Skip to main content

Anesthetic Effects on the Reticular Formation, Brainstem and Central Nervous System Arousal

  • Chapter
Book cover Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 337 Accesses

Abstract

The reticular formation (RF) and brainstem are critically involved in normal neurological processes, such as nociception and consciousness. The RF is often called an “activating system” because of its ability to increase “arousal,” presumably by activation of subcortical and cortical structures. Furthermore, numerous sites in the brainstem are involved in descending modulation of nociception. Thus, it is likely that anesthetics exert some of their effects via actions at the RF and brainstem. This chapter will describe the anatomy, physiology, and neurochemistry of the RF and brainstem, anesthetic effects at these sites, and how these actions might contribute to anesthesia. In addition, we discuss how these actions might affect the “arousal” state of the brain, and thereby affect clinically important goals such as amnesia and unconsciousness. We also discuss the use of auditory evoked potentials as a method of monitoring depth of anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Groot, J. (1991) Reticular Formation. Correlative Neuroanatomy Appleton-Lange, Norwalk, Connecticut, pp. 179–183.

    Google Scholar 

  2. Moruzzi, G. and Magoun, H. W. (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473

    Google Scholar 

  3. Bremer, F. and Stoupel, N. (1959) Nouvelles recherches sur la facilitation et inhibition des potentiels evoques corticaux dans l’eveil cerebral. Arch. Int. Physiol. Biochem. 67, 240–275

    Article  CAS  Google Scholar 

  4. Dumont, S. and Dell, P. (1960) Facilitation reticulare des mecanismes visuels corticaux. Electroencephalogr. Clin. Neurophysiol. 12, 769–796.

    Article  CAS  PubMed  Google Scholar 

  5. Munk, M. H., Roelfsema, P. R., Konig, P., Engel, A. K., and Singer, W. (1996) Role of reticular activation in the modulation intracortical synchronization. Science, 272, 271–274

    Article  CAS  PubMed  Google Scholar 

  6. Hobson, J. A. (1999) Sleep and Dreaming. In: Fundamental Neuroscience ( Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., and Squire, L. R., eds.) Academic Press, San Diego, pp. 1207–1227.

    Google Scholar 

  7. Willis, W. D. and Westlund, K. N. (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31.

    Article  CAS  PubMed  Google Scholar 

  8. Bowsher, D. (1976) Role of the reticular formation in responses to noxious stimulation. Pain 2, 361–378.

    Article  CAS  PubMed  Google Scholar 

  9. Steriade, M., Oakson, G., and Ropert, N. (1982) Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp. Brain. Res. 46, 37— 51.

    Google Scholar 

  10. Reynolds, D. V. (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164, 444–445.

    Article  CAS  PubMed  Google Scholar 

  11. Hosobuchi, Y., Adams, J. E., and Linchitz, R. (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197, 183–186.

    Article  CAS  PubMed  Google Scholar 

  12. Roizen, M. F., Newfield, P., Eger, E. I., Hosobuchi, Y., Adams, J. E., and Lamb, S. (1985) Reduced anesthetic requirement after electrical stimulation of periaqueductal gray matter. Anesthesiology 62, 120–123.

    Article  CAS  PubMed  Google Scholar 

  13. Rampil, I. J., Mason, P., and Singh, H. (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78, 707–712.

    Article  CAS  PubMed  Google Scholar 

  14. Rampil, I. J. (1994) Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 80, 606–610.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Rill, E. (1997) Disorders of the reticular activating system. Med. Hypotheses 49, 379–387.

    Article  CAS  PubMed  Google Scholar 

  16. Gottesmann, C. (1999) The neurophysiology of sleep and waking: intracerebral connections, functioning and ascending influences of the medulla oblongata. Prog. Neurobiol. 59, 1–54.

    Article  CAS  PubMed  Google Scholar 

  17. Steriade, M., Dossi, R. C., Pare, D., and Oakson, G. (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl. Acad. Sci. USA 88, 4396–4400.

    Google Scholar 

  18. Fields, H. L., Malick, A., and Burstein, R. (1995) Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J. Neurophysiol. 74, 1742–1759.

    CAS  PubMed  Google Scholar 

  19. Mason, P. and Fields, H. L. (1989) Axonal trajectories and terminations of on-and off-cells in the cat lower brainstem. J. Comp. Neurol., 288, 185–207.

    Google Scholar 

  20. Leung, C. G. and Mason, P. (1998) Physiological survey of medullary raphe and magnocellular reticular neurons in the anesthetized rat. J. Neurophysiol. 80, 1630–1646.

    CAS  PubMed  Google Scholar 

  21. Leung, C. G. and Mason, P. (1999) Physiological properties of raphe magnus neurons during sleep and waking. J. Neurophysiol. 81, 584–595.

    CAS  PubMed  Google Scholar 

  22. Hayashi, M., Kobayashi, H., Kawano, H., Handa, Y., and Kabuto, M. (1987) The effects of local intraparenchymal pentobarbital on intracranial hypertension following experimental subarachnoid hemorrhage. Anesthesiology 66, 758–765.

    Article  CAS  PubMed  Google Scholar 

  23. Devor, M. and Zalkind V. I. (2001) Reversable analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain 94, 101–112.

    Article  CAS  PubMed  Google Scholar 

  24. Shimoji, K. and Bickford, R. G. (1971) Differential effects of anesthetics on mesencephalic reticular neurons. I. Spontaneous firing patterns. Anesthesiology 35, 68–75.

    Google Scholar 

  25. Shimoji, K., Fujioka, H., Fukazawa, T., Hashiba, M., and Maruyama, Y. (1984) Anesthetics and excitatory/inhibitory responses of midbrain reticular neurons. Anesthesiology 61, 151–155.

    Article  CAS  PubMed  Google Scholar 

  26. Shimoji, K. and Bickford, R. G. (1971) Differential effects of anesthetics on mesencephalic reticular neurons. II. Responses to repetitive somatosensory electrical stimulation. Anesthesiology 35, 76–80.

    Google Scholar 

  27. Goodman, S. J. and Mann, P. E. (1967) Reticular and thalamic multiple unit activity during wakefulness, sleep and anesthesia. Exp. Neurol. 19, 11–24.

    Google Scholar 

  28. Roizen, M. F., White, P. F., Eger, E. I., and Brownstein,M. (1978) Effects of ablation of serotonin or norepinephrine brain-stem areas on halothane and cyclopropane MACs in rats. Anesthesiology 49, 252–255.

    Article  CAS  PubMed  Google Scholar 

  29. Antognini, J. F. and Schwartz, K. (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79, 1244–1249.

    Article  CAS  PubMed  Google Scholar 

  30. Leung, C. G. and Mason, P. (1995) Effects of isoflurane concentration on the activity of pontomedullary raphe and medial reticular neurons in the rat. Brain. Res. 699, 71–82.

    Google Scholar 

  31. Adreani, C. M. and Kaufman, M. P. (1998) Effect of arterial occlusion on responses of group III and IV afferents to dynamic exercise. J. Appl. Physiol. 84, 1827–1833.

    Google Scholar 

  32. Grillner, S., Parker D., and Manir A. E. (1998) Vertebrate locomotion-a lamprey perspective. Ann. NY Acad. Sci. 860, 1–18.

    Google Scholar 

  33. Mori, S., Sakamoto, T., Ohta, Y., Takakusaki, K., and Matsuyama, K. (1989) Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res. 505, 66–74.

    Article  CAS  PubMed  Google Scholar 

  34. Crosby, G. and Atlas, S. (1988) Local spinal cord glucose utilization in conscious and halothane-anaesthetized rats. Can. J. Anaesth. 35, 359–363.

    Google Scholar 

  35. Tamasy, V., Kordnyi, L., and Tekeres, M. (1975) E.E.G. and multiple unit activity during ketamine and barbiturate anaesthesia. Br. J. Anaesth. 47, 1247–1251.

    Google Scholar 

  36. Alkire, M. T., Haier, R. J., Barker, S. J., Shah, N. K., Wu, J. C., and Kao, Y. J. (1995) Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82, 393–403;

    Article  CAS  PubMed  Google Scholar 

  37. Alkire, M. T., Pomfrett, C. J., Haier, R. J., Gianzero, M. V., Chan, C. M., Jacobsen, B. P., and Fallon, J. H. (1999) Functional brain imaging during anesthesia in humans, effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 90, 701–709.

    Article  CAS  PubMed  Google Scholar 

  38. Alkire, M. T. (1998) Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology 89, 323–333.

    Article  CAS  PubMed  Google Scholar 

  39. Alkire, M. T., Haier, R. J., Shah, N. K., and Anderson, C. T. (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86, 549–557.

    Article  CAS  PubMed  Google Scholar 

  40. Ishizawa, Y., Ma, H. C., Dohi, S., and Shimonaka, H. (2000) Effects of cholinomimetic injection into the brain stem reticular formation on halothane anesthesia and antinociception in rats. J. Pharmacol. Exper. Thera. 293, 845–851.

    Google Scholar 

  41. Ishizawa, Y. (2000) Selective blockade of muscarinic receptor subtypes in the brain stem reticular formation in rats: effects on anesthetic requirements. Brain Res. 873, 124–126.

    Article  CAS  PubMed  Google Scholar 

  42. Zucker, J. (1991) Central cholinergic depression reduces MAC for isoflurane in rats. Anesth. Analg. 72, 790–795.

    Google Scholar 

  43. Meuret, P., Backman, S. B., Bonhomme, V., Plourde, G., and Fiset, P. (2000) Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 93, 708–717.

    Article  CAS  PubMed  Google Scholar 

  44. Hill, G. E., Stanley, T. H., and Sentker, C. R. (1977) Physostigmine reversal of post-operative somnolence. Can. Anaesht. Soc. J. 24, 707–711

    Google Scholar 

  45. Celesia, G. G. and Peachey, N. S. (1999) Auditory evoked potentials. In: Electroencephalography: Basic priciples, clinical applications and related fields. Eds: Niedermeyer, E., Lopes da Silva F. Lippincott, Williams and Williams, Philadelphia, pp. 994–1013.

    Google Scholar 

  46. Dutton, R. C., Smith, W. D., Rampil, I. J., Chortkoff, B. S., and Eger, E. 1. 2nd. (1999) Forty-hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. Anesthesiology 91, 1209–1220.

    Article  CAS  PubMed  Google Scholar 

  47. Plourde, G. (1999) Auditory evoked potentials and 40-Hz oscillations. Anesthesiology 91, 1187–1189.

    Article  CAS  PubMed  Google Scholar 

  48. Newton, D. E., Thornton, C., Konieczko, K. M., et al. (1992) Auditory evoked response and awareness: a study in volunteers at sub-MAC concentrations of isoflurane. Br. J. Anaesth. 69, 122–129.

    Google Scholar 

  49. Thornton, C., Konieczko, K., Jones, J. G., et al. (1988) Effect of surgical stimulation on the auditory evoked response. Br. J. Anaesth. 60, 372–378.

    Google Scholar 

  50. Richmond, C. E., Matson, A., Thornton, C., Dore, C. J., and Newton, D. E. (1996) Effect of neuromuscular block on depth of anaesthesia as measured by the auditory evoked response. Br. J. Anaesth. 76, 446–448.

    Google Scholar 

  51. Schwender, D., Faber-Zullig, E., Klasing, S., Poppel, E., and Peter, K. (1994) Motor signs of wakefulness during general anaesthesia with propofol, isoflurane and flunitrazepam/fentanyl and midlatency auditory evoked potentials. Anaesthesia 49, 476–484.

    Article  CAS  PubMed  Google Scholar 

  52. Kuni, D. R. and Silvay, G. (1989) Lower esophageal contractility: a technique for measuring depth of anesthesia. Biomedical Instrumentation and Technology 23, 388–395.

    CAS  PubMed  Google Scholar 

  53. Sherrington, C. S. (1906) The integrative action of the nervous system. New Haven, Yale University, pp. 44–48.

    Google Scholar 

  54. Fukson, O. I., Berkinblit, M. B., and Feldman, A. G. (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209, 1261–1263.

    Article  CAS  PubMed  Google Scholar 

  55. Kendig, J. J. (1993) Spinal cord as a site of anesthetic action. Anesthesiology 79, 1161–1162.

    CAS  PubMed  Google Scholar 

  56. Antognini, J. F., Carstens, E., Sudo, M., and Sudo, S. (2000) Isoflurane depresses electroencephalographic and medial thalamic responses to noxious stimulation via an indirect spinal action. Anesth. Analg. 91, 1282–1288

    Google Scholar 

  57. Antognini, J. F., Wang, X. W., and Carstens, E. (2000) Isoflurane action in the spinal cord blunts electroencephalographic and thalamic-reticular formation responses to noxious stimulation in goats. Anesthesiology 92, 559–566.

    Article  CAS  PubMed  Google Scholar 

  58. Antognini, J. F., Saadi, J., Wang, X. W., Carstens, E., and Piercy, M. (2001) Propofol action in the spinal cord and brain blunts electroencephalographic responses to noxious stimulation in goats. Sleep 24, 26–31.

    CAS  PubMed  Google Scholar 

  59. Munglani, R., Andrade, J., Sapsford, D. J., Baddeley, A., and Jones J. G. (1993) A measure of consciousness and memory during isoflurane administration: the coherent frequency. Brit. J. Anaesth. 71, 633–641.

    Google Scholar 

  60. Fürst, S. (1999) Transmitters involved in antinociception in the spinal cord. Brain Res. Bulletin 48, 129–141.

    Google Scholar 

  61. McCormick, D. A. (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388.

    Google Scholar 

  62. Pollard, M. (2000) Ionotropic glutamate receptor-mediated responses in the rat primary somatosensory cortex evoked by noxious and innocuous stimulation in vivo. Exp. Brain Res. 131, 282–292.

    Google Scholar 

  63. Murugaiah, K. D. and Hemmings, H. C., Jr. (1998) Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes. Anesthesiology 89, 919–928.

    Article  CAS  PubMed  Google Scholar 

  64. Eilers, H., Kindler, C. H., and Bickler P. E. (1999) Different effects of volatile anesthetics and polyhalogenated alkanes on depolarization-evoked glutamate release from cortical brain slices. Anesth. Analg. 88, 1168–1174.

    Google Scholar 

  65. Larsen, M. and Langmoen, I. A. (1998) The effect of volatile anaesthetics on synaptic release and uptake of glutamate. Toxicol. Lett. 100–101, 59–64.

    Google Scholar 

  66. Rico, B. and Cavada, C. (1998) A population of cholinergic neurons is present in the macaque monkey thalamus. Eur. J. Neurosci. 10, 2346–2352.

    Google Scholar 

  67. Williams, J. A., Comisarow, J., Day J., Fibiger H. C., and Reiner, P. B. (1994) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J. Neurosci. 14, 5236–5242.

    CAS  PubMed  Google Scholar 

  68. Detari, L., Rasmusson, D. D., and Semba, K. (1999) The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog. Neurobiol. 58, 249–277.

    Google Scholar 

  69. Bigl, V., Woolf, N. J., and Butcher, L. L. (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull. 8, 727–749.

    Google Scholar 

  70. Celesia, G. G. and Jasper, H. H. (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16, 1053–1063.

    Article  CAS  PubMed  Google Scholar 

  71. Jones, B. E. (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog. Brain Res. 98, 61–71.

    Google Scholar 

  72. Semba, K. (1991) The cholinergic basal forebrain: a critical role in cortical arousal. In: The basal forebrain: anatomy to function. ( Napier, T. C. et al., eds.) pp. 197–218. Plenum, New York

    Chapter  Google Scholar 

  73. Collins, J. G., Kendig, J. J., and Mason P. (1995) Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends Neurosci. 18, 549–553

    Article  CAS  PubMed  Google Scholar 

  74. Rampil, I. J. and King B. S. (1996) Volatile anesthetics depress spinal motor neurons. Anesthesiology 85, 129–134.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, M. Y., Rampil, I. J., and Kendig, J. J. (1999) Ethanol directly depresses AMPA and NMDA glutamate currents in spinal cord motor neurons independent of actions on GABAq or glycine receptors. J. Pharnutcol. Exp. Therap. 290, 362–367.

    Google Scholar 

  76. Cheng, G. and Kendig J. J. (2000) Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAq or glycine receptors. Anesthesiology 93, 1075–1084.

    Article  CAS  PubMed  Google Scholar 

  77. Ota, K., Yanagidani, T., Kishikawa, K., Yamamori, Y., and Collins, J. G. (1998) Cutaneous responsiveness of lumbar spinal dorsal horn neurons is reduced by general anesthesia, an effect dependent in part on GABA,, mechanisms. J. Neurophysiol. 80, 1383–1390.

    CAS  PubMed  Google Scholar 

  78. McFarlane, C., Warner, D. S., Nader, A., and Dexter, F. (1995) Glycine receptor antagonism. Effects of ACEA-1021 on the minimum alveolar concentration for halothane in the rat. Anesthesiology 82, 963–968.

    Article  CAS  PubMed  Google Scholar 

  79. Mason, P., Owens, C. A., and Hammond, D. L. (1996) Antagonism of the antinocifensive action of halothane by intrathecal administration of GABAq receptor antagonists. Anesthesiology 84, 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Y., Sonner, J., Wu, S., and Eger, E. I. (1999) The increased MAC produced by picrotoxin application to the rat’s spinal cord has a ceiling effect: More than GABA„ enhancement mediates MAC. Anesthesiology 91, A321.

    Google Scholar 

  81. Zhang, Y., Wu, S., Eger, E. I., and Sonner, J. M. (2001) Neither GABA,, nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth. Analg. 92, 123–127.

    Google Scholar 

  82. Lydic, R., Baghdoyan, H. A., and Lorinc, Z. (1991) Microdialyis of cat pons reveals enhanced acetylcholine release during state-dependent respiratory depression. Am. J. Physiol. 261, R766 — R770.

    CAS  PubMed  Google Scholar 

  83. Marrosu, F., Portas, C., Mascia, M. S., et al. (1995) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res. 671, 329–332.

    Article  CAS  PubMed  Google Scholar 

  84. Bordi, F. and Ugolini, A. (2000) Involvement of mGluR(5) on acute nociceptive transmission. Brain Res. 871, 223–233.

    Article  CAS  PubMed  Google Scholar 

  85. Antognini, J. F. and Kien N. D. (1995) Potency (minimum alveolar anesthetic concentration) of isoflurane is independent of peripheral anesthetic effects. Anesth. Analg. 81, 69–72.

    Google Scholar 

  86. Bosnjak, Z. J., Seagard, J. L., Wu, A., and Kampine, J. P. (1982) The effects of halothane on sympathetic gamglionic transmission. Anesthesiology 57, 473–479.

    Article  CAS  PubMed  Google Scholar 

  87. MacIver, M. B. and Tanelian, D. L. (1990) Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology 72, 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  88. Campbell, J. N., Raja, S. N., and Meyer, R. A. (1984) Halothane sensitizes cutaneous nociceptors in monkeys. J. Neurophysiol. 52, 762–770

    CAS  PubMed  Google Scholar 

  89. de Jong, R. H. and Wagman, I. H. (1968) Block of afferent impulses in the dorsal horn of monkey. A possible mechanism of anesthesia. Exp. Neurol. 20, 352–358.

    Google Scholar 

  90. Namiki, A., Collins, J. G., Kitahata, L. M., Kikuchi, H., Homma, E., and Thalhammer, J. G. (1980) Effects of halothane on spinal neuronal responses to graded noxious heat stimulation in the cat. Anesthesiology 53, 475–480.

    Article  CAS  PubMed  Google Scholar 

  91. Fiset, P., Paus, T., Daloze, T., et al. (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci. 19, 5506–5513.

    CAS  PubMed  Google Scholar 

  92. Shichino, T., Murakawa, M., Adachi, T., et al. (1997) Effects of isoflurane on in vivo release of acetylcholine in the rat cerebral cortex and striatum. Acta Anaesthesiol. Scandina. 41, 1335–1340.

    Google Scholar 

  93. Kurosawa, M., Sato, A., and Sato, Y. (1992) Cutaneous mechanical sensory stimulation increases extracellular acetylcholine release in cerebral cortex in anesthetized rats. Neurochem. Int. 21, 423–427.

    Google Scholar 

  94. Antognini, J. F. and Carstens E. (1999) Isoflurane blunts electroencephalographic and thalamic-reticular formation responses to noxious stimulation in goats. Anesthesiology 91, 1770–1779.

    Article  CAS  PubMed  Google Scholar 

  95. Saidman, L. J. (1995) Anesthesiology. JAMA 273, 1661–1662.

    CAS  Google Scholar 

  96. Krasowski, M. D. and Harrison, N. L. (1999) General anaesthetic actions on ligand-gated ion channels. Cell. Mol. Life Sci. 55, 1278–1303.

    Google Scholar 

  97. Hodgson, P. S. and Liu, S. S. (2001) Epidural lidocaine decreases sevoflurane requirement for adequate depth of anesthesia as measured by the Bispectral Index monitor. Anesthesiology 94, 799–803.

    Article  CAS  PubMed  Google Scholar 

  98. Hodgson, P. S., Liu, S. S., and Gras, T. W. (199) Does epidural anesthesia have general anesthetic effects? Anesthesiology 91, 1687–1692.

    Google Scholar 

  99. Tverskoy, M., Shagal, M., Finger, J., and Kissin, I. (1994) Subarachnoid bupivacaine blockade decreases midazolam and thiopental hypnotic requirements. J. Clin. Anesth. 6, 487–490.

    Google Scholar 

  100. Tverskoy, M., Fleyshman, G., Bachrak, L., and Ben-Shlomo, I. (1996) Effect of bupivacaine-induced spinal block on the hypnotic requirement of propofol. Anesthesia 51, 652–653.

    CAS  Google Scholar 

  101. Eappen, S. and Kissin, I. (1998) Effect of subarachnoid bupivacaine block on anesthetic requirements for thiopental in rats. Anesthesiology 99, 1036–1042.

    Article  Google Scholar 

  102. Pollock, J. E., Neal, J. M., Liu, S. S., Burkhead, D., and Polissar, N. (2000) Sedation during spinal anesthesia. Anesthesiology 93, 728–734.

    Article  CAS  PubMed  Google Scholar 

  103. Glass, P. S., Bloom, M., Kearse, L., Rosow, C., Sebel., P., and Manberg, P. (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86, 836–847.

    Article  CAS  PubMed  Google Scholar 

  104. Iselin-Chaves, I. A., Flaishon, R., Sebel, P. S., et al. (1998) The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the Bispectral Index. Anesth. Analg. 87, 949–955.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antognini, J.F., Carstens, E. (2003). Anesthetic Effects on the Reticular Formation, Brainstem and Central Nervous System Arousal. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics