesthesiology 84, 716–720.

    PubMed  CAS  Google Scholar 

  104. Yamamura T., Harada, K., Okamura, A., and Kemmotsu, O. (1990) Is the site of action of ketamine anesthesia the N-methyl-o-aspartate receptor? Anesthesiology 72, 704–710.

    PubMed  CAS  Google Scholar 

  105. Yamamori, Y., Kishikawa, K., and Collins, J. G. (1995) Halothane effects on low-threshold receptive field size of rat spinal dorsal horn neurons appear to be independent of supraspinal modulatory systems. Brain Res. 702, 162–168.

    Google Scholar 

  106. Handwerker, H. O., Iggo, A., and Zimmermann, M. (1975) Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1, 147–165.

    PubMed  CAS  Google Scholar 

  107. Lin, Q., Peng, Y. B., and Willis, W. D. (1996a) Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5-hydroxytryptamine (lA) receptors. J. Pharmacol. Exp. Ther. 276, 958–967.

    PubMed  CAS  Google Scholar 

  108. Lin, Q., Peng, Y. B., and Willis, W. D. (1996b) Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J. Neurophysiol. 75, 109–123.

    PubMed  CAS  Google Scholar 

  109. Peng, Y. B., Lin, Q., and Willis, W. D. (1996a) The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. J. Pharmacol. Exp. Ther. 276, 116–124.

    PubMed  CAS  Google Scholar 

  110. Peng, Y. B., Lin, Q., and Willis, W. D. (1996b) Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Res. 736, 189–201.

    PubMed  CAS  Google Scholar 

  111. Peng, Y. B., Lin, Q., and Willis, W. D. (1996c.) Involvement of alpha-2 adrenoceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. J. Pharmacol. Exp. Ther. 278, 125–135.

    Google Scholar 

  112. Yeung, J. C. and Rudy, T. A. (1980) Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal intracerebroventricular injections of morphine. J. Pharmacol. Exp. Ther. 215, 633–642.

    PubMed  CAS  Google Scholar 

  113. Fields, H. L., Heinricher, M. M., and Mason, P. (1991) Neurotransmitters in nociceptive modulatory circuits. Ann. Rev. Neurosci. 14, 219–245.

    PubMed  CAS  Google Scholar 

  114. Fields, H. L., Malick, A., and Burstein, R. (1995) Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J.Neurophysiol. 74, 1742–1759.

    PubMed  CAS  Google Scholar 

  115. Heinricher, M. M., Morgan, M. M., and Fields, H. L. (1992) Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48, 533–543.

    PubMed  CAS  Google Scholar 

  116. Leung, C. G. and Mason, P. (1995) Effects of isoflurane concentration on the activity of pontomedullary raphe and medial reticular neurons in the rat. Brain Research 699, 71–82.

    PubMed  CAS  Google Scholar 

  117. Eger, E. I., Koblin, D. D., Harris, R. A., et al. (1997) Hypothesis: inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth. Analg. 84, 915–918.

    PubMed  CAS  Google Scholar 

  118. Mantyh, P., Rogers, S. D., Honore, P., et al. (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278, 275–279.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antognini, J.F., Carstens, E. (2003). Anesthesia, the Spinal Cord and Motor Responses to Noxious Stimulation. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics